1
|
Nieminen V, Martikainen MV, Kalliomäki S, Virén T, Seppälä J, Juutilainen J, Naarala J, Luukkonen J. 50 Hz magnetic field influences caspase-3 activity and cell cycle distribution in ionizing radiation exposed SH-SY5Y neuroblastoma cells. Int J Radiat Biol 2024; 100:1183-1192. [PMID: 38924721 DOI: 10.1080/09553002.2024.2369105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Earlier evidence suggests that extremely low frequency magnetic fields (ELF MFs) can modify the effects of carcinogenic agents. However, the studies conducted so far with ionizing radiation as the co-exposure agent are sparse and have provided inconclusive results. We investigated whether 50 Hz MFs alone, or in combination with ionizing radiation alter cell biological variables relevant to cancer and the biological effects of ionizing radiation. MATERIALS AND METHODS Human SH-SY5Y neuroblastoma cells were sham exposed or exposed to 100 or 500 µT MF for 24 h either before or after ionizing radiation exposure (0, 0.4 or 2 Gy). After the exposures, cells were assayed for viability, clonogenicity, reactive oxygen species, caspase-3 activity, and cell cycle distribution. Cell cycle distribution was assayed with propidium iodide staining followed by flow cytometry analysis and ROS levels were assayed together with cell viability by double staining with DeepRed and Sytox Blue followed by flow cytometry analysis. RESULTS Increased caspase-3 activity was observed in cells exposed to 500 µT MF before or after ionizing radiation. Furthermore, exposure to the 500 µT MF after the ionizing radiation decreased the percentage of cells in S-phase. No changes in the ROS levels, clonogenicity, or viability of the cells were observed in the MF exposed groups compared to the corresponding sham exposed groups, and no MF effects were observed in cells exposed at 100 µT. CONCLUSIONS Only the 500 µT magnetic flux density affected SH-SY5Y cells significantly. The effects were small but may nevertheless help to understand how MFs modify the effects of ionizing radiation. The increase in caspase-3 activity may not reflect effects on apoptosis, as no changes were observed in the subG1 phase of the cell cycle. In contrast to some earlier findings, 50 Hz MF exposure after ionizing radiation was not less effective than MF treatment given prior to ionizing radiation.
Collapse
Affiliation(s)
- Valtteri Nieminen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Saija Kalliomäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
3
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
4
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
5
|
Mercado-Sáenz S, López-Díaz B, Burgos-Molina AM, Sendra-Portero F, González-Vidal A, Ruiz-Gómez MJ. Exposure of S. cerevisiae to pulsed magnetic field during chronological aging could induce genomic DNA damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1756-1767. [PMID: 33797308 DOI: 10.1080/09603123.2021.1910212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the DNA damage induced by pulsed magnetic field (MF) on S. cerevisiae cells exposed during chronological aging. Samples were exposed to 25 Hz pulsed MF (1.5mT, 8 h/day) while cells were aging chronologically. Clonogenic drop test was used to study cellular survival and the mutation frequency was evaluated by scoring the spontaneous revertant mutants. DNA damage analysis was performed after aging by electrophoresis and image analysis. Yeast cells aged during 40 days of exposure showing that pulsed MF exposure induced a premature aging. In addition, a gradual increase in spontaneous mutants was found in pulsed MF samples in relation to unexposed controls. An increase in DNA degradation, over the background level in relation to controls, was observed at the end of the exposure period. In conclusion, exposure of S. cerevisiae cells to pulsed MF during chronological aging could induce genomic DNA damage.
