1
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Oliveira JES, Araújo AP, Alves AS, Silva MWF, Almeida JPBD, Nascimento JAM, Dos Santos VB, Oliveira SCB. Simultaneous voltammetric determination of 7-methyl-guanine and 5-methyl-cytosine using a cathodically pre-treated boron-doped diamond electrode. Anal Biochem 2023; 671:115135. [PMID: 37019253 DOI: 10.1016/j.ab.2023.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 μmol L-1 (r = 0.999), detection limit of 0.27 μmol L-1 for 7-mGua; from 3.00 to 25.00 μmol L-1 (r = 0.998), with a detection limit of 1.69 μmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.
Collapse
Affiliation(s)
| | - Alex P Araújo
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Arthur S Alves
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Maycom W F Silva
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | | | - Vagner B Dos Santos
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
4
|
Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants (Basel) 2023; 12:632. [PMID: 36978880 PMCID: PMC10045152 DOI: 10.3390/antiox12030632] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress, a condition characterized by an imbalance between pro-oxidant molecules and antioxidant defense systems, is increasingly recognized as a key contributor to cancer development. This is because the reactive oxygen species (ROS) generated during oxidative stress can damage DNA, proteins, and lipids to facilitate mutations and other cellular changes that promote cancer growth. Antioxidant supplementation is a potential strategy for decreasing cancer incidence; by reducing oxidative stress, DNA damage and other deleterious cellular changes may be attenuated. Several clinical trials have been conducted to investigate the role of antioxidant supplements in cancer prevention. Some studies have found that antioxidant supplements, such as vitamin A, vitamin C, and vitamin E, can reduce the risk of certain types of cancer. On the other hand, some studies posit an increased risk of cancer with antioxidant supplement use. In this review, we will provide an overview of the current understanding of the role of oxidative stress in cancer formation, as well as the potential benefits of antioxidant supplementation in cancer prevention. Additionally, we will discuss both preclinical and clinical studies highlighting the potentials and limitations of preventive antioxidant strategies.
Collapse
Affiliation(s)
- Alexander J. Didier
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | | | | | | | - Justin F. Creeden
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
5
|
Baljinnyam T, Sowers ML, Hsu CW, Conrad JW, Herring JL, Hackfeld LC, Sowers LC. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming. PLoS One 2022; 17:e0273509. [PMID: 36037209 PMCID: PMC9423628 DOI: 10.1371/journal.pone.0273509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James W. Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason L. Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Linda C. Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wan F, Chen F, Fan Y, Chen D. Clinical Significance of TET2 in Female Cancers. Front Bioeng Biotechnol 2022; 10:790605. [PMID: 35223782 PMCID: PMC8874273 DOI: 10.3389/fbioe.2022.790605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Female cancers refer to malignant tumors of the female reproductive system and breasts, which severely affect the physical and mental health of women. Although emerging experiment-based studies have indicated a potential correlation between ten-eleven translocation methylcytosine dioxygenase (TET2) and female cancers, no comprehensive studies have been conducted. Therefore, this study aimed to summarize the clinical value and underlying oncogenic functions of TET2 in female cancers, such as breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), ovarian serous cystadenocarcinoma (OV), uterine corpus endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS), based on the data obtained from The Cancer Genome Atlas. The expression of TET2 was decreased in most female cancers, and its high expression was distinctly associated with the favorable prognosis of most female cancers. Furthermore, CD8+ T-cell infiltration was not correlated with TET2 in OV, UCEC, and UCS, whereas tumor-associated fibroblast infiltration was significantly correlated with TET2 in BRCA, CESC, and OV. TET2 was co-expressed with the immune checkpoint molecules ADORA2A, CD160, CD200, CD200R1, CD44, CD80, NRP1 TNFSF4, and TNFSF15 in most female cancers. Enrichment analysis revealed that some signaling pathways involving TET2 and related genes were related to tumorigenesis. Immunohistochemical and immunofluorescence staining confirmed the results of cancer immune infiltration analysis in BRCA tissues. Therefore, this study provides evidence for the oncogenic functions and clinical value of TET2 in female cancers.
Collapse
|
7
|
Direct and Base Excision Repair-Mediated Regulation of a GC-Rich cis-Element in Response to 5-Formylcytosine and 5-Carboxycytosine. Int J Mol Sci 2021; 22:ijms222011025. [PMID: 34681690 PMCID: PMC8539351 DOI: 10.3390/ijms222011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Stepwise oxidation of the epigenetic mark 5-methylcytosine and base excision repair (BER) of the resulting 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) may provide a mechanism for reactivation of epigenetically silenced genes; however, the functions of 5-fC and 5-caC at defined gene elements are scarcely explored. We analyzed the expression of reporter constructs containing either 2′-deoxy-(5-fC/5-caC) or their BER-resistant 2′-fluorinated analogs, asymmetrically incorporated into CG-dinucleotide of the GC box cis-element (5′-TGGGCGGAGC) upstream from the RNA polymerase II core promoter. In the absence of BER, 5-caC caused a strong inhibition of the promoter activity, whereas 5-fC had almost no effect, similar to 5-methylcytosine or 5-hydroxymethylcytosine. BER of 5-caC caused a transient but significant promoter reactivation, succeeded by silencing during the following hours. Both responses strictly required thymine DNA glycosylase (TDG); however, the silencing phase additionally demanded a 5′-endonuclease (likely APE1) activity and was also induced by 5-fC or an apurinic/apyrimidinic site. We propose that 5-caC may act as a repressory mark to prevent premature activation of promoters undergoing the final stages of DNA demethylation, when the symmetric CpG methylation has already been lost. Remarkably, the downstream promoter activation or repression responses are regulated by two separate BER steps, where TDG and APE1 act as potential switches.
