1
|
Alarcón-Herrera N, Gómez-Arroyo S, Flores-Maya S, Flores-Márquez AR, Abrica-González P. Assessment of genotoxic damage induced by exposure to binary mixtures of polycyclic aromatic hydrocarbons and three heavy metals in male mice. Toxicol Mech Methods 2024; 34:955-969. [PMID: 38863169 DOI: 10.1080/15376516.2024.2365434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) exposition has been associated with health problems. Therefore, this research evaluated genotoxicity induced in male mice strain CD-1 exposed to benzo[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P) and their interaction with Fe, Pb, and Al. METHODS Groups of animals were exposed intraperitoneally to HM, PAHs, and mixtures of both. Peripheral blood samples were taken from 0 to 96 h at 24 h intervals; genotoxicity was determined by micronucleus tests and comet assay. Additionally, toxicity and viability were evaluated. RESULTS HM and PAHs individually were genotoxic. About toxicity, only Al altered polychromatic erythrocytes number and did not change leukocytes viability. Concerning mixtures, Fe + B[a]P, Fe + B[a]A, Pb + B[a]P increased genotoxicity. There were no changes with Pb + B[a]A. Finally, Al mixtures with both PAHs damage was decreased. CONCLUSIONS Exposure to HM and PAH caused genetic damage. Fe, Al, and B[a]A, established a genotoxic potential. Every metal can interact with PAHs in different ways. Also, the micronucleus test and the comet assay demonstrated their high capacity and reliability to determine the genotoxic potential of the compounds evaluated in this work.
Collapse
Affiliation(s)
- Norberto Alarcón-Herrera
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Saúl Flores-Maya
- Laboratorio de Recursos Naturales, UBIPRO, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla, Estado de México, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Paulina Abrica-González
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
2
|
Ali FEM, Badran KSA, Baraka MA, Althagafy HS, Hassanein EHM. Mechanism and impact of heavy metal-aluminum (Al) toxicity on male reproduction: Therapeutic approaches with some phytochemicals. Life Sci 2024; 340:122461. [PMID: 38286208 DOI: 10.1016/j.lfs.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Khalid S A Badran
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
3
|
Mandriota SJ, Sappino AP. The postulated innocuity of lifetime exposure to aluminium should be reappraised. Front Oncol 2023; 13:1159899. [PMID: 37554161 PMCID: PMC10406518 DOI: 10.3389/fonc.2023.1159899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Because of its chemical versatility and abundance in nature, aluminium is employed in a myriad of frequently used products - including cosmetics and food additives - and applications - drinking water purification procedures being an example. Despite what its widespread use might suggest, aluminium's harmlessness is a matter of debate in the scientific community. In this article we trace the lines of a growing questioning about the potential mutagenic effects of this metal, due to the data produced over the recent years, and with an eye to the discussions currently underway in this regard between the scientific community, industry, and regulatory bodies.
Collapse
Affiliation(s)
- Stefano J. Mandriota
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, Chêne-Bougeries, Switzerland
| | | |
Collapse
|
4
|
PINK1/Parkin-mediated mitophagy is activated to protect against testicular damage caused by aluminum. J Inorg Biochem 2022; 232:111840. [DOI: 10.1016/j.jinorgbio.2022.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
|
5
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Tenan MR, Nicolle A, Moralli D, Verbouwe E, Jankowska JD, Durin MA, Green CM, Mandriota SJ, Sappino AP. Aluminum Enters Mammalian Cells and Destabilizes Chromosome Structure and Number. Int J Mol Sci 2021; 22:ijms22179515. [PMID: 34502420 PMCID: PMC8431747 DOI: 10.3390/ijms22179515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Chromosome instability (CIN) consists of high rates of structural and numerical chromosome abnormalities and is a well-known hallmark of cancer. Aluminum is added to many industrial products of frequent use. Yet, it has no known physiological role and is a suspected human carcinogen. Here, we show that V79 cells, a well-established model for the evaluation of candidate chemical carcinogens in regulatory toxicology, when cultured in presence of aluminum—in the form of aluminum chloride (AlCl3) and at concentrations in the range of those measured in human tissues—incorporate the metal in a dose-dependent manner, predominantly accumulating it in the perinuclear region. Intracellular aluminum accumulation rapidly leads to a dose-dependent increase in DNA double strand breaks (DSB), in chromosome numerical abnormalities (aneuploidy) and to proliferation arrest in the G2/M phase of the cell cycle. During mitosis, V79 cells exposed to aluminum assemble abnormal multipolar mitotic spindles and appear to cluster supernumerary centrosomes, possibly explaining why they accumulate chromosome segregation errors and damage. We postulate that chronic aluminum absorption favors CIN in mammalian cells, thus promoting carcinogenesis.
