1
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
2
|
Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int J Mol Sci 2022; 23:ijms23158638. [PMID: 35955776 PMCID: PMC9368922 DOI: 10.3390/ijms23158638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/μm to 195 keV/μm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/μm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.
Collapse
|
3
|
Nikitina V, Nugis V, Astrelina T, Zheglo D, Kobzeva I, Kozlova M, Galstyan I, Lomonosova E, Zhanataev A, Karaseva T, Samoylov AS. Pattern of chromosomal aberrations persisting over 30 years in a Chernobyl Nuclear Power Plant accident survivor: study using mFISH. JOURNAL OF RADIATION RESEARCH 2022; 63:202-212. [PMID: 35146520 PMCID: PMC8944318 DOI: 10.1093/jrr/rrab131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
The long-term in vivo cytogenetic effects of high-dose radiation exposure can be traced in accidentally irradiated persons, and particularly useful for developing strategies of monitoring and therapy of such patients, as well as for elucidating the fundamental aspects of hematopoiesis and radiobiology. Using 24-color fluorescent in situ hybridization (mFISH), we analysed the frequency and the spectrum of chromosomal aberrations (CA) in peripheral blood lymphocytes of the Chernobyl Nuclear Power Plant (NPP) accident victim 30, 31, 32 and 33 years after acute accidental exposure to high-dose gamma radiation of the whole body. Totally, 993 metaphase cells were analyzed (or 219, 272, 258, 244 cells each year), of which 297 were aberrant. Our study demonstrated a constant aberrant cell frequency at 28% in 2016-2018 years, while in 2019, a significant increase up to 35% occurred due to contribution of significantly elevated frequency of simple aberrations in the absence of evident recent genotoxic factors. Four clonal aberrations were detected, three of which persisted for more than one year at a frequency up to 2.5% of analyzed cells. The distribution of 731 breakpoints per individual chromosomes was nearly proportional to their physical length, excepting Chromosomes 13 and 20, which were significantly breakpoint-deficient compared to the genome median rate. Monitoring of the long-term effects on chromosomal instability caused by radiation exposure is important for understanding and predicting the long-term effects of ionizing radiation.
Collapse
Affiliation(s)
- Victoriya Nikitina
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Vladimir Nugis
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Tatiyana Astrelina
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Diana Zheglo
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics", 115522, Moskvorechye str., 1, Moscow, Russia
| | - Irina Kobzeva
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Mariya Kozlova
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Irina Galstyan
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Elena Lomonosova
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Aliy Zhanataev
- Research Zakusov Institute of Pharmacology, 125315 Baltyiskaya str., 8, Moscow, Russia
| | - Tatiyana Karaseva
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Alexander S Samoylov
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| |
Collapse
|
4
|
Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021; 79:28. [PMID: 34936031 PMCID: PMC11072227 DOI: 10.1007/s00018-021-04025-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Chiara De Cesari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Biology, University of Pisa, 56123, Pisa, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Olga V Pyankova
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Centre of Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | | | | | - Silvio Bicciato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
5
|
Zahnreich S, Poplawski A, Hartel C, Eckhard LS, Galetzka D, Hankeln T, Löbrich M, Marron M, Mirsch J, Ritter S, Scholz-Kreisel P, Spix C, Schmidberger H. Spontaneous and Radiation-Induced Chromosome Aberrations in Primary Fibroblasts of Patients With Pediatric First and Second Neoplasms. Front Oncol 2020; 10:1338. [PMID: 32850427 PMCID: PMC7427586 DOI: 10.3389/fonc.2020.01338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of the present study was to investigate whether former childhood cancer patients who developed a subsequent secondary primary neoplasm (SPN) are characterized by elevated spontaneous chromosomal instability or cellular and chromosomal radiation sensitivity as surrogate markers of compromised DNA repair compared to childhood cancer patients with a first primary neoplasm (FPN) only or tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1 or on prematurely condensed chromosomes of cells irradiated and analyzed in G2. Fluorescence in situ hybridization was applied to investigate spontaneous transmissible aberrations in selected donors. No significant difference in clonogenic survival or the average yield of spontaneous or radiation-induced aberrations was found between the study populations. However, two donors with an SPN showed striking spontaneous chromosomal instability occurring as high rates of numerical and structural aberrations or non-clonal and clonal translocations. No correlation was found between radiation sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN. Together, the results of this unique case-control study show genomic stability and normal radiation sensitivity in normal somatic cells of donors with an early and high intrinsic or therapy-associated tumor risk. These findings provide valuable information for future studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as for the establishment of predictive biomarkers based on altered DNA repair processes.