Collapse
|
8
|
Mendes CH, Silva MW, Oliveira SCB. Voltammetric determination of 5-methylcytosine at glassy carbon electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Genomic Uracil and Aberrant Profile of Demethylation Intermediates in Epigenetics and Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms22084212. [PMID: 33921666 PMCID: PMC8073381 DOI: 10.3390/ijms22084212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA of all living cells undergoes continuous structural and chemical alterations resulting from fundamental cellular metabolic processes and reactivity of normal cellular metabolites and constituents. Examples include enzymatically oxidized bases, aberrantly methylated bases, and deaminated bases, the latter largely uracil from deaminated cytosine. In addition, the non-canonical DNA base uracil may result from misincorporated dUMP. Furthermore, uracil generated by deamination of cytosine in DNA is not always damage as it is also an intermediate in normal somatic hypermutation (SHM) and class shift recombination (CSR) at the Ig locus of B-cells in adaptive immunity. Many of the modifications alter base-pairing properties and may thus cause replicative and transcriptional mutagenesis. The best known and most studied epigenetic mark in DNA is 5-methylcytosine (5mC), generated by a methyltransferase that uses SAM as methyl donor, usually in CpG contexts. Oxidation products of 5mC are now thought to be intermediates in active demethylation as well as epigenetic marks in their own rights. The aim of this review is to describe the endogenous processes that surround the generation and removal of the most common types of DNA nucleobase modifications, namely, uracil and certain epigenetic modifications, together with their role in the development of hematological malignances. We also discuss what dictates whether the presence of an altered nucleobase is defined as damage or a natural modification.
Collapse
|
10
|
Pomerleau J, Weidmann C, Coutant K, Lowry CM, Veilleux MP, Bérubé J, Wagner JR, Landreville S. Experimental eye research / short communication format characterization of DNA hydroxymethylation in the ocular choroid. Exp Eye Res 2021; 205:108473. [PMID: 33524365 DOI: 10.1016/j.exer.2021.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation and hydroxymethylation represent important epigenetic modifications involved in cell differentiation. DNA hydroxymethylation can be used to classify independent biological samples by tissue type. Relatively little is known regarding the genomic abundance and function of 5-hydroxymethylcytosine (5-hmC) in ocular tissues. The choroid supplies oxygen and nutrients to the outer retina through its dense network of blood vessels. This connective tissue is mainly composed of pigmented melanocytes, and stromal fibroblasts. Since DNA hydroxymethylation level is relatively high in cutaneous melanocytes, we investigated the presence of 5-hmC in choroidal melanocytes, as well as the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) and isocitrate dehydrogenases (IDHs) implicated in this DNA demethylation pathway. Immunofluorescence, DNA slot blots and liquid chromatography coupled to tandem mass spectrometry performed with choroidal tissues and melanocytes within these tissues revealed that they have a relatively high level of 5-hmC. We also examined the expression of TET1/2 and IDH1/2 in choroidal melanocytes by gene expression profiling, qPCR and Western blotting. In addition, we detected decreased levels of 5-hmC when choroidal melanocytes were exposed to a lower concentration of oxygen. Our study therefore demonstrates that DNA hydroxymethylation is present in choroidal melanocytes, and that the abundance of this epigenetic mark is impacted by hypoxia.
Collapse
Affiliation(s)
- Jade Pomerleau
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada
| | - Cindy Weidmann
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Kelly Coutant
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Carolyne-Mary Lowry
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Pier Veilleux
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - Julie Bérubé
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Solange Landreville
- Axe Médecine Régénératrice and Centre Universitaire d'Ophtalmologie (CUO)-Recherche, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada; Département d'Ophtalmologie et ORL-CCF, Faculté de Médecine, Université Laval, Quebec City, QC, Canada; Centre de Recherche en Organogénése Expérimentale de l'Université Laval/LOEX, Quebec City, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
11
|
Majumdar C, McKibbin PL, Krajewski AE, Manlove AH, Lee JK, David SS. Unique Hydrogen Bonding of Adenine with the Oxidatively Damaged Base 8-Oxoguanine Enables Specific Recognition and Repair by DNA Glycosylase MutY. J Am Chem Soc 2020; 142:20340-20350. [PMID: 33202125 DOI: 10.1021/jacs.0c06767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA glycosylase MutY prevents deleterious mutations resulting from guanine oxidation by recognition and removal of adenine (A) misincorporated opposite 8-oxo-7,8-dihydroguanine (OG). Correct identification of OG:A is crucial to prevent improper and detrimental MutY-mediatedadenine excision from G:A or T:A base pairs. Here we present a structure-activity relationship (SAR) study using analogues of A to probe the basis for OG:A specificity of MutY. We correlate observed in vitro MutY activity on A analogue substrates with their experimental and calculated acidities to provide mechanistic insight into the factors influencing MutY base excision efficiency. These data show that H-bonding and electrostatic interactions of the base within the MutY active site modulate the lability of the N-glycosidic bond. A analogues that were not excised from duplex DNA as efficiently as predicted by calculations provided insight into other required structural features, such as steric fit and H-bonding within the active site for proper alignment with MutY catalytic residues. We also determined MutY-mediated repair of A analogues paired with OG within the context of a DNA plasmid in bacteria. Remarkably, the magnitudes of decreased in vitro MutY excision rates with different A analogue duplexes do not correlate with the impact on overall MutY-mediated repair. The feature that most strongly correlated with facile cellular repair was the ability of the A analogues to H-bond with the Hoogsteen face of OG. Notably, base pairing of A with OG uniquely positions the 2-amino group of OG in the major groove and provides a means to indirectly select only these inappropriately placed adenines for excision. This highlights the importance of OG lesion detection for efficient MutY-mediated cellular repair. The A analogue SARs also highlight the types of modifications tolerated by MutY and will guide the development of specific probes and inhibitors of MutY.
