1
|
Shen Y, Zheng W, Hu J, Nichol H, Haacke EM. Susceptibility weighted MRI pinpoints spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Magn Reson Imaging 2022; 93:135-144. [PMID: 35973572 DOI: 10.1016/j.mri.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To find magnetic resonance imaging (MRI) precursors of spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats (SHRSP). METHOD SHRSP rats were used with both a low/high salt (n = 18 or 11) Japanese diet and salty drinking water to generate spontaneous intracerebral hemorrhage (ICH). Various MRI sequences, and in particular, susceptibility weighted imaging (SWI), were used and combined with a gadolinium (Gd) contrast agent or oxygen gas to identify the rupture of the blood brain barrier (BBB) and the temporal ICH. RESULTS Most rats developed hypertensive ICH stroke in the high salt group during the 10-13 week period compared to only one third of rats in the low salt group during the 14-18 week period. The location of stroke for both the low/high-salt groups was highest in the striatum (58%/43%), followed by the cortex (21%/30%). The edematous enhancement on T2 weighted (T2W) imaging or Gd based T1 weighted (Gd-T1W) imaging due to the ruptured BBB preceded the striatal hemorrhages seen on SWI. The most recent bleeds were observed on temporal SWI or on oxygen-enhanced SWI. The mode of the volume of bleeds was 0.4 mm3. A positive correlation between susceptibility x volume and R2* x volume of the bleeds was observed. CONCLUSIONS SHRSP rats with the high salt diet effectively generated a hypertensive hemorrhagic stroke which could be monitored by various MRI sequences. The venous dilation on SWI may precede any abnormality on T2W or Gd-T1W imaging. The edematous enhancement on T2W or Gd-T1W indicated a BBB breakdown that may precede striatal ICH by several days. This suggests the need for immediate treatment to improve outcome if this finding is observed. The use of oxygen with SWI was able to help differentiate old bleeds from very recent bleeds.
Collapse
Affiliation(s)
- Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI, United States.
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, United States.
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States.
| | - Helen Nichol
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States; Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
2
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Quantitative susceptibility mapping as an imaging biomarker for Alzheimer’s disease: The expectations and limitations. Front Neurosci 2022; 16:938092. [PMID: 35992906 PMCID: PMC9389285 DOI: 10.3389/fnins.2022.938092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a distressing diagnosis for individuals and caregivers. Researchers and clinical trials have mainly focused on β-amyloid plaques, which are hypothesized to be one of the most important factors for neurodegeneration in AD. Meanwhile, recent clinicopathological and radiological studies have shown closer associations of tau pathology rather than β-amyloid pathology with the onset and progression of Alzheimer’s symptoms. Toward a biological definition of biomarker-based research framework for AD, the 2018 National Institute on Aging–Alzheimer’s Association working group has updated the ATN classification system for stratifying disease status in accordance with relevant pathological biomarker profiles, such as cerebral β-amyloid deposition, hyperphosphorylated tau, and neurodegeneration. In addition, altered iron metabolism has been considered to interact with abnormal proteins related to AD pathology thorough generating oxidative stress, as some prior histochemical and histopathological studies supported this iron-mediated pathomechanism. Quantitative susceptibility mapping (QSM) has recently become more popular as a non-invasive magnetic resonance technique to quantify local tissue susceptibility with high spatial resolution, which is sensitive to the presence of iron. The association of cerebral susceptibility values with other pathological biomarkers for AD has been investigated using various QSM techniques; however, direct evidence of these associations remains elusive. In this review, we first briefly describe the principles of QSM. Second, we focus on a large variety of QSM applications, ranging from common applications, such as cerebral iron deposition, to more recent applications, such as the assessment of impaired myelination, quantification of venous oxygen saturation, and measurement of blood– brain barrier function in clinical settings for AD. Third, we mention the relationships among QSM, established biomarkers, and cognitive performance in AD. Finally, we discuss the role of QSM as an imaging biomarker as well as the expectations and limitations of clinically useful diagnostic and therapeutic implications for AD.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Yuto Uchida,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Noriyuki Matsukawa,
| |
Collapse
|
3
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Tham M, Frischer JM, Weigand SD, Fitz-Gibbon PD, Webb SM, Guo Y, Adiele RC, Robinson CA, Brück W, Lassmann H, Furber KL, Pushie MJ, Parisi JE, Lucchinetti CF, Popescu BF. Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. Ann Neurol 2020; 89:498-510. [PMID: 33244761 PMCID: PMC7986227 DOI: 10.1002/ana.25974] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.