Collapse
Affiliation(s)
- Mirna R. Tenan
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
- Correspondence: ; Tel.: +41-22-3050480
| | - Adeline Nicolle
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Emeline Verbouwe
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - Julia D. Jankowska
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Mary-Anne Durin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Catherine M. Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (D.M.); (J.D.J.); (M.-A.D.); (C.M.G.)
| | - Stefano J. Mandriota
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| | - André-Pascal Sappino
- Laboratoire de Cancérogenèse Environnementale, Fondation des Grangettes, 1224 Chêne-Bougeries, Switzerland; (A.N.); (E.V.); (S.J.M.); (A.-P.S.)
| |
Collapse
|
7
|
Jenkinson P. Critical review of the publications on the genotoxicology of aluminium salts: 1990-2018. Mutagenesis 2021; 36:109-127. [PMID: 33609359 DOI: 10.1093/mutage/geab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
Since the mid-1970s, there have been many reports that purport to implicate aluminium in the aetiology of neurodegenerative disease. After several decades of research, the role of aluminium in such disease remains controversial and is not the subject of this review. However, if aluminium is implicated in such disease then it follows that there must be a toxicological mechanism or mode of action, and many researchers have investigated various potential mechanisms including the involvement of oxidative damage, cytotoxicity and genotoxicity. This paper reviews many of the publications of studies using various salts of aluminium and various genotoxicity end points, both in vitro and in vivo, with a focus on oxidative damage. The conclusion of this review is that the majority, if not all, of the publications that report positive results have serious technical flaws and/or implausible findings and consequently should contribute little or no weight to a weight of evidence (WoE) argument. There are many high-quality, Good Laboratory Practice (GLP)-compliant genotoxicity studies, that follow relevant OECD test guidelines and the European Chemicals Agency (ECHA) integrated mutagenicity testing strategy, on several salts of aluminium; all demonstrate clear negative results for both in vitro and in vivo genotoxicity. In addition, the claim for an oxidative mode of action for aluminium can be shown to be spurious. This review concludes that there are no reliable studies that demonstrate a potential for genotoxicity, or oxidative mode of action, for aluminium.
Collapse
|
8
|
Yokel RA. Aluminum reproductive toxicity: a summary and interpretation of scientific reports. Crit Rev Toxicol 2020; 50:551-593. [PMID: 32869713 DOI: 10.1080/10408444.2020.1801575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Publications addressing aluminum (Al)-induced reproductive toxicity were reviewed. Key details were compiled in summary tables. Approximate systemic Al exposure, a measure of bioavailability, was calculated for each exposure, based on the Al percentage in the dosed Al species, Al bioavailability, and absorption time course reports for the exposure route. This was limited to laboratory animal studies because no controlled-exposure human studies were found. Intended Al exposure was compared to unintended dietary Al exposure. The considerable and variable Al content of laboratory animal diets creates uncertainty about reproductive function in the absence of Al. Aluminum-induced reproductive toxicity in female mice and rats was evident after exposure to ≥25-fold the amount of Al consumed in the diet. Generally, the additional daily Al systemic exposure of studies that reported statistically significant results was greater than 100-fold above the typical human daily Al dietary consumption equivalent. Male reproductive endpoints were significantly affected after exposure to lower levels of Al than females. Increased Al intake increased fetus, placenta, and testes Al concentrations, to a greater extent in the placenta than fetus, and, in some cases, more in the testes than placenta. An adverse outcome pathway (AOP) was constructed for males based on the results of the reviewed studies. The proposed AOP includes oxidative stress as the molecular initiating event and increased malondialdehyde, DNA and spermatozoal damage, and decreased blood testosterone and sperm count as subsequent key events. Recommendations for the design of future studies of reproductive outcomes following exposure to Al are provided.