Collapse
Affiliation(s)
- Silvia Mercado-Sáenz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Beatriz López-Díaz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Antonio M Burgos-Molina
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, Málaga, España
| |
Collapse
|
6
|
Nieminen V, Juntunen M, Naarala J, Luukkonen J. Static or 50 Hz magnetic fields at 100 μT do not modify the clonogenic survival of doxorubicin-treated MCF-7 cancer cells. Bioelectrochemistry 2022; 147:108196. [DOI: 10.1016/j.bioelechem.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
7
|
Mustafa E, Makinistian L, Luukkonen J, Juutilainen J, Naarala J. Do 50/60 Hz magnetic fields influence oxidative or DNA damage responses in human SH-SY5Y neuroblastoma cells? Int J Radiat Biol 2022; 98:1581-1591. [PMID: 35320060 DOI: 10.1080/09553002.2022.2055803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose: We investigated possible effects of 50 Hz and 60 Hz magnetic fields (MFs) on reactive oxygen species (ROS) production, DNA damage, DNA damage repair rate, as well as gene expression related to oxidative stress and DNA damage signaling.Materials and methods: Human SH-SY5Y neuroblastoma cells were sham-exposed or exposed to 100 µTRMS MFs for 24 h, then assayed or further treated with 100 µM menadione for 1 h before the assay. The levels of ROS and cytosolic superoxide anion (O2•-) were assayed fluorometrically. DNA damage and gene expression were assayed by comet assay and RT-qPCR, respectively. To examine whether MFs affected DNA damage repair rate, cells were allowed to repair their DNA for 1 or 2 h after menadione treatment and then assayed for DNA damage.Results: There was suggestive evidence of a general low-magnitude increase in the expression of ROS-related genes (primarily genes with antioxidant activity) when quantified immediately after MF exposure, suggesting a response to a small increase in ROS level. The possible upregulation of ROS-related genes is supported by the finding that the level of menadione-induced ROS was consistently decreased by 50 Hz MFs (not significantly by 60 Hz MFs) in several measurements 30 - 60 min after MF exposure. MF exposures did not affect cytosolic O2•- levels, DNA damage, or its repair rate. Changes in the expression of DNA damage-signaling genes in the MF-exposed cells did not exceed the expected rate of false positive findings. No firm evidence was found for differential effects from 50 Hz vs. 60 Hz MFs.Conclusions: While only weak effects were found on the endpoints measured, the results are consistent with MF effects on ROS signaling.
Collapse
Affiliation(s)
- Ehab Mustafa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leonardo Makinistian
- Department of Physics and Institute of Applied Physics (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Luukkonen J, Höytö A, Sokka M, Syväoja J, Juutilainen J, Naarala J. Genomic instability induced by radiation-mimicking chemicals is not associated with persistent mitochondrial degeneration. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:29-36. [PMID: 34331120 PMCID: PMC8897345 DOI: 10.1007/s00411-021-00927-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Ionizing radiation has been shown to cause induced genomic instability (IGI), which is defined as a persistently increased rate of genomic damage in the progeny of the exposed cells. In this study, IGI was investigated by exposing human SH-SY5Y neuroblastoma cells to hydroxyurea and zeocin, two chemicals mimicking different DNA-damaging effects of ionizing radiation. The aim was to explore whether IGI was associated with persistent mitochondrial dysfunction. Changes to mitochondrial function were assessed by analyzing mitochondrial superoxide production, mitochondrial membrane potential, and mitochondrial activity. The formation of micronuclei was used to determine immediate genetic damage and IGI. Measurements were performed either immediately, 8 days, or 15 days following exposure. Both hydroxyurea and zeocin increased mitochondrial superoxide production and affected mitochondrial activity immediately after exposure, and mitochondrial membrane potential was affected by zeocin, but no persistent changes in mitochondrial function were observed. IGI became manifested 15 days after exposure in hydroxyurea-exposed cells. In conclusion, immediate responses in mitochondrial function did not cause persistent dysfunction of mitochondria, and this dysfunction was not required for IGI in human neuroblastoma cells.