Collapse
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carola Hartel
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Lukas Stefan Eckhard
- Department of Orthopedic Surgery, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Manuela Marron
- Department of Epidemiological Methods and Etiologic Research, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Sylvia Ritter
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Spix
- German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'Brien CE, Butler G, Sanyal A, Sanyal K. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. eLife 2020; 9:e58556. [PMID: 32469306 PMCID: PMC7292649 DOI: 10.7554/elife.58556] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.
Collapse
Affiliation(s)
- Krishnendu Guin
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Yao Chen
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Radha Mishra
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | | | - Bhagya C Thimmappa
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Caoimhe E O'Brien
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Geraldine Butler
- School Of Biomolecular & Biomed Science, Conway Institute of Biomolecular and Biomedical Research, University College DublinDublinIreland
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| |
Collapse
|
7
|
Rosin LF, Crocker O, Isenhart RL, Nguyen SC, Xu Z, Joyce EF. Chromosome territory formation attenuates the translocation potential of cells. eLife 2019; 8:49553. [PMID: 31682226 PMCID: PMC6855801 DOI: 10.7554/elife.49553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022] Open
Abstract
The formation and spatial arrangement of chromosome territories (CTs) in interphase has been posited to influence the outcome and frequency of genomic translocations. This is supported by correlations between the frequency of inter-chromosomal contacts and translocation events in myriad systems. However, it remains unclear if CT formation itself influences the translocation potential of cells. We address this question in Drosophila cells by modulating the level of Condensin II, which regulates CT organization. Using whole-chromosome Oligopaints to identify genomic rearrangements, we find that increased contact frequencies between chromosomes due to Condensin II knockdown leads to an increased propensity to form translocations following DNA damage. Moreover, Condensin II over-expression is sufficient to drive spatial separation of CTs and attenuate the translocation potential of cells. Together, these results provide the first causal evidence that proper CT formation can protect the genome from potentially deleterious translocations in the presence of DNA damage.
Collapse
Affiliation(s)
- Leah F Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Olivia Crocker
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Randi L Isenhart
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Zhuxuan Xu
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
8
|
Ryan TL, Pantelias AG, Terzoudi GI, Pantelias GE, Balajee AS. Use of human lymphocyte G0 PCCs to detect intra- and inter-chromosomal aberrations for early radiation biodosimetry and retrospective assessment of radiation-induced effects. PLoS One 2019; 14:e0216081. [PMID: 31059552 PMCID: PMC6502328 DOI: 10.1371/journal.pone.0216081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3–4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6–8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.
Collapse
Affiliation(s)
- Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Antonio G. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Georgia I. Terzoudi
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Gabriel E. Pantelias
- Health Physics, Radiobiology & Cytogenetics Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, Athens, Greece
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Anderson R. Cytogenetic Biomarkers of Radiation Exposure. Clin Oncol (R Coll Radiol) 2019; 31:311-318. [DOI: 10.1016/j.clon.2019.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
10
|
Szczepińska T, Rusek AM, Plewczynski D. Intermingling of chromosome territories. Genes Chromosomes Cancer 2019; 58:500-506. [DOI: 10.1002/gcc.22736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Anna Maria Rusek
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Clinical Molecular Biology DepartmentMedical University of Bialystok Bialystok Poland
| | - Dariusz Plewczynski
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Faculty of Mathematics and Information ScienceWarsaw University of Technology Warsaw Poland
| |
Collapse
|
11
|
Bikkul MU, Faragher RGA, Worthington G, Meinke P, Kerr ARW, Sammy A, Riyahi K, Horton D, Schirmer EC, Hubank M, Kill IR, Anderson RM, Slijepcevic P, Makarov E, Bridger JM. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes Cancer 2019; 58:341-356. [PMID: 30474255 PMCID: PMC6590296 DOI: 10.1002/gcc.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson‐Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long‐term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT‐immortalized cell lines.
