1
|
Sarles SE, Hensel EC, Nuss C, Terry J, Robinson R. Characterization of mass distribution in a biomimetic aerosol exposure system. Inhal Toxicol 2024; 36:240-249. [PMID: 38669189 DOI: 10.1080/08958378.2024.2341995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Lack of biomimicry in geometry and flow conditions of emissions systems for analytical testing and biological exposure has led to fundamental limitations, including a poor understanding of dose delivered to specific airway locations. This work characterizes mass distribution of a JUUL® brand e-cigarette in a Biomimetic Aerosol Exposure System (BAES). MATERIALS AND METHODS A combination of mass balance, direct measurements, and inferences based on direct measurements were used to characterize regional and local dose as a function of system flow path configuration and emissions topography profile. RESULTS Doses produced by the emissions topography profile with only puffing were significantly different from profiles with clean air inhalation following puffs. Mass characterization results support that dose can be manipulated using flow path geometry. Local and regional deposition was mapped throughout the system. DISCUSSION AND CONCLUSIONS We estimate the fraction of yield to the mouth deposited at several locations throughout the system for a variety of puffing and respiration topographies and show that emissions topography profile and system flow path geometry affect dose. This work provides proof-of-concept for assessing mass distribution as a function of aerosol generator (e-cigarette product), user airway geometry, and inhalation and puffing topography.
Collapse
Affiliation(s)
- S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, USA
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Edward C Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Caleb Nuss
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Janessa Terry
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Risa Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
2
|
Bishop E, Miazzi F, Bozhilova S, East N, Evans R, Smart D, Gaca M, Breheny D, Thorne D. An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol 2024; 6:100150. [PMID: 38298371 PMCID: PMC10827682 DOI: 10.1016/j.crtox.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Interest in the toxicological assessment of iterations of e-cigarette devices, e-liquid formulations and flavour use is increasing. Here, we describe a multiple test matrix and in vitro approach to assess the biological impact of differing e-cigarette activation mechanism (button vs. puff-activated) and heating technology (cotton vs. ceramic wick). The e-liquids selected for each device contained the same nicotine concentration and flavourings. We tested both e-liquid and aqueous extract of e-liquid aerosol using a high throughput cytotoxicity and genotoxicity screen. We also conducted whole aerosol assessment both in a reconstituted human airway lung tissue (MucilAir) with associated endpoint assessment (cytotoxicity, TEER, cilia beat frequency and active area) and an Ames whole aerosol assay with up to 900 consecutive undiluted puffs. Following this testing it is shown that the biological impact of these devices is similar, taking into consideration the limitations and capturing efficiencies of the different testing matrices. We have contextualised these responses against previous published reference cigarette data to establish the comparative reduction in response consistent with reduced risk potential of the e-cigarette products tested in this study as compared to conventional cigarettes.
Collapse
Affiliation(s)
- E. Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F. Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S. Bozhilova
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N. East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - R. Evans
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Smart
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M. Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
3
|
Bishop E, Gaça M, Thorne D. Advances in whole aerosol approaches for in vitro e-cigarette testing. Drug Test Anal 2023; 15:1133-1144. [PMID: 36945752 DOI: 10.1002/dta.3471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Electronic-cigarette regulation and risk assessment is a prominent and developing field, as the popularity and prevalence of this product category increases. Over the last 10 years since their emergence, there have been many advances and adaptations to current in vitro testing techniques to better assess and predict absolute consumer risk. However, there are still requirements to create a cross-field harmonised approach to appropriate exposure and experimental design. With many assessments still being carried out using methods developed and optimised for cigarette smoke, there must first be an acknowledgement regarding the differences between cigarette smoke and tobacco-free e-cigarette aerosols before we can accurately assess these distinct products. Here, we discuss five published studies from within our own research to demonstrate how in vitro testing techniques have evolved to improve determination of risk by considering appropriate dosimetry and exposure for both e-cigarette and cigarette aerosols and how we can contextualise the data through human consumption and dose extrapolation, ultimately giving more relevance to in vitro data. Furthermore, we have demonstrated the evolution of techniques, which has allowed us to bridge between platforms, simplify exposure set-up, experimental design and demonstrate technology evolution within our products, thus fulfilling a responsible duty of care to consumers via an appropriate and robust in vitro product assessment.
Collapse
Affiliation(s)
- Emma Bishop
- British American Tobacco, R&D, Southampton, UK
| | | | | |
Collapse
|
4
|
Miller-Holt J, Behrsing H, Crooks I, Curren R, Demir K, Gafner J, Gillman G, Hollings M, Leverette R, Oldham M, Simms L, Stankowski LF, Thorne D, Wieczorek R, Moore MM. Key challenges for in vitro testing of tobacco products for regulatory applications: Recommendations for dosimetry. Drug Test Anal 2023; 15:1175-1188. [PMID: 35830202 PMCID: PMC9897201 DOI: 10.1002/dta.3344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.