Collapse
Affiliation(s)
- Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Anne Höytö
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
- STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Miiko Sokka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Juhani Syväoja
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
9
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
10
|
Yadav H, Rai U, Singh R. Radiofrequency radiation: A possible threat to male fertility. Reprod Toxicol 2021; 100:90-100. [PMID: 33497741 DOI: 10.1016/j.reprotox.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Radiofrequency exposure from man-made sources has increased drastically with the era of advanced technology. People could not escape from such RF radiations as they have become the essential part of our routine life such as Wi-Fi, microwave ovens, TV, mobile phones, etc. Although non-ionizing radiations are less damaging than ionizing radiations but its long term exposure effect cannot be avoided. For fertility to be affected, either there is an alteration in germ cell, or its nourishing environment, and RF affects both the parameters subsequently, leading to infertility. This review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes. RF also results in genetic and hormonal changes. In addition, the contribution of oxidative stress and protein kinase complex after RFR exposure is also summarized which could also be the possible mechanism for reduction in sperm parameters. Further, some preventative measures are described which could help in reverting the radiofrequency effects on germ cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Umesh Rai
- Deparment of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
11
|
Kesari KK, Dhasmana A, Shandilya S, Prabhakar N, Shaukat A, Dou J, Rosenholm JM, Vuorinen T, Ruokolainen J. Plant-Derived Natural Biomolecule Picein Attenuates Menadione Induced Oxidative Stress on Neuroblastoma Cell Mitochondria. Antioxidants (Basel) 2020; 9:antiox9060552. [PMID: 32630418 PMCID: PMC7346164 DOI: 10.3390/antiox9060552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Several bioactive compounds are in use for the treatment of neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Historically, willow (salix sp.) bark has been an important source of salisylic acid and other natural compounds with anti-inflammatory, antipyretic and analgesic properties. Among these, picein isolated from hot water extract of willow bark, has been found to act as a natural secondary metabolite antioxidant. The aim of this study was to investigate the unrevealed pharmacological action of picein. In silico studies were utilized to direct the investigation towards the neuroprotection abilities of picein. Our in vitro studies demonstrate the neuroprotective properties of picein by blocking the oxidative stress effects, induced by free radical generator 2-methyl-1,4-naphthoquinone (menadione, MQ), in neuroblastoma SH-SY5Y cells. Several oxidative stress-related parameters were evaluated to measure the protection for mitochondrial integrity, such as mitochondrial superoxide production, mitochondrial activity (MTT), reactive oxygen species (ROS) and live-cell imaging. A significant increase in the ROS level and mitochondrial superoxide production were measured after MQ treatment, however, a subsequent treatment with picein was able to mitigate this effect by decreasing their levels. Additionally, the mitochondrial activity was significantly decreased by MQ exposure, but a follow-up treatment with picein recovered the normal metabolic activity. In conclusion, the presented results demonstrate that picein can significantly reduce the level of MQ-induced oxidative stress on mitochondria, and thereby plays a role as a potent neuroprotectant.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Anupam Dhasmana
- Department of Microbiology and Immunology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78539, USA;
- Department of Biosciences, Swami Rama Himalayan University, Dehradun 248016, India
| | - Shruti Shandilya
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jinze Dou
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (N.P.); (J.M.R.)
| | - Tapani Vuorinen
- Department of Bioproducts and Biosystems, Aalto University, 00076 Espoo, Finland; (A.S.); (J.D.)
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University, 00076 Espoo, Finland;
- Correspondence: (K.K.K.); (T.V.); (J.R.)
| |
Collapse
|
12
|
Bagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Mousavi SH, Nazarkhani F. Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. J Occup Health 2020; 62:e12136. [PMID: 32710586 PMCID: PMC7382129 DOI: 10.1002/1348-9585.12136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study was designed to investigate the possible effect of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on occupational burnout syndrome and the severity of depression experienced among thermal power plant workers and the role of oxidative stress. METHODS In this cross-sectional study, 115 power plant workers and 124 administrative personnel of a hospital were enrolled as exposed and unexposed groups, respectively, based on inclusion and exclusion criteria. Levels of oxidative stress biomarkers, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity were measured in serum samples. Exposure to electric and magnetic fields was measured using the IEEE Std C95.3.1 standard at each workstation. The burnout syndrome and the severity of depression were assessed using the Maslach Burnout and Beck Depression Inventory. RESULTS The levels of MDA and SOD were significantly lower in the exposed group than the unexposed group. The exposed group reported a higher prevalence of burnout syndrome and higher depression severity. Multiple linear regression showed that work experience, MDA level, and levels of exposure to magnetic fields are the most important predictor variables for burnout syndrome and severity of depression. In addition, a decrease in the level of Cat was significantly associated with increased burnout syndrome. CONCLUSION The thermal power plant workers exposed to ELF-EMFs are at risk of burnout syndrome and depression. These effects may be caused directly by exposure to magnetic fields or indirectly due to increased oxidative stress indices.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | | | - Fereshteh Nazarkhani
- Department of Occupational Health, Faculty of HealthMazandaran University of Medical SciencesSariIran
| |
Collapse
|
13
|
Mercado-Sáenz S, Burgos-Molina AM, López-Díaz B, Sendra-Portero F, Ruiz-Gómez MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019; 95:1588-1596. [DOI: 10.1080/09553002.2019.1643050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Silvia Mercado-Sáenz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Antonio M. Burgos-Molina
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Beatriz López-Díaz
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Francisco Sendra-Portero
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| | - Miguel J. Ruiz-Gómez
- Facultad de Medicina, Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
15
|
Herrala M, Naarala J, Juutilainen J. Assessment of induced genomic instability in rat primary astrocytes exposed to intermediate frequency magnetic fields. ENVIRONMENTAL RESEARCH 2019; 173:112-116. [PMID: 30903815 DOI: 10.1016/j.envres.2019.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
We investigated whether exposure to intermediate frequency magnetic fields (IF MFs) could induce or enhance genomic instability in primary astrocytes. Rat primary astrocytes were exposed to vertical or horizontal 7.5 kHz, 300 μT MF for 24 h. To study possible combined effects with known genotoxic agents, the cells were exposed for 3 h to menadione or methyl methanesulfonate after the MF treatment. Induced genomic instability was evaluated 36 days after exposures using the Comet assay and flow cytometric scoring of micronuclei. Exposure to 7.5 kHz, 300 μT MF did not induce genomic instability alone or in combination with chemicals in measurements performed several cell generations after exposure.