Collapse
Affiliation(s)
- Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Paige L McKibbin
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Yan YL, Huang ZN, Zhu Z, Cui YY, Li MQ, Huang RM, Yan J, Shen B. Downregulation of TET1 Promotes Bladder Cancer Cell Proliferation and Invasion by Reducing DNA Hydroxymethylation of AJAP1. Front Oncol 2020; 10:667. [PMID: 32528872 PMCID: PMC7253684 DOI: 10.3389/fonc.2020.00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyzes 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) to promote the demethylation process. The dysregulated TET1 protein and 5 hmC level were reported to either suppress or promote carcinogenesis in a cancer type-dependent manner. Currently, the role of TET1 in the development of urinary bladder cancer (UBC) and its underlying molecular mechanisms remain unclear. Herein, we found that TET1 expression was downregulated in UBC specimens compared with normal urothelium and was inversely related to tumor stage and grade and overall survival, suggesting its negative association with UBC progression. TET1 silencing in UBC cells increased cell proliferation and invasiveness while the ectopic expression of wild-type TET1-CD, but not its enzymatic inactive mutant, reversed these effects and suppressed tumorigenicity in vivo. In addition, as a direct regulator of TET1 activity, vitamin C treatment increased 5 hmC level and inhibited the anchorage-independent growth and tumorigenicity of UBC cells. Furthermore, we found that TET1 maintained the hypomethylation in the promoter of the AJAP1 gene, which codes for adherens junction-associated protein 1. The downregulation of AJAP1 reversed TET1-CD-induced nuclear translocation of β-catenin, thus inhibiting the expression of its downstream genes. In human UBC specimens, AJAP1 is frequently downregulated and positively associated with TET1. Notably, low expression levels of both TET1 and AJAP1 predict poor prognosis in UBC patients. In conclusion, we found that the frequently downregulated TET1 level reduces the hydroxymethylation of AJAP1 promoter and subsequently activates β-catenin signaling to promote UBC development. The downregulation of both TET1 and AJAP1 might be a promising prognostic biomarker for UBC patients.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Nan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Zhu
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yang-Yan Cui
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Mei-Qian Li
- Model Animal Research Center of Nanjing University, Nanjing, China
| | - Rui-Min Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. J Theor Biol 2019; 476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
|
14
|
DNA Hydroxymethylation at the Interface of the Environment and Nonalcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152791. [PMID: 31387232 PMCID: PMC6695744 DOI: 10.3390/ijerph16152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disorders among adults, children, and adolescents, and a growing epidemic, worldwide. Notwithstanding the known susceptibility factors for NAFLD, i.e., obesity and metabolic syndrome, the exact cause(s) of this disease and the underlying mechanisms of its initiation and progression are not fully elucidated. NAFLD is a multi-faceted disease with metabolic, genetic, epigenetic, and environmental determinants. Accumulating evidence shows that exposure to environmental toxicants contributes to the development of NAFLD by promoting mitochondrial dysfunction and generating reactive oxygen species in the liver. Imbalances in the redox state of the cells are known to cause alterations in the patterns of 5-hydroxymethylcytosine (5hmC), the oxidative product of 5-methylcytosine (5mC), thereby influencing gene regulation. The 5hmC-mediated deregulation of genes involved in hepatic metabolism is an emerging area of research in NAFLD. This review summarizes our current knowledge on the interactive role of xenobiotic exposure and DNA hydroxymethylation in the pathogenesis of fatty liver disease. Increasing the mechanistic knowledge of NAFLD initiation and progression is crucial for the development of new and effective strategies for prevention and treatment of this disease.
Collapse
|
15
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zimu Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pengfei Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jia Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
16
|
Kagohara LT, Stein-O’Brien GL, Kelley D, Flam E, Wick HC, Danilova LV, Easwaran H, Favorov AV, Qian J, Gaykalova DA, Fertig EJ. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct Genomics 2019; 17:49-63. [PMID: 28968850 PMCID: PMC5860551 DOI: 10.1093/bfgp/elx018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex disease, driven by aberrant activity in numerous signaling pathways in even individual malignant cells. Epigenetic changes are critical mediators of these functional changes that drive and maintain the malignant phenotype. Changes in DNA methylation, histone acetylation and methylation, noncoding RNAs, posttranslational modifications are all epigenetic drivers in cancer, independent of changes in the DNA sequence. These epigenetic alterations were once thought to be crucial only for the malignant phenotype maintenance. Now, epigenetic alterations are also recognized as critical for disrupting essential pathways that protect the cells from uncontrolled growth, longer survival and establishment in distant sites from the original tissue. In this review, we focus on DNA methylation and chromatin structure in cancer. The precise functional role of these alterations is an area of active research using emerging high-throughput approaches and bioinformatics analysis tools. Therefore, this review also describes these high-throughput measurement technologies, public domain databases for high-throughput epigenetic data in tumors and model systems and bioinformatics algorithms for their analysis. Advances in bioinformatics data that combine these epigenetic data with genomics data are essential to infer the function of specific epigenetic alterations in cancer. These integrative algorithms are also a focus of this review. Future studies using these emerging technologies will elucidate how alterations in the cancer epigenome cooperate with genetic aberrations during tumor initiation and progression. This deeper understanding is essential to future studies with epigenetics biomarkers and precision medicine using emerging epigenetic therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daria A Gaykalova
- Corresponding authors: Daria A. Gaykalova, Otolaryngology - Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, Rm 574, CRBII Baltimore, MD 21231, USA. Tel.: +1 410 614 2745; Fax: +1 410 614 1411; E-mail: ; Elana J. Fertig, Assistant Professor of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, 550 N Broadway, 1101 E Baltimore, MD 21205, USA. Tel.: +1 410 955 4268; Fax: +1 410 955 0859; E-mail:
| | | |
Collapse
|
17
|
Lai W, Mo J, Yin J, Lyu C, Wang H. Profiling of epigenetic DNA modifications by advanced liquid chromatography-mass spectrometry technologies. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Asenso J, Wang L, Du Y, Liu QH, Xu BJ, Guo MZ, Tang DQ. Advances in detection and quantification of methylcytosine and its derivatives. J Sep Sci 2018; 42:1105-1116. [PMID: 30575277 DOI: 10.1002/jssc.201801100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 11/08/2022]
Abstract
Methylation of the fifth carbon atom in cytosine is an epigenetic modification of deoxyribonucleic acid that plays important roles in numerous cellular processes and disease pathogenesis. Three additional states of cytosine, that is, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine, have been identified and associated with the diagnosis and/or prognosis of diseases. However, accurate measurement of those intermediates is a challenge since their global levels are relatively low. A number of innovative methods have been developed to detect and quantify these compounds in biological samples, such as blood, tissue and urine, etc. This review focuses on recent advancement in detection and quantification of four cytosine modifications, based on which, the development, diagnosis, and prognosis of diseases could be monitored through non-invasive procedures.