Collapse
Affiliation(s)
| | - Holger Behrsing
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Ian Crooks
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Kubilay Demir
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Jeremie Gafner
- Scientific & Regulatory Affairs, JT International SA, Geneva, Switzerland
| | - Gene Gillman
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Michael Hollings
- Genetic Toxicology, Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Robert Leverette
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, North Carolina, USA
| | - Michael Oldham
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands, Bristol, UK
| | - Leon F. Stankowski
- Genetic and In Vitro Toxicology, Charles River Laboratories–Skokie, Skokie, Illinois, USA
| | - David Thorne
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Roman Wieczorek
- Group Science and Regulatory Affairs, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Hamburg, Germany
| | | |
Collapse
|
5
|
Moore MM, Abraham I, Ballantyne M, Behrsing H, Cao X, Clements J, Gaca M, Gillman G, Hashizume T, Heflich RH, Hurtado S, Jordan KG, Leverette R, McHugh D, Miller-Holt J, Phillips G, Recio L, Roy S, Scian M, Simms L, Smart DJ, Stankowski LF, Tarran R, Thorne D, Weber E, Wieczorek R, Yoshino K, Curren R. Key Challenges and Recommendations for In Vitro Testing of Tobacco Products for Regulatory Applications: Consideration of Test Materials and Exposure Parameters. Altern Lab Anim 2023; 51:55-79. [PMID: 36821083 DOI: 10.1177/02611929221146536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.
Collapse
Affiliation(s)
| | | | - Mark Ballantyne
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Holger Behrsing
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Xuefei Cao
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Julie Clements
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Marianna Gaca
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Gene Gillman
- 520154Enthalpy Analytical, Inc., Durham, NC, USA
| | - Tsuneo Hashizume
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Robert H Heflich
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Sara Hurtado
- 66661Charles River Laboratories - Skokie, LLC., Skokie, IL, USA
| | - Kristen G Jordan
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Robert Leverette
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Damian McHugh
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Gary Phillips
- Life Science Technologies Ltd, Eastleigh, Hampshire, UK
| | - Leslie Recio
- 298616ILS, PO Box 13501, Research Triangle Park, NC, USA
| | | | | | | | - Daniel J Smart
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Robert Tarran
- Department of Cell Biology and Physiology, 2332University of North Carolina, Chapel Hill, NC, USA
| | - David Thorne
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Elisabeth Weber
- 588402Oekolab Ges. f. Umweltanalytik, A Member of the JT International Group of Companies, Vienna, Austria
| | | | - Kei Yoshino
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Rodger Curren
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| |
Collapse
|
6
|
Wang H, Han S, Chen H, Li P, Li S, Wu Y, Zhang C, Fu Y, Tian Y, Liu T, Hou H, Hu Q. In Vitro Toxicological Investigation and Risk Assessment of E-Cigarette Aerosols Based on a Novel Solvent-Free Extraction Method. ACS OMEGA 2022; 7:48403-48415. [PMID: 36591148 PMCID: PMC9798774 DOI: 10.1021/acsomega.2c06663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Cigarettes, potentially safer alternatives to combustible cigarettes, have been reported to increase the health risk for long-term users, so accumulating information about their potential toxicity is of great concern. However, toxicological evaluations of e-cigarette aerosols are limited, which may be attributed to the lack of a simple and efficient extraction method. Here, we developed a high-speed centrifugal method for extracting e-cigarette aerosol collected mass (ACM) and prepared ACM samples of 26 representative e-cigarettes, and 10 samples were further selected based on their cytotoxicity for systematic toxicological assessments. The average extraction efficiency of ACM, primary aerosol components, and typical carbonyls exceeded 85%. The toxicological evaluation showed that the IC50 value range of e-cigarettes for cytotoxicity was 2-52 mg/mL ACM, all e-cigarettes can induce the risk of DNA damage, mitochondrial depolarization, and c-Jun-related signal disturbances; most e-cigarettes significantly caused disturbance of oxidative stress balance. E-cigarettes with higher cytotoxicity appeared to cause a higher degree of damage, while no e-cigarette promoted mutagenicity and cytochrome c release. The toxicity difference among e-cigarettes using nicotine equivalent was significantly lower than that of ACM. This study provides a novel extraction method and a comprehensive in vitro toxicity risk profile of e-cigarette aerosols.