Collapse
Affiliation(s)
- Mehmet U. Bikkul
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | | | - Gemma Worthington
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Peter Meinke
- Friedrich‐Baur‐InstitutKlinikum der Universität MünchenMünchenGermany
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Alastair R. W. Kerr
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Aakila Sammy
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Kumars Riyahi
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Daniel Horton
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Michael Hubank
- Centre for Molecular PathologyThe Royal Marsden HospitalLondonEngland
| | - Ian R. Kill
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Rhona M. Anderson
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Predrag Slijepcevic
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Evgeny Makarov
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Joanna M. Bridger
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| |
Collapse
|
12
|
Chimeric RNA in Cancer and Stem Cell Differentiation. Stem Cells Int 2018; 2018:3178789. [PMID: 30510584 PMCID: PMC6230395 DOI: 10.1155/2018/3178789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
Gene fusions are considered hallmarks of cancer which can be produced by chromosomal rearrangements. These DNA-level fusion events may result in the expression of chimeric RNAs; however, chimeric RNAs can be also produced by intergenic splicing events. Chimeric transcripts created by the latter mechanism are regulated at the transcriptional level and thus present additional modes of action and regulation. They have demonstrated importance in normal cell physiology, and their dysregulation can induce oncogenesis and impact cell differentiation. In this review, we outline proven mechanisms through which intergenically spliced chimeric RNAs are involved in carcinogenesis. We highlight their similarity to canonical chimeric RNAs resulting from gene fusions as well as their unique qualities. Additionally, we review known roles of chimeric RNA in cell differentiation and propose means through which chimeric RNAs may be valuable as stage-specific markers or as targets for expression profiling.
Collapse
|
13
|
Balajee AS, Sanders JT, Golloshi R, Shuryak I, McCord RP, Dainiak N. Investigation of Spatial Organization of Chromosome Territories in Chromosome Exchange Aberrations After Ionizing Radiation Exposure. HEALTH PHYSICS 2018; 115:77-89. [PMID: 29787433 DOI: 10.1097/hp.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Higher-order organization of the human genome is well established with chromosomes occupying distinct domains or territories in the interphase nucleus. Spatial organization of chromosome territories in the interphase nucleus occurs in a cell-type-specific manner. Since both stable and unstable aberrations induced by ionizing radiation involve the exchange of material between two or more chromosomes, this study investigated the role of spatial organization of chromosome domains in ionizing-radiation-induced chromosome translocation events. Using multicolor fluorescence in situ hybridization, the study characterized the positioning of each human chromosome relative to its neighborhood territories in the interphase nucleus of lymphocytes and B-lymphoblastoid cells before ionizing radiation and compared this interphase positioning with the spectrum of exchanges observed after ionizing radiation in the metaphase chromosomes. In addition to multicolor fluorescence in situ hybridization, the genome-wide chromosome conformation capture technique (Hi-C) was also performed in mock and x-ray-irradiated human B-lymphoblastoid and fibroblast cells to characterize the interactions among chromosomes and to assess the genome reorganization changes, if any, after ionizing radiation exposure. On average, 35-50% of the total translocations induced by x rays and neutrons correlated with proximity of chromosome territories detected by multicolor fluorescence in situ hybridization in both lymphocytes and lymphoblastoid cells. The translocation rate observed in proximally positioned chromosome territories was consistently higher than distally located territories and was found to be statistically significant (p = 0.01) in human lymphoblastoid cells after x rays. The interchromosome interaction frequencies detected by Hi-C correlate fairly well with ionizing-radiation-induced translocations detected by multicolor fluorescence in situ hybridization, suggesting the importance of chromosome proximity effects in ionizing-radiation-induced chromosomal translocation events.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Nicholas Dainiak
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN 37830
| |
Collapse
|
14
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
15
|
Jezkova L, Zadneprianetc M, Kulikova E, Smirnova E, Bulanova T, Depes D, Falkova I, Boreyko A, Krasavin E, Davidkova M, Kozubek S, Valentova O, Falk M. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci. NANOSCALE 2018; 10:1162-1179. [PMID: 29271466 DOI: 10.1039/c7nr06829h] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored. We employed high-resolution confocal microscopy to examine phosphorylated histone H2AX (γH2AX)/p53-binding protein 1 (53BP1) focus streaks at the microscale level, focusing on the complexity, spatiotemporal behaviour and repair of DNA double-strand breaks generated by boron and neon ions accelerated at similar LET values (∼135 keV μm-1) and low energies (8 and 47 MeV per n, respectively). Cells were irradiated using sharp-angle geometry and were spatially (3D) fixed to maximize the resolution of these analyses. Both high-LET radiation types generated highly complex γH2AX/53BP1 focus clusters with a larger size, increased irregularity and slower elimination than low-LET γ-rays. Surprisingly, neon ions produced even more complex γH2AX/53BP1 focus clusters than boron ions, consistent with DSB repair kinetics. Although the exposure of cells to γ-rays and boron ions eliminated a vast majority of foci (94% and 74%, respectively) within 24 h, 45% of the foci persisted in cells irradiated with neon. Our calculations suggest that the complexity of DSB damage critically depends on (increases with) the particle track core diameter. Thus, different particles with similar LET and energy may generate different types of DNA damage, which should be considered in future research.