Collapse
Affiliation(s)
- Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 2019; 285:rspb.2018.0590. [PMID: 29794049 DOI: 10.1098/rspb.2018.0590] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Extremely low-frequency (ELF) magnetic fields have been classified as possibly carcinogenic, mainly based on rather consistent epidemiological findings suggesting a link between childhood leukaemia and 50-60 Hz magnetic fields from power lines. However, causality is not the only possible explanation for the epidemiological associations, as animal and in vitro experiments have provided only limited support for carcinogenic effects of ELF magnetic fields. Importantly, there is no generally accepted biophysical mechanism that could explain such effects. In this review, we discuss the possibility that carcinogenic effects are based on the radical pair mechanism (RPM), which seems to be involved in magnetoreception in birds and certain other animals, allowing navigation in the geomagnetic field. We review the current understanding of the RPM in magnetoreception, and discuss cryptochromes as the putative magnetosensitive molecules and their possible links to cancer-relevant biological processes. We then propose a hypothesis for explaining the link between ELF fields and childhood leukaemia, discuss the strengths and weaknesses of the current evidence, and make proposals for further research.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Seif F, Reza Bayatiani M, Ansarihadipour H, Habibi G, Sadelaji S. Protective properties of Myrtus communis extract against oxidative effects of extremely low-frequency magnetic fields on rat plasma and hemoglobin. Int J Radiat Biol 2019; 95:215-224. [PMID: 30496018 DOI: 10.1080/09553002.2019.1542182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE This study investigates the protective properties of Myrtus communis extract against the oxidative effects of extremely low-frequency magnetic fields (ELFMF). Also, this study is aimed to analyze the conformational changes of hemoglobin, oxidative damages to plasma proteins and antioxidant power of plasma following exposure to ELFMF. MATERIALS AND METHODS Adult male rats were divided into 3 groups: (1) control, (2) ELFMF exposure, and (3) ELFMF exposure after M. communis extract administration. The magnetic field (0.7 mT, 50 Hz) was produced by a Helmholtz coil for one month, 2 hours a day. The M. communis extract was injected intraperitoneally at a dose of 0.5 mg/kg before exposure to ELFMF. The oxidative effects of ELFMF were studied by evaluating the hemoglobin, methemoglobin (metHb) and hemichrome levels, absorption spectrum of hemoglobin (200-700 nm), oxidative damage to plasma proteins by measuring protein carbonyl (PCO) levels and plasma antioxidant power according to the ferric reducing ability of plasma (FRAP). The mean and standard errors of the mean were determined for each group. One-way ANOVA analysis was used to compare the means of groups. The significance level was considered to be p < .05. Moreover, artificial neural network (ANN) analysis was used to identify the predictive parameters for estimating the oxyhemoglobin (oxyHb) concentration. RESULTS Exposure to ELFMF decreased the FRAP which was in concomitant with a significant increase in plasma PCO, metHb and hemichrome concentrations (p < .001). Oxidative modifications of Hb were shown by reduction in optical density at 340 nm (globin-heme interaction) and 420 nm (heme-heme interaction). Administration of M. communis extract increased FRAP values and decreased plasma POC, metHb, and hemichrome concentrations. Also, a significant increase in Hb absorbance at 340, 420, 542, and 577 nm showed the protective properties of M. communis extract against ELFMF-induced oxidative stress in erythrocytes. ANN analysis showed that optical absorption of hemoglobin at 520, 577, 542, and 630 nm and concentration of metHb and hemichrome were the most important parameters in predicting the oxyHb concentration. CONCLUSIONS Myrtus communis extract enhances the ability of erythrocytes and plasma to deal with oxidative conditions during exposure to ELFMF. Also, ANN analysis can predict the most important parameters in relation to Hb structure during oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Seif
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Mohamad Reza Bayatiani
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Hadi Ansarihadipour