Collapse
Affiliation(s)
- Hongjuan Wang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shulei Han
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Huan Chen
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Peizhen Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Shigang Li
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yujuan Wu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Chunxia Zhang
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yaning Fu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Yushan Tian
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Tong Liu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Hongwei Hou
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| | - Qingyuan Hu
- China
National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
- Key
Laboratory of Tobacco Biological Effects, Zhengzhou 450001, China
| |
Collapse
|
7
|
Characterization of a rapid condensate collection apparatus for in vitro assays of electronic nicotine delivery systems. Toxicol In Vitro 2022; 84:105434. [PMID: 35820568 DOI: 10.1016/j.tiv.2022.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In vitro testing of Electronic Nicotine Delivery System (ENDS) aerosol condensates is important in evaluating their potential toxicity. Collecting sufficient condensate for these tests is a time consuming and costly procedure. The "triple puff (TP)" is a novel system which collects the aerosol from three ENDS devices sequentially into a single filter pad and impinger. The TP substantially reduces condensate collection time relative to the conventional single ENDS, single puff (SP), device system. Both the TP and SP (using two puffing profiles) were used to generate condensates from JUUL ENDS e-liquid Mint 5.0% (nicotine by weight). Aerosols were collected using the filter pad and ethanol-containing impinger method. Condensates produced with the SP and TP were compared for concentrations of primary constituents and carbonyl compounds as well as for their cytotoxicity (OECD 129), mutagenicity (OECD 471) and genotoxicity (OECD 487). Condensates generated with the SP and TP, regardless of puffing regimen, were very similar chemically and equivalent in the biological assays tested (not cytotoxic, mutagenic, or genotoxic). The TP device significantly reduces production time of ENDS condensates relative to the standard SP method and thus may facilitate further research by reducing the time and effort required to collect ENDS condensates.
Collapse
|
8
|
Smart DE, Bozhilova S, Miazzi F, Haswell LE, Gaca MD, Thorne D, Breheny D. Application of ToxTracker for the toxicological assessment of tobacco and nicotine delivery products. Toxicol Lett 2022; 358:59-68. [PMID: 35065211 DOI: 10.1016/j.toxlet.2022.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Consumer demands and innovation have led to an increasingly diverse range of nicotine delivery systems, driven by a desire to reduce risk associated with traditional combustible cigarettes. This speed of change provides a mandate for rapid new product assessment. We have used the validated technology ToxTracker®, to assess biomarkers of DNA damage, protein misfolding, oxidative and cellular stress, across the categories of cigarette (1R6F), tobacco heating product (THP 1.4) and electronic cigarette (ePen 3). In addition, we compared the commonly used test matrices for tobacco and nicotine products; whole aerosol aqueous extracts (AqE) and gas vapour phase (GVP), determining their suitability across the product categories. We demonstrated a significant reduction in oxidative stress and cytotoxicity for THP 1.4 over cigarette, further reduced for ePen 3, when assessed by both dilution and nicotine dosimetry. We also identified that while the extraction matrices AqE and GVP from combustible products were equivalent in the induced responses, this was not true of the other category examples, moreover THP 1.4 GVP demonstrates a >50 % reduction in both toxicity and cytotoxicity endpoints over AqE. This indicates that unlike cigarette, the active components or toxicants for THP and electronic cigarette are associated with the aerosol fraction of these categories.
Collapse
Affiliation(s)
- David E Smart
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK.
| | - Stela Bozhilova
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Fabio Miazzi
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Linsey E Haswell
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Marianna D Gaca
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - David Thorne
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| | - Damien Breheny
- British American Tobacco, Scientific Research, Waterhouse Way, Southampton, SO15 8TL, UK
| |
Collapse
|
9
|
Zhang J, Doshi U, Wolz RL, Kosachevsky P, Oldham MJ, Gillman IG, Lee KM. Fit-for-purpose characterization of air-liquid-interface (ALI) in vitro exposure systems for e-vapor aerosol. Toxicol In Vitro 2022; 82:105352. [PMID: 35341918 DOI: 10.1016/j.tiv.2022.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Air-liquid-interface (ALI) exposure systems deliver aerosol to the apical surface of cells which mimics the in vivo inhalation exposure conditions. It is necessary, however, to quantify the delivered amount of aerosol for ALI-based in vitro toxicity assessment. In this study, we evaluated two commercially available ALI exposure systems, a Vitrocell® Ames 48 (Ames 48) and a Vitrocell® 24/48 (VC 24/48), and the Vitrocell® VC1/7 smoking machine using a cig-a-like cartridge-based e-vapor device with a prototype formulation (containing 4% nicotine by weight). We characterized aerosol particle-size distribution, aerosol mass, and major chemical components (nicotine, propylene glycol, and glycerol) at the generation source and verified the repeatability of the aerosol generation. We determined aerosol delivery at the ALI by gravimetric analysis of mass collected on Cambridge filter pads and analytical quantitation of the buffer medium which showed that both aerosol mass and nicotine to an exposure insert linearly increased up to 400 puffs. The delivered aerosol mass covered a wide range of 0.8-3.4 mg per insert in the Ames 48 with variability (relative standard deviation, RSD) up to 12% and 1.1-6.4 mg per insert in the VC 24/48 with variability up to 15%. The delivered nicotine ranged approximately up to 200 μg per insert in both exposure systems. These results provided operation and aerosol delivery information of these ALI exposure systems for subsequent in vitro testing of e-vapor aerosols.