Collapse
Affiliation(s)
- Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky Academic Medical Center, Lexington, KY, USA
| |
Collapse
|
9
|
Jalili P, Huet S, Lanceleur R, Jarry G, Hegarat LL, Nesslany F, Hogeveen K, Fessard V. Genotoxicity of Aluminum and Aluminum Oxide Nanomaterials in Rats Following Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E305. [PMID: 32053952 PMCID: PMC7075173 DOI: 10.3390/nano10020305] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Due to several gaps remaining in the toxicological evaluation of nanomaterials (NMs), consumers and public health agencies have shown increasing concern for human health protection. In addition to aluminum (Al) microparticles, Al-containing nanomaterials (Al NMs) have been applied by food industry as additives and contact materials. Due to the limited amount of literature on the toxicity of Al NMs, this study aimed to evaluate the in vivo genotoxic potential of Al0 and Al2O3 NMs after acute oral exposure. Male Sprague-Dawley rats were administered three successive gavages at 6, 12.5 and 25 mg/kg bw. A comparison with AlCl3 was done in order to assess the potential effect of dissolution into Al ions. Both DNA strand breaks and oxidative DNA damage were investigated in six organs/tissues (duodenum, liver, kidney, spleen, blood and bone marrow) with the alkaline and the Fpg-modified comet assays. Concomitantly, chromosomal damage was investigated in bone marrow and colon with the micronucleus assay. The comet assay only showed DNA damage with Al2O3 NMs in bone marrow (BM), while AlCl3 induced slight but non-significant oxidative DNA damage in blood. No increase of chromosomal mutations was observed after treatment with the two Al MNs either in the BM or in the colons of rats.
Collapse
Affiliation(s)
- Pégah Jalili
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Sylvie Huet
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Rachelle Lanceleur
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Gérard Jarry
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Ludovic Le Hegarat
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Fabrice Nesslany
- Institut Pasteur de Lille, Laboratoire de toxicologie génétique, 1 Rue du Professeur Calmette, 59019 Lille CEDEX, France;
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| | - Valérie Fessard
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France (S.H.); (R.L.); (G.J.); (L.L.H.); (K.H.)
| |
Collapse
|
10
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
11
|
Metal salts with low oral bioavailability and considerable exposures from ubiquitous background: Inorganic aluminum salts as an example for issues in toxicity testing and data interpretation. Toxicol Lett 2019; 314:1-9. [DOI: 10.1016/j.toxlet.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
|
12
|
Fatima R, Ahmad R. Hepatotoxicity and chromosomal abnormalities evaluation due to single and repeated oral exposures of chromium oxide nanoparticles in Wistar rats. Toxicol Ind Health 2019; 35:548-557. [DOI: 10.1177/0748233719863632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metal oxide nanoparticles (NPs) have widespread uses ranging from nanoelectronics to nanotherapeutics. Because of their expanding industrial applications, a better understanding of their toxicity is needed. So far, limited reports are available on chromium oxide NPs (Cr2O3 NPs) toxicity. In this work, Cr2O3 NPs were synthesized and characterized in a sequential manner using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy. Dose- and time-dependent toxicity assessment of Cr2O3 NPs was carried out in Wistar rats by examining liver function biomarkers, tissue histopathology, micronuclei (MN) formation, and chromosomal aberrations (CAs) in bone marrow along with sperm abnormalities. The results of this study demonstrated typical XRD and FTIR patterns of Cr2O3 NPs with a size of approximately 23.47 nm. Animals exposed to Cr2O3 NPs, exhibited a significant increase in aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyltransferase, and total bilirubin, signifying liver injury. Histopathology data also supported the marked alterations in the liver biochemistry of NPs-exposed animals. Further, an increase in the frequency of MN, CA, and sperm abnormalities suggested Cr2O3 NPs-mediated genotoxicity. It is, therefore, suggested that possible safety issues of Cr2O3 NPs should be addressed promptly with limited future use in occupational settings.