- b Department of Biochemistry and Genetics , Arak University of Medical Sciences , Arak , Iran
| | - Ghasem Habibi
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| | - Samira Sadelaji
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| |
Collapse
|
18
|
Abstract
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH 44195 USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 South Africa
| |
Collapse
|
19
|
Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. ENVIRONMENTAL RESEARCH 2018; 163:71-79. [PMID: 29427953 DOI: 10.1016/j.envres.2018.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/14/2018] [Accepted: 01/23/2018] [Indexed: 05/06/2023]
Abstract
New technologies in electronics and communications are continually emerging. An increasing use of these electronic devices such as mobile phone, computer, wireless fidelity connectors or cellular towers is raising questions concerning whether they have an adverse effect on the body. Exposure to electromagnetic fields (EMF) is frequently suggested to have adverse health effects on humans and other organisms. This idea has been reported in many studies. In contrast, the therapeutic effects of EMF on different organs have also been reported. Research findings are inconsistent. This has given rise to very profound discrepancies. The duration and frequency of mobile phone calls and the association observed with various health effects has raised serious concerns due to the frequency with which these devices are used and the way they are held close to the head. The present review assesses the results of in vitro, in vivo, experimental, and epidemiological studies. The purpose of the study is to assess data concerning the carcinogenic and genotoxic effects of non-ionizing EMF. The major genotoxic and carcinogenic effects of EMF, divided into subsections as low frequency effects and radiofrequency effects, were reviewed. The inconsistent results between similar studies and the same research groups have made it very difficult to make any comprehensive interpretation. However, evaluation of current studies suggests that EMF may represent a serious source of concern and may be hazardous to living organisms.
Collapse
Affiliation(s)
- Adem Kocaman
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey.
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
20
|
Herrala M, Mustafa E, Naarala J, Juutilainen J. Assessment of genotoxicity and genomic instability in rat primary astrocytes exposed to 872 MHz radiofrequency radiation and chemicals. Int J Radiat Biol 2018. [DOI: 10.1080/09553002.2018.1450534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ehab Mustafa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Falone S, Santini S, Cordone V, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Extremely Low-Frequency Magnetic Fields and Redox-Responsive Pathways Linked to Cancer Drug Resistance: Insights from Co-Exposure-Based In Vitro Studies. Front Public Health 2018. [PMID: 29527520 PMCID: PMC5829633 DOI: 10.3389/fpubh.2018.00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrical devices currently used in clinical practice and common household equipments generate extremely low-frequency magnetic fields (ELF-MF) that were classified by the International Agency for Research on Cancer as “possible carcinogenic.” Assuming that ELF-MF plays a role in the carcinogenic process without inducing direct genomic alterations, ELF-MF may be involved in the promotion or progression of cancers. In particular, ELF-MF-induced responses are suspected to activate redox-responsive intracellular signaling or detoxification scavenging systems. In fact, improved protection against oxidative stress and redox-active xenobiotics is thought to provide critical proliferative and survival advantage in tumors. On this basis, an ever-growing research activity worldwide is attempting to establish whether tumor cells may develop multidrug resistance through the activation of essential cytoprotective networks in the presence of ELF fields, and how this might trigger relevant changes in tumor phenotype. This review builds a framework around how the activity of redox-responsive mediators may be controlled by co-exposure to ELF-MF and reactive oxygen species-generating agents in tumor and cancer cells, in order to clarify whether and how such potential molecular targets could help to minimize or neutralize the functional interaction between ELF-MF and malignancies.