Collapse
Affiliation(s)
- Lucie Jezkova
- Joint Institute for Nuclear Research, Dubna, Russia and University of Chemistry and Technology Prague, Prague, Czech Republic
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Mariia Zadneprianetc
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Elena Kulikova
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | | | - Tatiana Bulanova
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Daniel Depes
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Iva Falkova
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Alla Boreyko
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Evgeny Krasavin
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Marie Davidkova
- Czech Academy of Sciences, Nuclear Physics Institute, Prague, Czech Republic
| | - Stanislav Kozubek
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Olga Valentova
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| |
Collapse
|
16
|
TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription. Nat Commun 2017; 8:233. [PMID: 28794467 PMCID: PMC5550487 DOI: 10.1038/s41467-017-00307-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation ‘hotspot’, MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability. DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.
Collapse
|
17
|
Hovhannisyan G, Aroutiounian R, Babayan N, Harutyunyan T, Liehr T. Comparative analysis of individual chromosome involvement in micronuclei induced by mitomycin C and bleomycin in human leukocytes. Mol Cytogenet 2016; 9:49. [PMID: 27330564 PMCID: PMC4915088 DOI: 10.1186/s13039-016-0258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background Micronucleus (MN) assay is a well standardized approach for evaluation of clastogenic/aneugenic effects of mutagens. Fluorescence in situ hybridization (FISH) is successfully used to characterize the chromosomal content of MN. However, the relationships between nuclear positioning, length, and gene density of individual chromosomes and their involvement in MN induced by different mutagens have not been clearly defined. Results Chromosomal content of MN was characterized in human leukocytes treated with mitomycin C (MMC) and bleomycin (BLM) by FISH using centromeric (cep) and whole-chromosome painting (wcp) probes. Involvement of chromosomes 8, 15 and 20 in MMC-induced and chromosomes 1, 9 and 16 in BLM-induced MN was studied, and correlated with chromosome size, gene density and interphase position. The results obtained were analyzed together with previous own data on the frequencies of inclusion of chromosomes 3, 4, 6, 7, 9, 16, 17, 18, and X in MMC-induced MN. It could be shown that MMC- and BLM-induced MN could contain material derived from all chromosomes investigated. Involvement of whole chromosomes 8, 15 and 20 in MMC-induced MN negatively correlated with gene density; however, analysis together with earlier studied chromosomes did not confirm this correlation. Inclusion of chromosomes 8, 15 and 20 in MMC-induced MN does not depend on their size and interphase position; the same result was found for the twelve overall analyzed chromosomes. In BLM-treated cells significant correlation between frequencies of involvement of chromosomes 1, 9 and 16 in MN and their size was found. Conclusions Our results clearly revealed that BLM differs from MMC with respect to the distribution of induced chromosome damage and MN formation. Thus, DNA-damaging agents with diverse mechanism of action induce qualitatively different MN with regard to their chromosomal composition. Also this study demonstrates the utility of combined sequential application of cep and wcp probes for efficient detection of MN chromosomal content in terms of centric and acentric fragments.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Nelly Babayan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia ; Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan, 0014 Yerevan, Armenia
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
18
|