Collapse
Affiliation(s)
- J Zhang
- Altria Client Services LLC, Richmond, VA, United States of America.
| | - U Doshi
- Altria Client Services LLC, Richmond, VA, United States of America
| | - R L Wolz
- Enthalpy Analytical, Richmond, VA, United States of America
| | - P Kosachevsky
- Enthalpy Analytical, Richmond, VA, United States of America
| | - M J Oldham
- Altria Client Services LLC, Richmond, VA, United States of America
| | - I G Gillman
- Enthalpy Analytical, Richmond, VA, United States of America; Enthalpy Analytical, Richmond, VA, United States of America
| | - K M Lee
- Altria Client Services LLC, Richmond, VA, United States of America
| |
Collapse
|
10
|
Bishop E, Terry A, East N, Breheny D, Gaca M, Thorne D. A 3D in vitro comparison of two undiluted e-cigarette aerosol generating systems. Toxicol Lett 2022; 358:69-79. [PMID: 35032609 DOI: 10.1016/j.toxlet.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
In vitro studies play an important role in supporting the toxicological assessment of e-cigarettes, with many current methods reliant on sophisticated in vitro exposure systems designed for conventional cigarette testing. In this study, we have compared two distinct systems; the modified Vitrocell VC10 and Borgwaldt LM4E designed to deliver undiluted e-cigarette aerosol. We assessed the cytotoxicity response of 3D reconstituted lung tissue (MucilAir) exposed to undiluted aerosol from ePen3 (closed modular e-cigarette) using these two exposure systems. As the induced cytotoxicity profiles were comparable, we then compared these responses against historical eBox (open modular e-cigarette) and 3R4F reference cigarette data to show evolution of product technology. This latter approach was deemed possible by monitoring intrinsic donor-to-donor control variability over a three-year period, bridging between exposure systems and observed biological responses. Despite the differences in the technology, on a puff-by-puff basis these machines gave remarkably similar cytotoxicity profiles for ePen3, as determined by MTT, and consistency of pre-cytotoxicity markers: transepithelial electrical resistance (TEER), cilia beat frequency and cilia active area. When responses are compared as a function of exposed nicotine concentration, we see differences due to the dynamics of the exposure systems. The parity of responses between the systems in generated undiluted aerosol has allowed us to compare back to previously published eBox data, irrespective of aerosol generating system and MucilAir donor, showing how evolution from open systems to podmod e-cigarette design can make a step change in the cytotoxicity profile of the product.
Collapse
Affiliation(s)
- E Bishop
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - A Terry
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - N East
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - M Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - D Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
11
|
Forest V, Mercier C, Pourchez J. Considerations on dosimetry for in vitro assessment of e-cigarette toxicity. Respir Res 2022; 23:358. [PMID: 36528600 PMCID: PMC9758947 DOI: 10.1186/s12931-022-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align data between different exposure systems or data from different laboratories and therefore allow comparisons to help further exploring the risk potential of e-cigarettes.
Collapse
Affiliation(s)
- Valérie Forest
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Clément Mercier
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| | - Jérémie Pourchez
- grid.7429.80000000121866389Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, 42023 Saint-Etienne Cedex 2, France
| |
Collapse
|
12
|
Dalrymple A, McEwan M, Brandt M, Bielfeldt S, Bean E, Moga A, Coburn S, Hardie G. A novel clinical method to measure skin staining reveals activation of skin damage pathways by cigarette smoke. Skin Res Technol 2022; 28:162-170. [PMID: 34758171 PMCID: PMC9299119 DOI: 10.1111/srt.13108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-term use of cigarettes can result in localised staining and aging of smokers' skin. The use of tobacco heating products (THPs) and electronic cigarettes (ECs) has grown on a global scale; however, the long-term effect of these products' aerosols on consumers' skin is unknown. This pilot clinical study aimed to determine whether THP or EC aerosol exposure results in skin staining or activation of biomarkers associated with oxidative stress. MATERIALS AND METHODS Eight areas were identified on the backs of 10 subjects. Two areas were used for air control, and two areas exposed to 32-puffs of cigarette smoke (CS), THP or EC aerosols, which were delivered to the skin using a 3-cm diameter exposure chamber and smoke engine. Skin colour was measured using a Chromameter. Squalene (SQ), SQ monohydroperoxide (SQOOH) and malondialdehyde (MDA) levels were measured in sebum samples by mass spectrometry and catalase colorimetry. RESULTS CS exposure significantly increased skin staining, SQOOH and MDA levels and SQOOH/SQ ratio. THP and EC values were significantly lower than CS; EC values being comparable to air control. THP values were comparable to EC and air control at all endpoints, apart from skin staining. SQ and catalase levels did not change with exposure. CONCLUSIONS CS stained skin and activated pathways known to be associated with skin damage. THPs and ECs produced significantly lower values, suggesting they could offer hygiene and cosmetic benefits for consumers who switch exclusively from smoking cigarettes. Further studies are required to assess longer-term effects of ECs and THPs on skin function.