Collapse
Affiliation(s)
- James Asenso
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yan Du
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Qing-Hua Liu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Bing-Ju Xu
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng-Zhe Guo
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dao-Quan Tang
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
19
|
Peng D, Ge G, Gong Y, Zhan Y, He S, Guan B, Li Y, Xu Z, Hao H, He Z, Xiong G, Zhang C, Shi Y, Zhou Y, Ci W, Li X, Zhou L. Vitamin C increases 5-hydroxymethylcytosine level and inhibits the growth of bladder cancer. Clin Epigenetics 2018; 10:94. [PMID: 30005692 PMCID: PMC6045833 DOI: 10.1186/s13148-018-0527-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background 5-Hydroxymethylcytosine (5hmC) is converted from 5-methylcytosine (5mC) by a group of enzymes termed ten-eleven translocation (TET) family dioxygenases. The loss of 5hmC has been identified as a hallmark of most types of cancer and is related to tumorigenesis and progression. However, the role of 5hmC in bladder cancer is seldom investigated. Vitamin C was recently reported to induce the generation of 5hmC by acting as a cofactor for TET dioxygenases. In this study, we explored the role of 5hmC in bladder cancer and the therapeutic efficacy of vitamin C in increasing the 5hmC pattern. Results 5hmC was decreased in bladder cancer samples and was related to patient overall survival. Genome-wide mapping of 5hmC in tumor tissues and vitamin C-treated bladder cancer cells revealed that 5hmC loss was enriched in cancer-related genes and that vitamin C treatment increased 5hmC levels correspondingly. Vitamin C treatment shifted the transcriptome and inhibited the malignant phenotypes associated with bladder cancer cells in both in vitro cell lines and in vivo xenografts. Conclusions This study provided mechanistic insights regarding the 5hmC loss in bladder cancer and a rationale for exploring the therapeutic use of vitamin C as a potential epigenetic treatment for bladder cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0527-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ding Peng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Guangzhe Ge
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Yifan Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Ziying Xu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Hao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Cuijian Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.,Institute of Urology, Peking University, Beijing, 100034, China.,National Urological Cancer Center, Beijing, 100034, China.,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China
| | - Yue Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhou
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weimin Ci
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, 100034, China. .,Institute of Urology, Peking University, Beijing, 100034, China. .,National Urological Cancer Center, Beijing, 100034, China. .,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China. .,Institute of Urology, Peking University, Beijing, 100034, China. .,National Urological Cancer Center, Beijing, 100034, China. .,Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
20
|
Kitsera N, Allgayer J, Parsa E, Geier N, Rossa M, Carell T, Khobta A. Functional impacts of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine at a single hemi-modified CpG dinucleotide in a gene promoter. Nucleic Acids Res 2017; 45:11033-11042. [PMID: 28977475 PMCID: PMC5737506 DOI: 10.1093/nar/gkx718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Enzymatic oxidation of 5-methylcytosine (5-mC) in the CpG dinucleotides to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) has central role in the process of active DNA demethylation and epigenetic reprogramming in mammals. However, it is not known whether the 5-mC oxidation products have autonomous epigenetic or regulatory functions in the genome. We used an artificial upstream promoter constituted of one cAMP response element (CRE) to measure the impact of 5-mC in a hemi-methylated CpG on the promoter activity and further explored the consequences of 5-hmC, 5-fC, and 5-caC in the same system. All modifications induced mild impairment of the CREB transcription factor binding to the consensus 5'-TGACGTCA-3' CRE sequence. The decrease of the gene expression by 5-mC or 5-hmC was proportional to the impairment of CREB binding and had a steady character over at least 48 h. In contrast, promoters containing single 5-fC or 5-caC underwent further progressive loss of activity, up to an almost complete repression. This decline was dependent on the thymine-DNA glycosylase (TDG). The results thus indicate that 5-fC and 5-caC can provide a signal for perpetuation and enhancement of the repressed transcriptional state by a mechanism that requires base excision repair.
Collapse
Affiliation(s)
- Nataliya Kitsera
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Julia Allgayer
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| | - Edris Parsa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nadine Geier
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Martin Rossa
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Andriy Khobta
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany.,Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Mainz 55128, Germany
| |
Collapse
|
21
|
Olinski R, Gackowski D, Cooke MS. Endogenously generated DNA nucleobase modifications source, and significance as possible biomarkers of malignant transformation risk, and role in anticancer therapy. Biochim Biophys Acta Rev Cancer 2017; 1869:29-41. [PMID: 29128527 DOI: 10.1016/j.bbcan.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/26/2023]
Abstract
The DNA of all living cells undergoes continuous structural and chemical alteration, which may be derived from exogenous sources, or endogenous, metabolic pathways, such as cellular respiration, replication and DNA demethylation. It has been estimated that approximately 70,000 DNA lesions may be generated per day in a single cell, and this has been linked to a wide variety of diseases, including cancer. However, it is puzzling why potentially mutagenic DNA modifications, occurring at a similar level in different organs/tissue, may lead to organ/tissue specific cancers, or indeed non-malignant disease - what is the basis for this differential response? We suggest that it is perhaps the precise location of damage, within the genome, that is a key factor. Finally, we draw attention to the requirement for reliable methods for identification and quantification of DNA adducts/modifications, and stress the need for these assays to be fully validated. Once these prerequisites are satisfied, measurement of DNA modifications may be helpful as a clinical parameter for treatment monitoring, risk group identification and development of prevention strategies.
Collapse
Affiliation(s)
- Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-095 Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-095 Bydgoszcz, Poland
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Modesto A. Maidique Campus, AHC5 355 11200 SW 8th Street, Miami, FL 33199, United States; Biomolecular Sciences Institute, Florida International University, United States
| |
Collapse
|
22
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
23
|
Spans L, Van den Broeck T, Smeets E, Prekovic S, Thienpont B, Lambrechts D, Karnes RJ, Erho N, Alshalalfa M, Davicioni E, Helsen C, Gevaert T, Tosco L, Haustermans K, Lerut E, Joniau S, Claessens F. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget 2016; 7:24326-38. [PMID: 27014907 PMCID: PMC5029704 DOI: 10.18632/oncotarget.8220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
The clinical heterogeneity of prostate cancer (PCa) makes it difficult to identify those patients that could benefit from more aggressive treatments. As a contribution to a better understanding of the genomic changes in the primary tumor that are associated with the development of high-risk disease, we performed exome sequencing and copy number determination of a clinically homogeneous cohort of 47 high-risk PCas. We confirmed recurrent mutations in SPOP, PTEN and TP53 among the 850 point mutations we detected. In seven cases, we discovered genomic aberrations in the TET1 (Ten-Eleven Translocation 1) gene which encodes a DNA hydroxymethylase than can modify methylated cytosines in genomic DNA and thus is linked with gene expression changes. TET1 protein levels were reduced in tumor versus non-tumor prostate tissue in 39 of 40 cases. The clinical relevance of changes in TET1 levels was demonstrated in an independent PCa cohort, in which low TET1 mRNA levels were significantly associated with worse metastases-free survival. We also demonstrate a strong reduction in hydroxymethylated DNA in tumor tissue in 27 of 41 cases. Furthermore, we report the first exploratory (h)MeDIP-Seq analyses of eight high-risk PCa samples. This reveals a large heterogeneity in hydroxymethylation changes in tumor versus non-tumor genomes which can be linked with cell polarity.