Collapse
Affiliation(s)
- Ravish Fatima
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
13
|
McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V, Zhao Y, Li W, Lukiw WJ. Aluminum in Neurological and Neurodegenerative Disease. Mol Neurobiol 2019; 56:1531-1538. [PMID: 30706368 PMCID: PMC6402994 DOI: 10.1007/s12035-018-1441-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.
Collapse
Affiliation(s)
- Donald R C McLachlan
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | - Catherine Bergeron
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | | | | | | | - Maire E Percy
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Surrey Place Center, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Obstetrics and Gynecology, Toronto, ON, M5S 1A8, Canada
| | - Theodore P A Kruck
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Louisiana Clinical and Translational Science Center (LA CaTS), LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, 113152, Russia.
- Alchem Biotek Research, Toronto, ON, M5S 1A8, Canada.
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Lukiw WJ, Kruck TP, Percy ME, Pogue AI, Alexandrov PN, Walsh WJ, Sharfman NM, Jaber VR, Zhao Y, Li W, Bergeron C, Culicchia F, Fang Z, McLachlan DR. Aluminum in neurological disease - a 36 year multicenter study. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:457. [PMID: 31179161 PMCID: PMC6550484 DOI: 10.4172/2161-0460.1000457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Alchem Biotek Research, Toronto ON M5S 1A8, CANADA
- Russian Academy of Medical Sciences, Moscow 113152, RUSSIAN
FEDERATION
| | - Theodore P.A. Kruck
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
| | - Maire E. Percy
- Surrey Place Center, University of Toronto, Toronto ON M5S
1A8 CANADA
- Department of Neurogenetics, University of Toronto, Toronto
ON M5S 1A8 CANADA
| | | | | | | | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State
University Health Sciences Center, New Orleans LA 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi
University of TCM, Nanchang, Jiangxi 330004 CHINA
| | - Catherine Bergeron
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Culicchia Neurological Clinic, West Jefferson Medical
Center, Marrero, LA 70072 USA
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU
Health Sciences Center, New Orleans LA 70112, USA
- Department of Genetics, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Louisiana Clinical and Translational Science Center (LA
CaTS), LSU Health Sciences Center, New Orleans LA 70112, USA
| | - Donald R.C. McLachlan
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| |
Collapse
|
15
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Wright M, Di Domenico A, van Loveren H, Giarola A, Horvath Z, Lodi F, Tard A, Woutersen RA. Re-evaluation of aluminium sulphates (E 520-523) and sodium aluminium phosphate (E 541) as food additives. EFSA J 2018; 16:e05372. [PMID: 32625999 PMCID: PMC7009639 DOI: 10.2903/j.efsa.2018.5372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion re-evaluating the safety of aluminium sulphates (E 520-523) and sodium aluminium phosphate, acidic (E 541) as food additives. The Panel considered that adequate exposure and toxicity data were available. Aluminium sulphates (E 520-523) and sodium aluminium phosphate, acidic (E 541) are permitted as food additives in only a few specific products and the exposure is probably near zero. Aluminium compounds have low bioavailability and low acute toxicity. There is no concern with respect to genotoxicity and carcinogenicity. The no observed adverse effect level (NOAEL) for aluminium compounds in subchronic studies was 52 mg Al/kg body weight (bw) per day in rats and 90 mg Al/kg bw per day in dogs and the lowest NOAEL for neurotoxicity in rats was 30 mg Al/kg bw per day and for developing nervous system was 10-42 mg Al/kg bw per day in studies in mice and rats. The Panel concluded that aluminium sulphates (E 520-523) and sodium aluminium phosphate, acidic (E 541) are of no safety concern in the current authorised uses and use levels.