Collapse
Affiliation(s)
| | | | - Marianne Brandt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | - Stephan Bielfeldt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | | | | | | | | |
Collapse
|
13
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
14
|
McEwan M, Gale N, Ebajemito JK, Camacho OM, Hardie G, Proctor CJ, Murphy J. A randomized controlled study in healthy participants to explore the exposure continuum when smokers switch to a tobacco heating product or an E-cigarette relative to cessation. Toxicol Rep 2021; 8:994-1001. [PMID: 34026564 PMCID: PMC8131274 DOI: 10.1016/j.toxrep.2021.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Cigarette smoking is associated with a number of diseases, such as cancer and cardiovascular diseases. Recently, there has been an increase in the use of electronic cigarettes (ECs) and tobacco-heating products (THPs) as an alternative to cigarettes, which may reduce the health burden associated with smoking. However, an exposure continuum when smokers switch to ECs or THPs compared to complete smoking cessation is not well established. Methods 148 healthy smokers were randomized to either continue smoking cigarettes, switch to using the glo THP or a prototype EC, or completely quit any nicotine or tobacco product use for 5 days, after a 2-day baseline period. During this study breath and 24-h urine samples were collected for Biomarker of Exposure (BoE) analysis. Results After a 5-day switching period BoE levels showed a substantial significant decrease in levels from baseline in the groups using the glo THP, the prototype EC, and having quit all nicotine and tobacco use. On an exposure continuum, smokers who completely quit nicotine had the lowest levels of assessed BoEs, followed by those who switched to the EC and then those who switched to glo THP use. Participants who continued to smoke had the highest levels of BoEs. Conclusions THP or EC use over a 5-day period resulted in significant reductions in exposure to smoke toxicants, in some cases to levels similar to those for nicotine cessation. These results show that on an exposure continuum, nicotine cessation gives the greatest reduction in exposure to tobacco smoke toxicants, closely followed by the EC and the glo THP. These significant reductions in exposure to toxicants suggest that the glo THP and EC have the potential to be Reduced Risk Products. Study Registration ISRCTN80651909.
Collapse
Affiliation(s)
- Michael McEwan
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - James K Ebajemito
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - Oscar M Camacho
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | - George Hardie
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| | | | - James Murphy
- British American Tobacco (Investments) Limited, Research and Development, Regents Park Road, Southampton, SO15 8TL, UK
| |
Collapse
|
15
|
Sarles SE, Hensel EC, Robinson RJ. Surveillance of U.S. Corporate Filings Provides a Proactive Approach to Inform Tobacco Regulatory Research Strategy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3067. [PMID: 33809725 PMCID: PMC8002354 DOI: 10.3390/ijerph18063067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Abstract
The popularity of electronic cigarettes in the United States and around the world has led to a startling rise in youth nicotine use. The Juul® e-cigarette was introduced in the U.S. market in 2015 and had captured approximately 13% of the U.S. market by 2017. Unlike many other contemporary electronic cigarette companies, the founders behind the Juul® e-cigarette approached their product launch like a traditional high-tech start-up company, not like a tobacco company. This article presents a case study of Juul's corporate and product development history in the context of US regulatory actions. The objective of this article is to demonstrate the value of government-curated archives as leading indicators which can (a) provide insight into emergent technologies and (b) inform emergent regulatory science research questions. A variety of sources were used to gather data about the Juul® e-cigarette and the corporations that surround it. Sources included government agencies, published academic literature, non-profit organizations, corporate and retail websites, and the popular press. Data were disambiguated, authenticated, and categorized prior to being placed on a timeline of events. A timeline of four significant milestones, nineteen corporate filings and events, twelve US regulatory actions, sixty-four patent applications, eighty-seven trademark applications, twenty-three design patents and thirty-two utility patents related to Juul Labs and its associates is presented, spanning the years 2004 through 2020. This work demonstrates the probative value of findings from patent, trademark, and SEC filing literature in establishing a premise for emergent regulatory science research questions which may not yet be supported by traditional archival research literature. The methods presented here can be used to identify key aspects of emerging technologies before products actually enter the market; this shifting policy formulation and problem identification from a paradigm of being reactive in favor of becoming proactive. Such a proactive approach may permit anticipatory regulatory science research and ultimately shorten the elapsed time between market technology innovation and regulatory response.