Collapse
Affiliation(s)
- Lien Spans
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
- Current address: Laboratory for Genetics of Malignant Disorders, Department of Human Genetics, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas Van den Broeck
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Stefan Prekovic
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Bernard Thienpont
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | - Nicholas Erho
- Research and Development, GenomeDx Biosciences, Inc., Vancouver, BC, Canada
| | | | - Elai Davicioni
- Research and Development, GenomeDx Biosciences, Inc., Vancouver, BC, Canada
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Thomas Gevaert
- Organ Systems, Department of Development and Regeneration, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Lorenzo Tosco
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Evelyne Lerut
- Translational Cell & Tissue Research, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
- PEARL Consortium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, Leuven, Belgium
| |
Collapse
|
24
|
Abstract
The prevalence of overweight and obesity in reproductive-aged men is increasing worldwide, with >70% of men >18 years classified as overweight or obese in some western nations. Male obesity is associated with male subfertility, impairing sex hormones, reducing sperm counts, increasing oxidative sperm DNA damage and changing the epigenetic status of sperm. These changes to sperm function as a result of obesity, are further associated with impaired embryo development, reduced live birth rates and increased miscarriage rates in humans. Animal models have suggested that these adverse reproductive effects can be transmitted to the offspring; suggesting that men's health at conception may affect the health of their children. In addition to higher adiposity, male obesity is associated with comorbidities, including metabolic syndrome, hypercholesterolemia, hyperleptinemia and a pro-inflammatory state, all which have independently been linked with male subfertility. Taken together, these findings suggest that the effects of male obesity on fertility are likely multifactorial, with associated comorbidities also influencing sperm, pregnancy and subsequent child health.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, The Robinson Institute, The University of Adelaide, South Australia 5005, Australia; Freemasons Foundation Center for Mens Health, The University of Adelaide, South Australia 5005, Australia,
| | | |
Collapse
|
25
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
26
|
Dong E, Ruzicka WB, Grayson D, Guidotti A. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophr Res 2015; 167:35-41. [PMID: 25476119 PMCID: PMC4451449 DOI: 10.1016/j.schres.2014.10.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
The down regulation of glutamic acid decarboxylase67 (GAD1), reelin (RELN), and BDNF expression in brain of schizophrenia (SZ) and bipolar (BP) disorder patients is associated with overexpression of DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine dioxygenase1 (TET1). DNMT1 and TET1 belong to families of enzymes that methylate and hydroxymethylate cytosines located proximal to and within cytosine phosphodiester guanine (CpG) islands of many gene promoters, respectively. Altered promoter methylation may be one mechanism underlying the down-regulation of GABAergic and glutamatergic gene expression. However, recent reports suggest that both DNMT1 and TET1 directly bind to unmethylated CpG rich promoters through their respective Zinc Finger (ZF-CXXC) domains. We report here, that the binding of DNMT1 to GABAergic (GAD1, RELN) and glutamatergic (BDNF-IX) promoters is increased in SZ and BP disorder patients and this increase does not necessarily correlate with enrichment in promoter methylation. The increased DNMT1 binding to these promoter regions is detected in the cortex but not in the cerebellum of SZ and BP disorder patients, suggesting a brain region and neuron specific dependent mechanism. Increased binding of DNMT1 positively correlates with increased expression of DNMT1 and with increased binding of MBD2. In contrast, the binding of TET1 to RELN, GAD1 and BDNF-IX promoters failed to change. These data are consistent with the hypothesis that the down-regulation of specific GABAergic and glutamatergic genes in SZ and BP disorder patients may be mediated, at least in part, by a brain region specific and neuronal-activity dependent DNMT1 action that is likely independent of its DNA methylation activity.
Collapse
Affiliation(s)
- E. Dong
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago
| | - W. B. Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital., Belmont, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - D.R. Grayson
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago
| | - A. Guidotti
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago,Corresponding author: A. Guidotti, 1601 W. Taylor St., Chicago, IL 60612, , 312-413-4594
| |
Collapse
|
27
|
Siriwardena SU, Guruge TA, Bhagwat AS. Characterization of the Catalytic Domain of Human APOBEC3B and the Critical Structural Role for a Conserved Methionine. J Mol Biol 2015; 427:3042-55. [PMID: 26281709 DOI: 10.1016/j.jmb.2015.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/15/2022]
Abstract
Human APOBEC3B deaminates cytosines in DNA and belongs to the AID/APOBEC family of enzymes. These proteins are involved in innate and adaptive immunity and may cause mutations in a variety of cancers. To characterize its ability to convert cytosines into uracils, we tested several derivatives of APOBEC3B gene for their ability to cause mutations in Escherichia coli. Through this analysis, a methionine residue at the junction of the amino-terminal domain (NTD) and the carboxy-terminal domain (CTD) was found to be essential for high mutagenicity. Properties of mutants with substitutions at this position, examination of existing molecular structures of APOBEC3 family members and molecular modeling suggest that this residue is essential for the structural stability of this family of proteins. The APOBEC3B CTD with the highest mutational activity was purified to homogeneity and its kinetic parameters were determined. Size-exclusion chromatography of the CTD monomer showed that it is in equilibrium with its dimeric form and matrix-assisted laser desorption ionization time-of-flight analysis of the protein suggested that the dimer may be quite stable. The partially purified NTD did not show intrinsic deamination activity and did not enhance the activity of the CTD in biochemical assays. Finally, APOBEC3B was at least 10-fold less efficient at mutating 5-methylcytosine (5mC) to thymine than APOBEC3A in a genetic assay and was at least 10-fold less efficient at deaminating 5mC compared to C in biochemical assays. These results shed light on the structural organization of APOBEC3B catalytic domain, its substrate specificity and its possible role in causing genome-wide mutations.