Collapse
Affiliation(s)
- Mylyne Tham
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Josa M Frischer
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Stephen D Weigand
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick D Fitz-Gibbon
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yong Guo
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reginald C Adiele
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher A Robinson
- Department of Pathology and Laboratory Medicine, Saskatoon Health Region/College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wolfgang Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Kendra L Furber
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Bogdan F Popescu
- Department of Anatomy, Physiology, and Pharmacology/Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Wang C, Foxley S, Ansorge O, Bangerter-Christensen S, Chiew M, Leonte A, Menke RA, Mollink J, Pallebage-Gamarallage M, Turner MR, Miller KL, Tendler BC. Methods for quantitative susceptibility and R2* mapping in whole post-mortem brains at 7T applied to amyotrophic lateral sclerosis. Neuroimage 2020; 222:117216. [PMID: 32745677 PMCID: PMC7775972 DOI: 10.1016/j.neuroimage.2020.117216] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Susceptibility weighted magnetic resonance imaging (MRI) is sensitive to the local concentration of iron and myelin. Here, we describe a robust image processing pipeline for quantitative susceptibility mapping (QSM) and R2* mapping of fixed post-mortem, whole-brain data. Using this pipeline, we compare the resulting quantitative maps in brains from patients with amyotrophic lateral sclerosis (ALS) and controls, with validation against iron and myelin histology. Twelve post-mortem brains were scanned with a multi-echo gradient echo sequence at 7T, from which susceptibility and R2* maps were generated. Semi-quantitative histological analysis for ferritin (the principal iron storage protein) and myelin proteolipid protein was performed in the primary motor, anterior cingulate and visual cortices. Magnetic susceptibility and R2* values in primary motor cortex were higher in ALS compared to control brains. Magnetic susceptibility and R2* showed positive correlations with both myelin and ferritin estimates from histology. Four out of nine ALS brains exhibited clearly visible hyperintense susceptibility and R2* values in the primary motor cortex. Our results demonstrate the potential for MRI-histology studies in whole, fixed post-mortem brains to investigate the biophysical source of susceptibility weighted MRI signals in neurodegenerative diseases like ALS.
Collapse
Affiliation(s)
- Chaoyue Wang
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom.
| | - Sean Foxley
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Radiology, University of Chicago, United States
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Sarah Bangerter-Christensen
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Brigham Young University, Provo, United States
| | - Mark Chiew
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Anna Leonte
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; University of Groningen,the Netherlands
| | - Ricarda Al Menke
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Jeroen Mollink
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, the Netherlands
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Karla L Miller
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Benjamin C Tendler
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| |
Collapse
|
6
|
De Barros A, Arribarat G, Combis J, Chaynes P, Péran P. Matching ex vivo MRI With Iron Histology: Pearls and Pitfalls. Front Neuroanat 2019; 13:68. [PMID: 31333421 PMCID: PMC6616088 DOI: 10.3389/fnana.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron levels in the brain can be estimated using newly developed specific magnetic resonance imaging (MRI) sequences. This technique has several applications, especially in neurodegenerative disorders like Alzheimer's disease or Parkinson's disease. Coupling ex vivo MRI with histology allows neuroscientists to better understand what they see in the images. Iron is one of the most extensively studied elements, both by MRI and using histological or physical techniques. Researchers were initially only able to make visual comparisons between MRI images and different types of iron staining, but the emergence of specific MRI sequences like R2* or quantitative susceptibility mapping meant that quantification became possible, requiring correlations with physical techniques. Today, with advances in MRI and image post-processing, it is possible to look for MRI/histology correlations by matching the two sorts of images. For the result to be acceptable, the choice of methodology is crucial, as there are hidden pitfalls every step of the way. In order to review the advantages and limitations of ex vivo MRI correlation with iron-based histology, we reviewed all the relevant articles dealing with the topic in humans. We provide separate assessments of qualitative and quantitative studies, and after summarizing the significant results, we emphasize all the pitfalls that may be encountered.