Collapse
Affiliation(s)
- Samantha Emma Sarles
- Engineering Ph.D. Program, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Edward C. Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Risa J. Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| |
Collapse
|
16
|
Dalrymple A, Badrock TC, Terry A, Bean EJ, Barber M, Hall PJ, Coburn S, McAughey J, Murphy J. Development of a novel method to measure material surface staining by cigarette, e-cigarette or tobacco heating product aerosols. Heliyon 2020; 6:e05012. [PMID: 32995648 PMCID: PMC7511806 DOI: 10.1016/j.heliyon.2020.e05012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
Tobacco smoke (CS) may visually stain indoor surfaces including ceilings, walls and soft furnishings over time. Potentially reduced risk products (PRRPs) such as e-cigarettes (EC) and tobacco heating products (THP) produce chemically less complex aerosols with significantly reduced levels of toxicants, particles and odour. However, the potential effects of EC and THP aerosols on the staining of indoor surfaces are currently unknown. In this study, an exposure chamber was developed as a model system to enable the accelerated staining of wallpaper and cotton samples by a scientific reference cigarette (3R4F), three THP (glo™, glo™ pro, glo™ sens) and an e-cigarette (iSwitch Maxx). Exposure to 3R4F reference cigarettes caused the greatest level of staining, which was significantly higher than glo™, glo™ pro, glo™ sens or iSwitch Maxx aerosols, all of which showed relatively little colour change. Exposure to 200–1000 puffs of 3R4F cigarette smoke resulted in a visible dose response effect to wallpaper and cotton samples which was not observed following exposure to glo™, glo™ pro, glo™ sens or iSwitch Maxx aerosols. Aging of the samples for 4 weeks post-exposure resulted in changes to the staining levels, however PRRP staining levels were minimal and significantly lower than 3R4F exposed samples. For the first time, diverse PRRPs across the tobacco and nicotine products risk continuum have been assessed in vitro for their impact on surface staining. CS exposure significantly increased the level of wallpaper and cotton staining, whereas exposure to glo™, glo™ pro, glo™ sens or iSwitch Maxx aerosols resulted in significantly reduced levels of staining, staining levels were also comparable to untreated control samples.
Collapse
Affiliation(s)
- Annette Dalrymple
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
- Corresponding author.
| | | | - Anya Terry
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Emma-Jayne Bean
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Mark Barber
- Borgwaldt KC GmbH Schnackenburgallee 15, 22525, Hamburg, Germany
| | - Peter J. Hall
- Intertek Clinical Research Services, Hooton, Cheshire, CH66 7NZ, UK
| | - Steven Coburn
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - John McAughey
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - James Murphy
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
17
|
Breheny D, Thorne D, Baxter A, Bozhilova S, Jaunky T, Santopietro S, Taylor M, Terry A, Gaça M. The in vitro assessment of a novel vaping technology. Toxicol Rep 2020; 7:1145-1156. [PMID: 32983902 PMCID: PMC7494588 DOI: 10.1016/j.toxrep.2020.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
We have developed a novel vaping product (NVP) IS1.0(TT), which utilises a stainless-steel mesh to transfer and vaporise the e-liquid, mitigating some of the potential sources of toxicants that can be generated using the more traditional 'wick and coil' approach. The emissions from IS1.0(TT) have previously been found to have lower levels of toxicants overall when directly compared with a commercial wick and coil e-cig. This current study assessed the toxicological responses to aerosols from this NVP. Responses induced by IS1.0(TT)were compared to those from a 3R4F reference cigarette, using in vitro test methods which included regulatory genetic toxicological assays as well as some more contemporary screening approaches. The experimental conditions were designed to facilitate the testing of aerosol from this vaping product at doses that in most cases greatly exceeded those of the 3R4F comparator showed little to no toxicological responses and demonstrated significantly reduced effects in these in vitro assays when compared to 3R4F. Furthermore, the extreme doses tested in the present study indicate that the toxicant profile of this NVP translates to lower biological activity in vitro, and suggests that the absolute risk hazard level associated with electronic cigarettes can be reduced through continuous improvement as the technology evolves.
Collapse
Key Words
- ACM, aerosol collected mass
- ALI, air-liquid interface
- ANOVA, analysis of variance
- ARE, antioxidant response element
- Aerosol
- AqE, aerosol aqueous extract
- AqE, aqueous aerosol extracts
- CRM81, CORESTA recommended method number 81
- Cigarette
- DCF, 2′,7′ dichlorodihydrofluorescein
- DMSO, dimethyl sulfoxide
- DSB, double-strand break
- Electronic cigarette
- FDA, US Food and Drug Administration
- GEF, global evaluation factor
- GSH, glutathione (reduced form)
- HCI, Health Canada Intense
- HUVEC, human umbilical vein endothelial cell
- ISO, International Organisation for Standardisation
- IVMn, in vitro micronucleus
- In vitro
- MF, mutant frequency
- MLA, mouse lymphoma assay
- NASEM, US National Academy of Sciences, Engineering and Medicine
- NHBE, normal human bronchial epithelial
- NRU, neutral red uptake
- NVP, new vapour product
- RWD, relative wound density
- S9, post-mitochondrial supernatant
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- TPM, total particulate matter
- TobReg, WHO Study Group on Tobacco Product Regulation
- WA, whole aerosol
Collapse
|
18
|
Thorne D, Whitwell J, Clements J, Walker P, Breheny D, Gaca M. The genotoxicological assessment of a tobacco heating product relative to cigarette smoke using the in vitro micronucleus assay. Toxicol Rep 2020; 7:1010-1019. [PMID: 32874925 PMCID: PMC7451629 DOI: 10.1016/j.toxrep.2020.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/02/2023] Open
Abstract
In vitro studies have supported the toxicological evaluation of chemicals and complex mixtures including cigarette smoke and novel tobacco and nicotine products which include tobacco heating products (THP). This new environment requires faster testing, higher throughput and appropriate in vitro studies, to support product innovation and development. In this study, total particulate matter (TPM) from a commercially available THP and a reference cigarette (3R4F) were assessed up to 500 μg/mL using two in vitro micronucleus techniques. V79 and TK6 cells were assessed using conventional OECD 487 manual scoring techniques, whereas, CHO cells were assessed using contemporary, automated high content screening approaches (Cellomics ArrayScan® VTI). V79 cells gave the most consistent response with all three treatment conditions producing a clear positive genotoxic response. Human TK6 cells only produced dose-dependent response, indicative of a weak-positive response. CHO cells demonstrated a positive response with TPM using long (24 h) -S9 conditions. All three cell lines equally demonstrated a negative response with THP TPM up to 500 μg/mL. In conclusion, THP TPM did not increase micronuclei formation above control levels even at doses far exceeding that tested with reference cigarette smoke, in most cases up to 10x the dose delivered compared to that of cigarette smoke. This study supports the growing belief that THPs are less risky than conventional cigarettes and that 21st century screening techniques can be employed to support product design and decision making, as a potential 1st screen prior to more traditional assessments.