Collapse
|
16
|
AbdelMageed MA, Foltopoulou P, McNiel EA. Feline vaccine-associated sarcomagenesis: Is there an inflammation-independent role for aluminium? Vet Comp Oncol 2017; 16:E130-E143. [PMID: 28960714 DOI: 10.1111/vco.12358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Aluminium has been found in feline vaccine-associated sarcomas. In this study, we investigated the potential for aluminium to contribute directly to tumourigenesis. Our results indicated that an aluminium hydroxide adjuvant preparation was cytotoxic and mutagenic in human-Chinese hamster ovary (CHO) hybrid cells in vitro. Moreover, CHO cells deficient in DNA double strand break (DSB), but not single-strand break (SSB), repair, were particularly sensitive to aluminium exposure compared with repair proficient cells, suggesting that aluminium is associated with DSBs. In contrast to CHO cells, primary feline skin fibroblasts were resistant to the cytotoxic effects of aluminium compounds and exposure to an aluminium chloride salt promoted cell growth and cell cycle progression at concentrations much less than those measured in particular feline rabies vaccines. These findings suggest that aluminium exposure may contribute, theoretically, to both initiation and promotion of tumours in the absence of an inflammatory response.
Collapse
Affiliation(s)
- M A AbdelMageed
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts.,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - P Foltopoulou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - E A McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
17
|
Roszak J, Domeradzka-Gajda K, Smok-Pieniążek A, Kozajda A, Spryszyńska S, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Cieślak M, Puchowicz D, Stępnik M. Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di-n-butylphthalate. Toxicol In Vitro 2017; 45:181-193. [PMID: 28893613 DOI: 10.1016/j.tiv.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/22/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
In the present study genotoxic effects after combined exposure of human breast cell lines (MCF-10A, MCF-7 and MDB-MB-231) to silver nanoparticles (AgNP, citrate stabilized, 15 and 45nm by STEM, Ag15 and Ag45, respectively) with aluminium chloride, butylparaben, or di-n-butylphthalate were studied. In MCF-10A cells exposed for 24h to Ag15 at the concentration of 23.5μg/mL a statistically significant increase in DNA damage in comet assay (SSB) was observed. In the presence of the test chemicals the genotoxic effect was decreased to a level comparable to control values. In MCF-7 cells a significant increase in SSB level was observed after exposure to Ag15 at 16.3μg/mL. The effect was also diminished in the presence of the three test chemicals. In MDA-MB-231 cells no significant increase in SSB was observed, however increased level of oxidative DNA damage (incubation with Fpg enzyme) was observed after exposure to combinations of both AgNP with aluminium chloride. No increase in micronuclei formation was observed in neither cell line after the single nor combined treatments. Our results point to a low risk of increased genotoxic effects of AgNP when used in combination with aluminium salts, butylparaben or di-n-butylphthalate in consumer products.
Collapse
Affiliation(s)
- J Roszak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - K Domeradzka-Gajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Smok-Pieniążek
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Kozajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - S Spryszyńska
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - J Grobelny
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - E Tomaszewska
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - K Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - M Cieślak
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - D Puchowicz
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - M Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland.
| |
Collapse
|
18
|
Song M, Huo H, Cao Z, Han Y, Gao L. Aluminum Trichloride Inhibits the Rat Osteoblasts Mineralization In Vitro. Biol Trace Elem Res 2017; 175:186-193. [PMID: 27260532 DOI: 10.1007/s12011-016-0761-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/01/2022]
Abstract
Aluminum (Al) is an accumulative toxic metal. Excessive Al accumulation inhibits osteoblasts mineralization and induces osteoporosis. However, the inhibition mechanism of Al on the mineralization is not fully understood. Thus, in this study, the rat osteoblasts were cultured and exposed to 0 mmol L-1 (control group, CG) and 0.52 mmol L-1 aluminum trichloride (AlCl3, treatment group, TG) for 7, 14, and 21 days, respectively. We found that mineralized matrix nodules, the activity of bone alkaline phosphatase, the concentration of extracellular calcium, the mRNA expression of type-I collagen, the mRNA and protein expressions of osteopontin, osteocalcin, and bone sialoprotein were all decreased, while the concentration of extracellular phosphorus was increased in TG compared with CG with time prolonged. Taken together, these results indicated that AlCl3 inhibited osteoblasts mineralization in vitro.