Collapse
Affiliation(s)
| | - Thisari A Guruge
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
28
|
Figueroa DM, Darrow EM, Chadwick BP. Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat. Chromosome Res 2015; 23:733-52. [PMID: 26188586 DOI: 10.1007/s10577-015-9479-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022]
Abstract
On the male X and female active X chromosome (Xa), the macrosatellite repeat (MSR) DXZ4 is packaged into constitutive heterochromatin characterized by CpG methylation and histone H3 tri-methylated at lysine-9 (H3K9me3). In contrast, DXZ4 on the female inactive X chromosome (Xi), is packaged into euchromatin, is bound by the architectural protein CCCTC-binding factor, and mediates Xi-specific long-range cis contact with similarly packaged tandem repeats on the Xi. In cancer, male DXZ4 can inappropriately revert to a Xi-like state and other MSRs have been reported to adopt alternate chromatin configurations in response to disease. Given this plasticity, we sought to identify factors that might control heterochromatin at DXZ4. In human embryonic stem cells, we found low levels of 5-hydroxymethylcytosine at DXZ4 and that this mark is lost upon differentiation as H3K9me3 is acquired. We identified two previously undescribed DXZ4 associated noncoding transcripts (DANT1 and DANT2) that are transcribed toward DXZ4 from promoters flanking the array. Each generates transcript isoforms that traverse the MSR. However, upon differentiation, enhancer of Zeste-2 silences DANT1, and DANT2 transcription terminates prior to entering DXZ4. These data support a model wherein DANT1 and/or DANT2 may function to regulate constitutive heterochromatin formation at this MSR.
Collapse
Affiliation(s)
- Debbie M Figueroa
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.,NHLBI, National Institutes of Health, 10 center Drive, Building 10 Rm 6D12, Bethesda, MD, 20892, USA
| | - Emily M Darrow
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
29
|
Du C, Kurabe N, Matsushima Y, Suzuki M, Kahyo T, Ohnishi I, Tanioka F, Tajima S, Goto M, Yamada H, Tao H, Shinmura K, Konno H, Sugimura H. Robust quantitative assessments of cytosine modifications and changes in the expressions of related enzymes in gastric cancer. Gastric Cancer 2015; 18:516-25. [PMID: 25098926 DOI: 10.1007/s10120-014-0409-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/13/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rediscovery of 5-hydroxymethylcytosine, the ten-eleven translocation (TET) family, thymine-DNA glycosylase (TDG) and isocitrate dehydrogenase (IDH) have opened new avenues in the study of DNA demethylation pathways in gastric cancer (GC). We performed a comprehensive and robust analysis of these genes and modified cytosines in gastric cancer. METHODS Liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS) was used to assess 5-methyldeoxycytidine (5-mC), 5-hydroxymethyldeoxycytidine (5-hmC), 5-formyldeoxycytidine (5-fC) and 5-carboxyldeoxycytidine (5-caC) quantitatively in tumorous and non-tumorous regions of GCs; [D2]-5-hmC was used as an internal standard. Expression levels of the genes TET1, TET2, TET3, TDG, IDH1 and IDH2 were measured using a real-time reverse transcription polymerase chain reaction (RT-PCR) and were compared to the clinical attributes of each case. Using HEK293T cells the effects of introducing plasmids containing full-length TET1, TET2, and TET3 and 7 variants of the TET2 catalytic domain were evaluated in terms of their effect on cytosine demethylation. RESULTS LC-MS/MS showed that 5-hmC was significantly decreased in tumorous portions. 5-mC was also moderately decreased in tumors, while 5-fC and 5-caC were barely detectable. The expressions of TET1, TET2, TET3, TDG and IDH2, but not IDH1, were notably decreased in GCs, compared with the adjacent non-tumor portion. TET1 expression and the 5-hmC levels determined using LC-MS/MS had a significantly positive correlation and TET1 protein had a greater effect on the increase in 5-hmC than TET2 and TET3 in HEK293T cells. CONCLUSIONS The loss of 5-hmC and the down-regulation of TET1-3, TDG and IDH2 were found in GCs. The loss of 5-hmC in GCs was mainly correlated with the down-regulation of TET1.
Collapse
Affiliation(s)
- Chunping Du
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Morris MJ, Monteggia LM. Role of DNA methylation and the DNA methyltransferases in learning and memory. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364286 PMCID: PMC4214178 DOI: 10.31887/dcns.2014.16.3/mmorris] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dynamic regulation of chromatin structure in postmitotic neurons plays an important role in learning and memory. Methylation of cytosine nucleotides has historically been considered the strongest and least modifiable of epigenetic marks. Accumulating recent data suggest that rapid and dynamic methylation and demethylation of specific genes in the brain may play a fundamental role in learning, memory formation, and behavioral plasticity. The current review focuses on the emergence of data that support the role of DNA methylation and demethylation, and its molecular mediators in memory formation.
Collapse
Affiliation(s)
- Michael J Morris
- Department of Biological Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Solar UV radiation-induced DNA Bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem (Cham) 2015; 356:249-75. [PMID: 25370518 DOI: 10.1007/128_2014_553] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.
Collapse
|
32
|
C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:583-9. [PMID: 25779641 DOI: 10.1016/j.bbagrm.2015.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 03/06/2015] [Indexed: 12/25/2022]
Abstract
During mammalian development, some methylated cytosines (5mC) in CG dinucleotides are iteratively oxidized by TET dioxygenases to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). The effect of these cytosine oxidative products on the sequence-specific DNA binding of transcription factors is being actively investigated. Here, we used the electrophoretic mobility shift assay (EMSA) to examine C/EBPα and C/EBPβ homodimers binding to all 25 chemical forms of a CG dinucleotide for two DNA sequences: the canonical C/EBP 8-mer TTGC|GCAA and the chimeric C/EBP|CRE 8-mer TTGC|GTCA. 5hmC in the CG dinucleotide in the C/EBP|CRE motif 8-mer TGAC|GCAA inhibits binding of C/EBPβ but not C/EBPα. Binding was increased by 5mC, 5fC and 5caC. Circular dichroism monitored thermal denaturations for C/EBPβ bound to the C/EBP|CRE motif confirmed the EMSA. The structural differences between C/EBPα and C/EBPβ that may account for the difference in binding 5hmC in the 8-mer TGAC|GCAA are explored.