Collapse
Key Words
- 3R4F, Research reference cigarette
- CHO
- CRM, 81 CORESTA recommended method 81
- DMSO, dimethyl sulphoxide
- E-cigarette, electronic cigarette
- HCI, Health Canada Intense smoking regimen
- HCIm, Health Canada Intense modified smoking regimen
- High content screening
- ISO, International Standards Organisation
- IVMN
- IVMN, in vitro micronucleus assay
- In vitro
- NGP, Next generation products
- S9, mammalian liver post-mitochondrial fraction
- THP, tobacco heating product
- TK6
- TPM, total particulate matter
- Tobacco heating product
- V79
Collapse
Affiliation(s)
- David Thorne
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - James Whitwell
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Julie Clements
- Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - Paul Walker
- Cyprotex Discovery, Alderley Park, Alderley, Cheshire, SK10 4TG, UK
| | - Damien Breheny
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Marianna Gaca
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
19
|
An experimental aerosol air-agar interface mouse lymphoma assay methodology. Mutat Res 2020; 856-857:503230. [PMID: 32928375 DOI: 10.1016/j.mrgentox.2020.503230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
This work investigates a completely novel and experimental concept of exposing L5178Y cells at the air-agar-interface to mainstream cigarette smoke aerosol (Kentucky reference 3R4F). This study highlights the associated challenges of combining a suspension cell line alongside an in vitro aerosol exposure system. To achieve a monolayer, cells were 'seeded' in a concentrated cell super-mix suspension onto an RPMI/agar-matrix -base. The resulting cell suspension media was adsorbed into the agar base leaving the L5178Y cells lightly suspended on the agar surface, approximating a monolayer. Cells were deemed supportable on the agar-matrix, viable and recoverable. Using Vitrocell VC 10 exposure system and the Ames 4 exposure module, L5178Y cells were successfully exposed to a dynamic cigarette smoke aerosol, recovered and assessed for mutant frequencies, using standard assay procedures. Method development included assessment of flowing air conditions, plating efficiency and recovery of L5178Y cells from the agar-matrix surface. Positive controls MMS and B[a]P were successfully incorporated into the agar-matrix and metabolic activation was achieved by S-9 incorporation into the same agar-base-matrix. B[a]P demonstrated metabolic activation and positive response, suggesting a clear cellular interaction with the agar-matrix. Whole smoke exposed cells in the presence of metabolic activation showed a clear dose response and increasing mutant frequencies, well in excess of the controls (air and incubator) and the global evaluation factor following a 2 or 3 day expression period. This experimental concept demonstrates that L5178Y cells can be exposed to cigarette smoke aerosol, using a completely novel and a previously untested approach. Although this work successfully demonstrates the approach is viable and cells can be plated and maintained on an agar-matrix, more optimisation and robustness assessment is required before it can be considered fully adapted and used alongside other whole aerosol methodologies for the assessment of cigarette smoke and other inhaled aerosols.