Collapse
Affiliation(s)
- Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Hui Huo
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
19
|
Cavalcante DG, Gomes AS, Dos Reis EA, Danna CS, Kerche-Silva LE, Yoshihara E, Job AE. In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications. Toxicol Ind Health 2016; 33:478-486. [PMID: 27811159 DOI: 10.1177/0748233716674398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel composite material has been developed from natural rubber and leather waste, and a corresponding patent has been filed. This new material may be incorporated into textile and footwear products. However, as leather waste contains chromium, the biocompatibility of this new material and its safety for use in humans must be investigated. The aim of the present study was to investigate the presence of chromium in this new material, determine the amount of each form of chromium present (trivalent or hexavalent), and evaluate the potential cytotoxic and genotoxic effects of the novel composite in two cell lines. The cellular viability was quantified using the MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction method and neutral red uptake assay, and genotoxic damage was analyzed using the comet assay. Our findings indicated that the extracts obtained from the composite were severely cytotoxic to both cell lines tested, and additionally highly genotoxic to MRC-5 cells. These biological responses do not appear to be attributable to the presence of chromium, as the trivalent form was predominantly found to be present in the extracts, indicating that hexavalent chromium is not formed during the production of the novel composite. The incorporation of this new material in applications that do not involve direct contact with the human skin is thus indicated, and it is suggested that the chain of production of this material be studied in order to improve its biocompatibility so that it may safely be used in the textile and footwear industries.
Collapse
Affiliation(s)
- Dalita Gsm Cavalcante
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Andressa S Gomes
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Elton Ap Dos Reis
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Caroline S Danna
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Leandra E Kerche-Silva
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Eidi Yoshihara
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| | - Aldo E Job
- Faculty of Science and Technology, Department of Physics, Chemistry and Biology, UNESP, Presidente Prudente, SP, Brazil
| |
Collapse
|
20
|
Zhu Y, Hu C, Zheng P, Miao L, Yan X, Li H, Wang Z, Gao B, Li Y. Ginsenoside Rb1 alleviates aluminum chloride-induced rat osteoblasts dysfunction. Toxicology 2016; 368-369:183-188. [PMID: 27470910 DOI: 10.1016/j.tox.2016.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/18/2016] [Accepted: 07/23/2016] [Indexed: 12/18/2022]
Abstract
Osteoblasts dysfunction, induced by aluminum (Al), plays a critical role in the osteoporosis etiology. Ginsenoside Rb1 (Rb1) has the therapeutic properties for osteoporosis. This study aimed to assess the efficiency of Rb1 in ameliorating Al-induced osteoblasts dysfunction. The osteoblasts were divided into four groups: Rb1-treated group (RG, 0.0145mg/mL Rb1), control group (CG, 0), AlCl3-treated group (AG, 0.126mg/mL AlCl3·6H2O), AlCl3+Rb1-treated group (ARG, 0.0145mg/mL Rb1 and 0.126mg/mL AlCl3·6H2O). After 24h of culture, the osteoblasts viability, the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), the insulin-like growth factor I (IGF-I), core-binding factor α1 (Cbfα1) mRNA expressions, glutathione perioxidase (GSH-Px) and superoxide dismutase (SOD) activities, and reactive oxygen species (ROS) concentration were determined. The osteoblasts ultrastructural features were also observed. In the ARG, the osteoblasts viability, TGF-β1, BMP-2, IGF-I and Cbfα1 mRNA expressions and the GSH-Px and SOD activities were significantly increased, the ROS concentration was significantly decreased, and osteoblasts histology lesion was attenuated compared with the AG. These results demonstrated that Rb1 could significantly reverse osteoblasts viability and osteoblasts growth regulation factor, inhibit oxidative stress, and attenuate histology lesion in the osteoblasts with AlCl3. These results indicate that Rb1 can effectively alleviate the AlCl3-induced osteoblasts dysfunction.