Collapse
Affiliation(s)
- Amaury De Barros
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Jeanne Combis
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| | - Patrick Chaynes
- Department of Anatomy, Toulouse Faculty of Medicine, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center, University of Toulouse Paul Sabatier-INSERM, Toulouse, France
| |
Collapse
|
7
|
Wowk S, Fagan KJ, Ma Y, Nichol H, Colbourne F. Examining potential side effects of therapeutic hypothermia in experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2017; 37:2975-2986. [PMID: 27899766 PMCID: PMC5536807 DOI: 10.1177/0271678x16681312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022]
Abstract
Studies treating intracerebral hemorrhage (ICH) with therapeutic hypothermia (TH) have shown inconsistent benefits. We hypothesized that TH's anti-inflammatory effects may be responsible as inflammatory cells are essential for removing degrading erythrocytes. Here, we subjected rats to a collagenase-induced striatal ICH followed by whole-body TH (∼33℃ for 11-72 h) or normothermia. We used X-ray fluorescence imaging to spatially quantify total and peri-hematoma iron three days post-injury. At three and seven days, we measured non-heme iron levels. Finally, hematoma volume was quantified on one, three, and seven days. In the injured hemisphere, total iron levels were elevated ( p < 0.001) with iron increasing in the peri-hematoma region ( p = 0.007). Non-heme iron increased from three to seven days (p < 0.001). TH had no effect on any measure of iron ( p ≥ 0.479). At one and three days, TH did not affect hematoma volume ( p ≥ 0.264); however, at seven days there was a four-fold increase in hematoma volume in 40% of treated animals ( p = 0.032). Thus, even when TH does not interfere with initial increases in total and non-heme iron or its containment, TH can cause re-bleeding post-treatment. This serious complication could partly account for the intermittent protection previously observed. This also raises serious concerns for clinical usage of TH for ICH.
Collapse
Affiliation(s)
- Shannon Wowk
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly J Fagan
- Department of Biology, MacEwan University, Edmonton, Canada
| | - Yonglie Ma
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
| | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Popescu BF, Frischer JM, Webb SM, Tham M, Adiele RC, Robinson CA, Fitz-Gibbon PD, Weigand SD, Metz I, Nehzati S, George GN, Pickering IJ, Brück W, Hametner S, Lassmann H, Parisi JE, Yong G, Lucchinetti CF. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol 2017; 134:45-64. [PMID: 28332093 PMCID: PMC5486634 DOI: 10.1007/s00401-017-1696-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distribution of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.
Collapse
Affiliation(s)
- Bogdan F Popescu
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada.
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada.
| | - Josa M Frischer
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mylyne Tham
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada
| | - Reginald C Adiele
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 701 Queen Street, Saskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, 701 Queen Street, Saskatoon City Hospital, Rm 5800, Saskatoon, SK, S7K 0M7, Canada
| | - Christopher A Robinson
- Department of Pathology and Laboratory Medicine, Saskatoon Health Region/College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patrick D Fitz-Gibbon
- Department of Health Sciences Research, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - Imke Metz
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Susan Nehzati
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Graham N George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
- Toxicology Center, University of Saskatchewan, Saskatoon, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
- Toxicology Center, University of Saskatchewan, Saskatoon, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guo Yong
- Department of Neurology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Claudia F Lucchinetti