Loucas BD, Shuryak I, Cornforth MN. Three-Color Chromosome Painting as Seen through the Eyes of mFISH: Another Look at Radiation-Induced Exchanges and Their Conversion to Whole-Genome Equivalency. Front Oncol 2016; 6:52. [PMID: 27014627 PMCID: PMC4791380 DOI: 10.3389/fonc.2016.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Whole-chromosome painting (WCP) typically involves the fluorescent staining of a small number of chromosomes. Consequently, it is capable of detecting only a fraction of exchanges that occur among the full complement of chromosomes in a genome. Mathematical corrections are commonly applied to WCP data in order to extrapolate the frequency of exchanges occurring in the entire genome [whole-genome equivalency (WGE)]. However, the reliability of WCP to WGE extrapolations depends on underlying assumptions whose conditions are seldom met in actual experimental situations, in particular the presumed absence of complex exchanges. Using multi-fluor fluorescence in situ hybridization (mFISH), we analyzed the induction of simple exchanges produced by graded doses of 137Cs gamma rays (0–4 Gy), and also 1.1 GeV 56Fe ions (0–1.5 Gy). In order to represent cytogenetic damage as it would have appeared to the observer following standard three-color WCP, all mFISH information pertaining to exchanges that did not specifically involve chromosomes 1, 2, or 4 was ignored. This allowed us to reconstruct dose–responses for three-color apparently simple (AS) exchanges. Using extrapolation methods similar to those derived elsewhere, these were expressed in terms of WGE for comparison to mFISH data. Based on AS events, the extrapolated frequencies systematically overestimated those actually observed by mFISH. For gamma rays, these errors were practically independent of dose. When constrained to a relatively narrow range of doses, the WGE corrections applied to both 56Fe and gamma rays predicted genome-equivalent damage with a level of accuracy likely sufficient for most applications. However, the apparent accuracy associated with WCP to WGE corrections is both fortuitous and misleading. This is because (in normal practice) such corrections can only be applied to AS exchanges, which are known to include complex aberrations in the form of pseudosimple exchanges. When WCP to WGE corrections are applied to true simple exchanges, the results are less than satisfactory, leading to extrapolated values that underestimate the true WGE response by unacceptably large margins. Likely explanations for these results are discussed, as well as their implications for radiation protection. Thus, in seeming contradiction to notion that complex aberrations be avoided altogether in WGE corrections – and in violation of assumptions upon which these corrections are based – their inadvertent inclusion in three-color WCP data is actually required in order for them to yield even marginally acceptable results.
Collapse
Affiliation(s)
- Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch , Galveston, TX , USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University , New York, NY , USA
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch , Galveston, TX , USA
| |
Collapse
|
19
|
Qiu GH. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:31-41. [DOI: 10.1016/j.mrrev.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/22/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
|
20
|
Zhang X, Wang Y, Wang J, Sun F. Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (Review). Oncol Rep 2015; 35:625-38. [PMID: 26717966 DOI: 10.3892/or.2015.4464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 11/05/2022] Open
Abstract
Numerous signaling pathways have been shown to be dysregulated in liver cancer. In addition, some protein-protein interactions are prerequisite for the uncontrolled activation or inhibition of these signaling pathways. For instance, in the PI3K/AKT signaling pathway, protein AKT binds with a number of proteins such as mTOR, FOXO1 and MDM2 to play an oncogenic role in liver cancer. The aim of the present review was to focus on a series of important protein-protein interactions that can serve as potential therapeutic targets in liver cancer among certain important pro-carcinogenic signaling pathways. The strategies of how to investigate and analyze the protein-protein interactions are also included in this review. A survey of these protein interactions may provide alternative therapeutic targets in liver cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yulan Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
21
|
Hill MA. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure. RADIATION PROTECTION DOSIMETRY 2015; 166:295-301. [PMID: 25883310 DOI: 10.1093/rpd/ncv151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements.
Collapse
Affiliation(s)
- M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
22
|
Sumption N, Goodhead DT, Anderson RM. Alpha-Particle-Induced Complex Chromosome Exchanges Transmitted through Extra-Thymic Lymphopoiesis In Vitro Show Evidence of Emerging Genomic Instability. PLoS One 2015; 10:e0134046. [PMID: 26252014 PMCID: PMC4529306 DOI: 10.1371/journal.pone.0134046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022] Open
Abstract
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.