Collapse
Affiliation(s)
- Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Chongwei Hu
- College of Animals Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Peihe Zheng
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Liguang Miao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xijun Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Haitao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Zhongying Wang
- Vascular Surgery Department, the First Hospital of Jilin University, Changchun 130021, China
| | - Bing Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Shruthi S, Vijayalaxmi K. Antigenotoxic effects of a polyherbal drug septilin against the genotoxicity of cyclophosphamide in mice. Toxicol Rep 2016; 3:563-571. [PMID: 28959580 PMCID: PMC5615931 DOI: 10.1016/j.toxrep.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022] Open
Abstract
Septilin (Spt) is a polyherbal drug formulation from Himalaya Drug Company, consisting of extracts from different medicinal plants and minerals. In the traditional system of medicine, septilin is being used as immunomodulatory, antioxidant and anti-inflammatory agent. In the present study, the protective effects of septilin against the genotoxicity of cyclophosphamide (CP) a widely used alkylating anticancer drug was evaluated by using in vivo micronucleus (MN) and sperm shape abnormality assays in Swiss albino mice. CP administered intraperitoneally at a dose of 50 mg/kg b.w. was used as positive mutagen. Different doses of septilin viz., 125, 250 and 500 mg/kg b.w. was orally administered for 5 consecutive days. CP was administered intraperitoneally on 5th day. MN and sperm preparations were made after 24 h and 35 days respectively. CP induced significant MN in both bone marrow and peripheral blood cells and also a high frequency of abnormal sperms. In septilin supplemented animals, no significant induction of MN and abnormal sperms was recorded. In septilin supplemented groups, a dose dependent significant decrease in CP induced clastogenicity was observed. Thus the current in vivo study revealed the antigenotoxic effects of septilin against CP induced damage, in both somatic and germ cells of Swiss albino mice.
Collapse
Key Words
- A, amorphous
- Antigenotoxic
- B, banana shaped
- BSA, bovine serum albumin
- CMC, carboxymethyl cellulose
- CP, cyclophosphamide
- Cyclophosphamide
- DH, double headed
- DT, double tailed
- F, folded
- H, hookless
- MN, micronucleus
- MNNCE, micronucleus in normochromatic erythrocytes
- MNPCE, micronucleus in polychromatic erythrocytes
- Micronucleus test
- NCE, normochromatic erythrocytes
- PCE, polychromatic erythrocytes
- Septilin
- Sperm abnormality
- Spt, septilin
Collapse
Affiliation(s)
- S. Shruthi
- Department of Applied Zoology, Mangalore University, Mangalagangothri, 574 199, D.K., India
| | | |
Collapse
|
22
|
Akinola OB, Biliaminu SA, Adedeji OG, Oluwaseun BS, Olawoyin OM, Adelabu TA. Combined effects of chronic hyperglycaemia and oral aluminium intoxication on testicular tissue and some male reproductive parameters in Wistar rats. Andrologia 2015; 48:779-86. [DOI: 10.1111/and.12512] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- O. B. Akinola
- Department of Anatomy; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| | - S. A. Biliaminu
- Chemical Pathology and Immunology; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| | - O. G. Adedeji
- Department of Anatomy; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| | - B. S. Oluwaseun
- Department of Anatomy; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| | - O. M. Olawoyin
- Department of Anatomy; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| | - T. A. Adelabu
- Department of Anatomy; Faculty of Basic Medical Sciences; College of Health Sciences; University of Ilorin; Ilorin Nigeria
| |
Collapse
|
23
|
Klein J, Mold M, Mery L, Cottier M, Exley C. Aluminum content of human semen: Implications for semen quality. Reprod Toxicol 2014; 50:43-8. [DOI: 10.1016/j.reprotox.2014.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/16/2022]
|