Collapse
|
33
|
Szulik M, Pallan PS, Nocek B, Voehler M, Banerjee S, Brooks S, Joachimiak A, Egli M, Eichman BF, Stone MP. Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine. Biochemistry 2015; 54:1294-305. [PMID: 25632825 PMCID: PMC4325598 DOI: 10.1021/bi501534x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
5-Hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) form during active demethylation of 5-methylcytosine (5mC) and are implicated in epigenetic regulation of the genome. They are differentially processed by thymine DNA glycosylase (TDG), an enzyme involved in active demethylation of 5mC. Three modified Dickerson-Drew dodecamer (DDD) sequences, amenable to crystallographic and spectroscopic analyses and containing the 5'-CG-3' sequence associated with genomic cytosine methylation, containing 5hmC, 5fC, or 5caC placed site-specifically into the 5'-T(8)X(9)G(10)-3' sequence of the DDD, were compared. The presence of 5caC at the X(9) base increased the stability of the DDD, whereas 5hmC or 5fC did not. Both 5hmC and 5fC increased imino proton exchange rates and calculated rate constants for base pair opening at the neighboring base pair A(5):T(8), whereas 5caC did not. At the oxidized base pair G(4):X(9), 5fC exhibited an increase in the imino proton exchange rate and the calculated kop. In all cases, minimal effects to imino proton exchange rates occurred at the neighboring base pair C(3):G(10). No evidence was observed for imino tautomerization, accompanied by wobble base pairing, for 5hmC, 5fC, or 5caC when positioned at base pair G(4):X(9); each favored Watson-Crick base pairing. However, both 5fC and 5caC exhibited intranucleobase hydrogen bonding between their formyl or carboxyl oxygens, respectively, and the adjacent cytosine N(4) exocyclic amines. The lesion-specific differences observed in the DDD may be implicated in recognition of 5hmC, 5fC, or 5caC in DNA by TDG. However, they do not correlate with differential excision of 5hmC, 5fC, or 5caC by TDG, which may be mediated by differences in transition states of the enzyme-bound complexes.
Collapse
Affiliation(s)
- Marta
W. Szulik
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt
Ingram Cancer Center, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Pradeep S. Pallan
- Department
of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt
Ingram Cancer Center, and Center for Structural Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Boguslaw Nocek
- Bioscience
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Markus Voehler
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt
Ingram Cancer Center, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Surajit Banerjee
- Northeastern
Collaborative Access Team and Department of Chemistry and Chemical
Biology, Cornell University, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - Sonja Brooks
- Department
of Biological Sciences, Vanderbilt Institute of Chemical Biology,
and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Andrzej Joachimiak
- Bioscience
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Martin Egli
- Department
of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt
Ingram Cancer Center, and Center for Structural Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brandt F. Eichman
- Department
of Biological Sciences, Vanderbilt Institute of Chemical Biology,
and Center for Structural Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Michael P. Stone
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt
Ingram Cancer Center, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States,(M.P.S.) Tel.: 615-322-2589; E-mail:
| |
Collapse
|
34
|
Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 2014; 48:70-91. [PMID: 25464029 DOI: 10.1016/j.neubiorev.2014.11.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.
Collapse
Affiliation(s)
- Olena Babenko
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4; Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
35
|
Chen M, Lee JK. Computational Studies of the Gas-Phase Thermochemical Properties of Modified Nucleobases. J Org Chem 2014; 79:11295-300. [DOI: 10.1021/jo502058w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mu Chen
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K. Lee
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
36
|
Label free detection of 5'hydroxymethylcytosine within CpG islands using optical sensors. Biosens Bioelectron 2014; 65:198-203. [PMID: 25461158 DOI: 10.1016/j.bios.2014.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Significant research has been invested in correlating genetic variations with different disease probabilities. Recently, it has become apparent that other DNA modifications, such as the addition of a methyl or hydroxymethyl group to cytosine, can also play a role. While these modifications do not change the sequence, they can negatively impact the function. Therefore, it is critical to be able to both read the genetic code and identify these modifications. Currently, the detection of hydroxymethylated cytosine (5'hmC) and the two closely related variants, cytosine (C) and 5'methylcytosine (5'mC), relies on a combination of nucleotide modification steps, followed by PCR and gene sequencing. However, this approach is not ideal because transcription errors which are inherent to the PCR process can be misinterpreted as fluctuations in the relative C:5'mC:5'hmC concentrations. As such, an alternative method which does not rely on PCR or nucleotide modification is desirable. One approach is based on label-free optical resonant cavity sensors. In the present work, toroidal resonant cavity sensors are functionalized with antibodies to enable label-free detection and discrimination between C, 5'mC, and 5'hmC in real-time without PCR. Specifically, epoxide chemistry is used to covalently attach the 5'hmC antibody to the surface of the cavity. Subsequently, to thoroughly characterize the sensor platform, detection of C, 5'mC, and 5'hmC is performed over a concentration range from pM to nM. At low (pM) concentrations, the hydroxymethylated cytosine produces a significantly larger signal than the structurally similar epigenetic markers; thus demonstrating the applicability of this platform.