Collapse
Affiliation(s)
| | | | - Rhona M. Anderson
- Medical Research Council, Didcot, Oxon, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
23
|
Tracy BL, Stevens DL, Goodhead DT, Hill MA. Variation in RBE for Survival of V79-4 Cells as a Function of Alpha-Particle (Helium Ion) Energy. Radiat Res 2015; 184:33-45. [PMID: 26121227 DOI: 10.1667/rr13835.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High linear energy transfer (LET) α particles are important with respect to the carcinogenic risk associated with human exposure to ionizing radiation, most notably to radon and its progeny. Additionally, the potential use of alpha-particle-emitting radionuclides in radiotherapy is increasingly being explored. Within the body the emitted alpha particles slow down, traversing a number of cells with a range of energies and therefore with varying efficiencies at inducing biological response. The LET of the particle typically rises from between ~70-90 keV μm(-1) at the start of the track (depending on initial energy) to a peak of ~237 keV μm(-1) towards the end of the track, before falling again at the very end of its range. To investigate the variation in biological response with incident energy, a plutonium-238 alpha-particle irradiator was calibrated to enable studies with incident energies ranging from 4.0 MeV down to 1.1 MeV. The variation in clonogenic survival of V79-4 cells was determined as a function of incident energy, along with the relative variation in the initial yields of DNA double-strand breaks (DSB) measured using the FAR assay. The clonogenic survival data also extends previously published data obtained at the Medical Research Council (MRC), Harwell using the same cells irradiated with helium ions, with energies ranging from 34.9 MeV to 5.85 MeV. These studies were performed in conjunction with cell morphology measurements on live cells enabling the determination of absorbed dose and calculation of the average LET in the cell. The results show an increase in relative biological effectiveness (RBE) for cell inactivation with decreasing helium ion energy (increasing LET), reaching a maximum for incident energies of ~3.2 MeV and corresponding average LET of 131 keV μm(-1), above which the RBE is observed to fall at lower energies (higher LETs). The effectiveness of single alpha-particle traversals (relevant to low-dose exposure) at inducing cell inactivation was observed to increase with decreasing energy to a peak of ~68% survival probability for incident energies of ~1.8 MeV (average LET of 190 keV μm(-1)) producing ~0.39 lethal lesions per track. However, the efficiency of a single traversal will also vary significantly with cell morphology and angle of incidence, as well as cell type.
Collapse
Affiliation(s)
- Bliss L Tracy
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,b Radiation Protection Bureau, Health Canada 6302D1, Ottawa, Ontario K1A 1C1, Canada; and
| | - David L Stevens
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,c Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Dudley T Goodhead
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Mark A Hill
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,c Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
24
|
Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:108-17. [DOI: 10.1016/j.mrrev.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
|
25
|
Sima J, Gilbert DM. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev 2014; 25:93-100. [PMID: 24598232 DOI: 10.1016/j.gde.2013.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/29/2013] [Indexed: 12/23/2022]
Abstract
A recent flurry of reports correlates replication timing (RT) with mutation rates during both evolution and cancer. Specifically, point mutations and copy number losses correlate with late replication, while copy number gains and other rearrangements correlate with early replication. In some cases, plausible mechanisms have been proposed. Point mutation rates may reflect temporal variation in repair mechanisms. Transcription-induced double-strand breaks are expected to occur in transcriptionally active early replicating chromatin. Fusion partners are generally in close proximity, and chromatin in close proximity replicates at similar times. However, temporal enrichment of copy number gains and losses remains an enigma. Moreover, many conclusions are compromised by a lack of matched RT and sequence datasets, the filtering out of developmental variation in RT, and the use of somatic cell lines to make inferences about germline evolution.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
26
|
Themis M, Garimberti E, Hill MA, Anderson RM. Reduced chromosome aberration complexity in normal human bronchial epithelial cells exposed to low-LET γ-rays and high-LET α-particles. Int J Radiat Biol 2013; 89:934-43. [PMID: 23679558 PMCID: PMC3836394 DOI: 10.3109/09553002.2013.805889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo.
Collapse
|