Collapse
Affiliation(s)
- Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvano Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marisa Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Institute of Translational Pharmacology (IFT)-National Research Council (CNR), L'Aquila, Italy
| |
Collapse
|
22
|
Mahmoudinasab H, Saadat M. Electromagnetic Field Could Protect SH-SY5Y Cells Against Cisplatin Cytotoxicity, But Not MCF-7 Cells. DNA Cell Biol 2018; 37:330-335. [PMID: 29446648 DOI: 10.1089/dna.2017.4108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cisplatin [cis-dichlorodiammine platinum (II), CDDP], morphine (Mor), and electromagnetic field (EMF) induced oxidative stress. In this study, we tried to increase the cytotoxicity of CDDP in combination with Mor and/or EMF in MCF-7 and SH-SY5Y cells. Furthermore, we evaluate the expression levels of 11 antioxidant genes in both cell lines. We designed four treatments: CDDP alone, "CDDP+Mor," "CDDP+EMF," and "CDDP+Mor+EMF." Serial dilutions of CDDP, Mor (5.0 μM), and EMF (50 Hz, 0.50 mT, "15 min field-on/15 min field-off") were used for estimation of relative IC50 values. The mRNA expression levels of antioxidant genes were determined by real-time PCR. The IC50 value of CDDP in "CDDP+Mor+EMF" treatment was significantly higher than CDDP alone and "CDDP+Mor" treatments in both cell lines. Whereas the expression levels of antioxidant genes in the four treatments showed similar patterns in MCF-7 cells, in SH-SY5Y cells, most of the antioxidant genes showed an upregulation with "CDDP+EMF" and "CDDP+Mor+EMF" treatments. Moreover, significant differences in the number of upregulated genes were observed between different treatments in SH-SY5Y cells. The molecular mechanism of CDDP-reduced cytotoxicity in our designed combinations is probably different in MCF-7 and SH-SY5Y cells. CDDP in combination with EMF could protect SH-SY5Y cells from the cytotoxicity, whereas it has no significant change in MCF-7 cells.
Collapse
Affiliation(s)
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University , Shiraz, Iran
| |
Collapse
|
23
|
Magnetic Fields and Reactive Oxygen Species. Int J Mol Sci 2017; 18:ijms18102175. [PMID: 29057846 PMCID: PMC5666856 DOI: 10.3390/ijms18102175] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/30/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) ubiquitously exist in mammalian cells to participate in various cellular signaling pathways. The intracellular ROS levels are dependent on the dynamic balance between ROS generation and elimination. In this review, we summarize reported studies about the influences of magnetic fields (MFs) on ROS levels. Although in most cases, MFs increased ROS levels in human, mouse, rat cells, and tissues, there are also studies showing that ROS levels were decreased or not affected by MFs. Multiple factors could cause these discrepancies, including but not limited to MF type/intensity/frequency, exposure time and assay time-point, as well as different biological samples examined. It will be necessary to investigate the influences of different MFs on ROS in various biological samples systematically and mechanistically, which will be helpful for people to get a more complete understanding about MF-induced biological effects. In addition, reviewing the roles of MFs in ROS modulation may open up new scenarios of MF application, which could be further and more widely adopted into clinical applications, particularly in diseases that ROS have documented pathophysiological roles.
Collapse
|
24
|
Villarini M, Gambelunghe A, Giustarini D, Ambrosini MV, Fatigoni C, Rossi R, Dominici L, Levorato S, Muzi G, Piobbico D, Mariucci G. No evidence of DNA damage by co-exposure to extremely low frequency magnetic fields and aluminum on neuroblastoma cell lines. Mutat Res 2017; 823:11-21. [PMID: 28985943 DOI: 10.1016/j.mrgentox.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/28/2017] [Accepted: 09/01/2017] [Indexed: 01/30/2023]
Abstract
Whether exposure to 50-60Hz extremely low frequency magnetic fields (ELF-MF) exerts neurotoxic effects is a debated issue. Analogously, the potential role of Aluminum (Al) in neurodegeneration is a matter of controversial debate. As all living organisms are exposed to ELF-MF and/or Al daily, we found investigating the early effects of co-exposure to ELF-MF and Al in SH-SY5Y and SK-N-BE-2 human neuroblastoma (NB) cells intriguing. SH-SY5Y5 and SK-N-BE-2 cells underwent exposure to 50Hz ELF-MF (0.01, 0.1 or 1mT) or AlCl3 (4 or 40μM) or co-exposure to 50Hz ELF-MF and AlCl3 for 1h continuously or 5h intermittently. The effects of the treatment were evaluated in terms of DNA damage, redox status changes and Hsp70 expression. The DNA damage was assessed by Comet assay; the cellular redox status was investigated by measuring the amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) while the inducible Hsp70 expression was evaluated by western blot analysis and real-time RT-PCR. Neither exposure to ELF-MF or AlCl3 alone induced DNA damage, changes in GSH/GSSG ratio or variations in Hsp70 expression with respect to the controls in both NB cell lines. Similarly, co-exposure to ELF-MF and AlCl3 did not have any synergic toxic effects. The results of this in vitro study, which deals with the effects of co-exposure to 50Hz MF and Aluminum, seem to exclude that short-term exposure to ELF-MF in combination with Al can have harmful effects on human SH-SY5Y and SK-N-BE-2 cells.