Collapse
|
37
|
Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry 2014; 4:e460. [PMID: 25290267 PMCID: PMC4350522 DOI: 10.1038/tp.2014.87] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/15/2014] [Accepted: 07/26/2014] [Indexed: 01/13/2023] Open
Abstract
Epigenetic mechanisms regulate programmed gene expression during prenatal neurogenesis and serve as a mediator between genetics and environment in postnatal life. The recent discovery of 5-hydroxymethylcytosine (5-hmC), with highest concentration in the brain, has added a new dimension to epigenetic regulation of neurogenesis and the development of complex behavior disorders. Here, we take a candidate gene approach to define the role 5-hmC in Engrailed-2 (EN-2) gene expression in the autism cerebellum. The EN-2 homeobox transcription factor, previously implicated in autism, is essential for normal cerebellar patterning and development. We previously reported EN-2 overexpression associated with promoter DNA hypermethylation in the autism cerebellum but because traditional DNA methylation methodology cannot distinguish 5-methylcytosine (5-mC) from 5-hmC, we now extend our investigation by quantifying global and gene-specific 5-mC and 5-hmC. Globally, 5-hmC was significantly increased in the autism cerebellum and accompanied by increases in the expression of de novo methyltransferases DNMT3A and DNMT3B, ten-eleven translocase genes TET1 and TET3, and in 8-oxo-deoxyguanosine (8-oxo-dG) content, a marker of oxidative DNA damage. Within the EN-2 promoter, there was a significant positive correlation between 5-hmC content and EN-2 gene expression. Based on reports of reduced MeCP2 affinity for 5-hmC, MeCP2 binding studies in the EN-2 promoter revealed a significant decrease in repressive MeCP2 binding that may contribute to the aberrant overexpression of EN-2. Because normal cerebellar development depends on perinatal EN-2 downregulation, the sustained postnatal overexpression suggests that a critical window of cerebellar development may have been missed in some individuals with autism with downstream developmental consequences. Epigenetic regulation of the programmed on-off switches in gene expression that occur at birth and during early brain development warrants further investigation.
Collapse
|
38
|
Bégin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol 2014; 10:27. [PMID: 24932182 PMCID: PMC4057652 DOI: 10.1186/1710-1492-10-27] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 01/18/2023] Open
Abstract
Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations.
Collapse
Affiliation(s)
- Philippe Bégin
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| | - Kari C Nadeau
- Allergy, Immunology, and Rheumatology Division, Stanford University, 269 Campus Drive, Stanford, California, USA
| |
Collapse
|
39
|
Madugundu GS, Cadet J, Wagner JR. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res 2014; 42:7450-60. [PMID: 24852253 PMCID: PMC4066766 DOI: 10.1093/nar/gku334] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the regulation of genes during cell differentiation, embryogenesis and carcinogenesis. Despite its low abundance, 5-methylcytosine (5mC) is a hotspot for mutations in mammalian cells. Here, we measured five oxidation products of 5mC together with the analogous products of cytosine and thymine in DNA exposed to ionizing radiation in oxygenated aqueous solution. The products can be divided into those that arise from hydroxyl radical (•OH) addition at the 5,6-double bond of 5mC (glycol, hydantoin and imidazolidine products) and those that arise from H-atom abstraction from the methyl group of 5mC including 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC). Based on the analysis of these products, we show that the total damage at 5mC is about 2-fold greater than that at C in identical sequences. The formation of hydantoin products of 5mC is favored, compared to analogous reactions of thymine and cytosine, which favor the formation of glycol products. The distribution of oxidation products is sequence dependent in specific ODN duplexes. In the case of 5mC, the formation of 5hmC and 5fC represents about half of the total of •OH-induced oxidation products of 5mC. Several products of thymine, cytosine, 5mC, as well as 8-oxo-7,8-dihydroguanine (8oxoG), were also estimated in irradiated cells.
Collapse
Affiliation(s)
- Guru S Madugundu
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada Institut Nanosciences & Cryogénie/DSM, CEA/Grenoble, 38054 Grenoble, France
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| |
Collapse
|
40
|
Karpurapu M, Ranjan R, Deng J, Chung S, Lee YG, Xiao L, Nirujogi TS, Jacobson JR, Park GY, Christman JW. Krüppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS One 2014; 9:e93362. [PMID: 24695324 PMCID: PMC3973678 DOI: 10.1371/journal.pone.0093362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/05/2014] [Indexed: 11/25/2022] Open
Abstract
The role of different lineage specific transcription factors in directing hematopoietic cell fate towards myeloid lineage is well established but the status of epigenetic modifications has not been defined during this important developmental process. We used non proliferating, PU.1 inducible myeloid progenitor cells and differentiating bone marrow derived macrophages to study the PU.1 dependent KLF4 transcriptional regulation and its promoter demethylation during monocyte/macrophage differentiation. Expression of KLF4 was regulated by active demethylation of its promoter and PU.1 specifically bound to KLF4 promoter oligo harboring the PU.1 consensus sequence. Methylation specific quantitative PCR and Bisulfite sequencing indicated demethylation of CpG residues most proximal to the transcription start site of KLF4 promoter. Cloned KLF4 promoter in pGL3 Luciferase and CpG free pcpgf-bas vectors showed accentuated reporter activity when co-transfected with the PU.1 expression vector. In vitro methylation of both KLF4 promoter oligo and cloned KLF4 promoter vectors showed attenuated in vitro DNA binding activity and Luciferase/mouse Alkaline phosphotase reporter activity indicating the negative influence of KLF4 promoter methylation on PU.1 binding. The Cytosine deaminase, Activation Induced Cytidine Deaminase (AICDA) was found to be critical for KLF4 promoter demethylation. More importantly, knock down of AICDA resulted in blockade of KLF4 promoter demethylation, decreased F4/80 expression and other phenotypic characters of macrophage differentiation. Our data proves that AICDA mediated active demethylation of the KLF4 promoter is necessary for transcriptional regulation of KLF4 by PU.1 during monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Manjula Karpurapu
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Ravi Ranjan
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jing Deng
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Sangwoon Chung
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Yong Gyu Lee
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Lei Xiao
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Teja Srinivas Nirujogi
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| | - Jeffrey R. Jacobson
- Institute for Personalized Respiratory Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Gye Young Park
- Section of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John W Christman
- Section of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States of America
| |
Collapse
|
41
|
Beckerman P, Ko YA, Susztak K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant 2014; 29:1821-7. [PMID: 24675284 DOI: 10.1093/ndt/gfu026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Only a few percent of the 3 billion pairs of chemical letters in the human genome is responsible for protein-coding sequences. Recent advances in the field of epigenomics have helped us to understand how most of the remaining sequences are responsible for gene regulation at baseline and in disease conditions. Here we discuss recent advances in the area of epigenetics--specifically in cytosine modifications--and its application in the field of nephrology.
Collapse
Affiliation(s)
- Pazit Beckerman
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-An Ko
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Affiliation(s)
- Debra F Higgins
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Madeline Murphy
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|