Collapse
|
20
|
Camacho OM, Hedge A, Lowe F, Newland N, Gale N, McEwan M, Proctor C. Statistical analysis plan for "A randomised, controlled study to evaluate the effects of switching from cigarette smoking to using a tobacco heating product on health effect indicators in healthy subjects". Contemp Clin Trials Commun 2020; 17:100535. [PMID: 32072070 PMCID: PMC7013164 DOI: 10.1016/j.conctc.2020.100535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco harm reduction strategies aim to substitute smoking with potentially reduced risk products (PRRPs) such as e-cigarettes and tobacco-heating products (THPs). The health benefits of switching from smoking to PRRPs is unknown. A randomised controlled trial is being conducted to increase understanding of the health effects of switching from smoking to a THP in a 12-month long ambulatory study (ISRCTN81075760). Here we describe the study endpoints and the statistical analysis plan. Endpoints are divided into biomarkers of exposure (BoE) to tobacco smoke constituents and health effect indicators related to risk of lung cancer, cardiovascular and obstructive lung disease. These have been selected on the basis of extensive literature evidence. Three primary endpoints, augmentation index (risk factor for cardiovascular disease), total NNAL (linked to lung cancer) and 8-Epi-PGF2α type III (indicator of oxidative stress linked to various diseases), and multiple secondary endpoints will be analysed at 90, 180, and 360 days. Changes from baseline will be compared between study arms by specific contrasts in mixed models. Study wise multiple comparisons adjustments will be performed to account for multiplicity of timepoints and comparisons within timepoints. Generalisability of outcomes will be tested by a sensitivity analysis adjusting for age and gender. Importantly, an ancillary analysis will be performed to assess product compliance during the study based on plasma levels of CEVal, a surrogate marker for acrylonitrile exposure. The rationale underlying the selection of BoEs and health effect indicators, coupled with the statistical analysis plan will be central to understanding the potential health effects of replacing smoking with THP use for one year.
Collapse
Affiliation(s)
- Oscar M. Camacho
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Hedge
- Covance Clinical Research Unit Ltd, Springfield House, Hyde Street, Leeds, Yorkshire, LS2 9LH, UK
| | - Frazer Lowe
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nik Newland
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Mike McEwan
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Christopher Proctor
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
21
|
Ishikawa S, Matsumura K, Kitamura N, Ishimori K, Takanami Y, Ito S. Application of a direct aerosol exposure system for the assessment of biological effects of cigarette smoke and novel tobacco product vapor on human bronchial epithelial cultures. Regul Toxicol Pharmacol 2018; 96:85-93. [PMID: 29730447 DOI: 10.1016/j.yrtph.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Recent advancements in in vitro exposure systems and cell culture technology enable direct exposure to cigarette smoke (CS) of human organotypic bronchial epithelial cultures. MucilAir organotypic bronchial epithelial cultures were exposed, using a Vitrocell exposure system, to mainstream aerosols from the 3R4F cigarette or from a recently developed novel tobacco vapor product (NTV). The exposure aerosol dose was controlled by dilution flow and the number of products smoked; there were five exposure conditions for 3R4F smoke and three for NTV vapor. The amount of nicotine delivered to the tissues under each condition was analyzed and that of the total particulate matter (TPM) was estimated using nicotine data. The nicotine dose was similar for the two products at the highest dose, but the estimated TPM levels from the NTV were 3.7 times the levels from the 3R4F. Following 3R4F smoke exposure, a dose dependent increase was observed in cytotoxicity, cytokine secretion, and differential gene expression. However, no changes were detected in these endpoints following NTV vapor exposure, suggesting the biological effects of NTV vapor are lower than those of conventional combustible CS. Our study design, which includes collection of biological data and dosimetry data, is applicable to assessing novel tobacco products.
Collapse
Affiliation(s)
- Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Nobumasa Kitamura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Yuichiro Takanami
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| |
Collapse
|
22
|
An approach to testing undiluted e-cigarette aerosol in vitro using 3D reconstituted human airway epithelium. Toxicol In Vitro 2018; 54:391-401. [PMID: 29355593 DOI: 10.1016/j.tiv.2018.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/13/2023]
Abstract
The data presented here show that to provide an estimate of the relative cytotoxicity and therefore potency of e-cigarettes, undiluted aerosol techniques can be used. With the emergence of electronic nicotine delivery systems, fit-for-purpose in vitro screening methods are required. Reconstituted 3D human airway epithelium, was exposed to undiluted aerosols at the air-liquid interface, using a Vitrocell VC 10. TEER, cilia beat frequency and cytotoxic responses were assessed. Using two smoking regimes (ISO and HCI) a 3R4F reference cigarette, produced IC50s of 5.2 and 2.1 min, 1458 ng/mL and 1640 ng/mL nicotine respectively. Using an open tank e-cigarette device, a full cytotoxicity dose-response curve was obtained giving an IC50 of 30 min with corresponding nicotine of 10,957 ng/mL, 6-14 times less cytotoxic than cigarette smoke. A commonly used e-liquid flavourant cinnamaldehyde and known skin sensitizer was added to the standard e-liquid formulation and used as an aerosolised positive control, at 0.1, 0.025, 0.01 and 0%, demonstrating a full dose response. The delivery of undiluted aerosols in vitro has resulted in increased method sensitivity, throughput and quantitative e-cigarette comparisons. A positive control aerosol generated from a 'safe' e-liquid benchmark can inform risk assessments on supportable levels of flavour ingredients.
Collapse
|