Collapse
Affiliation(s)
- Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | | | - Daniela Giustarini
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | | | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Ranieri Rossi
- Department of Life Sciences, Laboratory of Pharmacology and Toxicology, University of Siena, 53100 Siena, Italy
| | - Luca Dominici
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sara Levorato
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Giuseppina Mariucci
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy.
| |
Collapse
|
25
|
Direction-Dependent Effects of Combined Static and ELF Magnetic Fields on Cell Proliferation and Superoxide Radical Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5675086. [PMID: 28497056 PMCID: PMC5405400 DOI: 10.1155/2017/5675086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Proliferation of human umbilical vein endothelial cells was stimulated by a nearly vertical 60 or 120 μT static magnetic field (MF) in comparison to cells that were shielded against MFs. When the static field was combined with an extremely low frequency (ELF) MF (18 Hz, 30 μT), proliferation was suppressed by a horizontal but not by a vertical ELF field. As these results suggested that the effects of an ELF MF depend on its direction in relation to the static MF, independent experiments were carried out to confirm such dependence using 50 Hz MFs and a different experimental model. Cytosolic superoxide level in rat glioma C6 cells exposed in the presence of a nearly vertical 33 μT static MF was increased by a horizontal 50 Hz, 30 μT MF, but not affected by a vertical 50 Hz MF. The results suggest that a weak ELF MF may interact with the static geomagnetic field in producing biological effects, but the effect depends on the relative directions of the static and ELF MFs.
Collapse
|
26
|
Höytö A, Herrala M, Luukkonen J, Juutilainen J, Naarala J. Cellular detection of 50 Hz magnetic fields and weak blue light: effects on superoxide levels and genotoxicity. Int J Radiat Biol 2017; 93:646-652. [PMID: 28264623 DOI: 10.1080/09553002.2017.1294275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE We tested the hypothesis that the effects of 50 Hz magnetic fields (MFs) on superoxide levels and genotoxicity depend on the presence of blue light. MATERIALS AND METHODS Human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 100 μT MF with or without non-phototoxic level of blue light for 24 h. We also studied whether these treatments alter responses to menadione, an agent that induces mitochondrial superoxide (O2• -) production and DNA damage. Micronuclei, proliferation, viability, cytosolic and mitochondrial O2• - levels were assessed. RESULTS MF (without blue light) increased cytosolic O2• - production and blue light suppressed this effect. Mitochondrial O2• - production was reduced by both MF and blue light, but these effects were not additive. Micronucleus frequency was not affected by blue light or MF alone, but blue light (significantly when combined with MF) enhanced menadione-induced micronuclei. CONCLUSIONS The original simple hypothesis (blue light is needed for MF effects) was not supported, but interaction of MF and blue light was nevertheless observed. The results are consistent with MF effects on light-independent radical reactions.
Collapse
Affiliation(s)
- Anne Höytö
- a Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio , Finland
| | - Mikko Herrala
- a Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio , Finland
| | - Jukka Luukkonen
- a Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio , Finland
| | - Jukka Juutilainen
- a Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio , Finland
| | - Jonne Naarala
- a Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
27
|
Luukkonen J, Höytö A, Sokka M, Liimatainen A, Syväoja J, Juutilainen J, Naarala J. Modification of p21 level and cell cycle distribution by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Int J Radiat Biol 2016; 93:240-248. [DOI: 10.1080/09553002.2017.1235298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jukka Luukkonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Anne Höytö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Miiko Sokka
- University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
| | - Anu Liimatainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Juhani Syväoja
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jukka Juutilainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| | - Jonne Naarala
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta, Kuopio, Finland
| |
Collapse
|