- Department of Neurology, Mayo Clinic, College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Williamson MR, Dietrich K, Hackett MJ, Caine S, Nadeau CA, Aziz JR, Nichol H, Paterson PG, Colbourne F. Rehabilitation Augments Hematoma Clearance and Attenuates Oxidative Injury and Ion Dyshomeostasis After Brain Hemorrhage. Stroke 2016; 48:195-203. [PMID: 27899761 DOI: 10.1161/strokeaha.116.015404] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 09/10/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We assessed the elemental and biochemical effects of rehabilitation after intracerebral hemorrhage, with emphasis on iron-mediated oxidative stress, using a novel multimodal biospectroscopic imaging approach. METHODS Collagenase-induced striatal hemorrhage was produced in rats that were randomized to enriched rehabilitation or control intervention starting on day 7. Animals were euthanized on day 14 or 21, a period of ongoing cell death. We used biospectroscopic imaging techniques to precisely determine elemental and molecular changes on day 14. Hemoglobin content was assessed with resonance Raman spectroscopy. X-ray fluorescence imaging mapped iron, chlorine, potassium, calcium, and zinc. Protein aggregation, a marker of oxidative stress, and the distribution of other macromolecules were assessed with Fourier transform infrared imaging. A second study estimated hematoma volume with a spectrophotometric assay at 21 days. RESULTS In the first experiment, rehabilitation reduced hematoma hemoglobin content (P=0.004) and the amount of peri-hematoma iron (P<0.001). Oxidative damage was highly localized at the hematoma/peri-hematoma border and was decreased by rehabilitation (P=0.004). Lipid content in the peri-hematoma zone was increased by rehabilitation (P=0.016). Rehabilitation reduced the size of calcium deposits (P=0.040) and attenuated persistent dyshomeostasis of Cl- (P<0.001) but not K+ (P=0.060). The second study confirmed that rehabilitation decreased hematoma volume (P=0.024). CONCLUSIONS Rehabilitation accelerated clearance of toxic blood components and decreased chronic oxidative stress. As well, rehabilitation attenuated persistent ion dyshomeostasis. These novel effects may underlie rehabilitation-induced neuroprotection and improved recovery of function. Pharmacotherapies targeting these mechanisms may further improve outcome.
Collapse
Affiliation(s)
- Michael R Williamson
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Kristen Dietrich
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Mark J Hackett
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Sally Caine
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Colby A Nadeau
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Jasmine R Aziz
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Helen Nichol
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Phyllis G Paterson
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada
| | - Frederick Colbourne
- From the Neuroscience and Mental Health Institute (M.R.W., K.D., F.C.) and Department of Psychology (C.A.N., J.R.A., F.C.), University of Alberta, Edmonton, Canada; and Molecular and Environmental Sciences Group, Department of Geological Sciences (M.J.H.), Department of Anatomy and Cell Biology (S.C., H.N.), and College of Pharmacy and Nutrition (S.C., P.G.P.), University of Saskatchewan, Canada.
| |
Collapse
|
10
|
Alaverdashvili M, Paterson PG. Mapping the dynamics of cortical neuroplasticity of skilled motor learning using micro X-ray fluorescence and histofluorescence imaging of zinc in the rat. Behav Brain Res 2016; 318:52-60. [PMID: 27840249 DOI: 10.1016/j.bbr.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 11/26/2022]
Abstract
Synchrotron-based X-ray fluorescence imaging (XFI) of zinc (Zn) has been recently implemented to understand the efficiency of various therapeutic interventions targeting post-stroke neuroprotection and neuroplasticity. However, it is uncertain if micro XFI can resolve neuroplasticity-induced changes. Thus, we explored if learning-associated behavioral changes would be accompanied by changes in cortical Zn concentration measured by XFI in healthy adult rats. Proficiency in a skilled reach-to-eat task during early and late stages of motor learning served as a functional measure of neuroplasticity. c-Fos protein and vesicular Zn expression were employed as indirect neuronal measures of brain plasticity. A total Zn map (20×20×30μm3 resolution) generated by micro XFI failed to reflect increases in either c-Fos or vesicular Zn in the motor cortex contralateral to the trained forelimb or improved proficiency in the skilled reaching task. Remarkably, vesicular Zn increased in the late stage of motor learning along with a concurrent decrease in the number of c-fos-ip neurons relative to the early stage of motor learning. This inverse dynamics of c-fos and vesicular Zn level as the motor skill advances suggest that a qualitatively different neural population, comprised of fewer active but more efficiently connected neurons, supports a skilled action in the late versus early stage of motor learning. The lack of sensitivity of the XFI-generated Zn map to visualize the plasticity-associated changes in vesicular Zn suggests that the Zn level measured by micro XFI should not be used as a surrogate marker of neuroplasticity in response to the acquisition of skilled motor actions. Nanoscopic XFI could be explored in future as a means of imaging these subtle physiological changes.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Cluster, Saskatoon, SK, S7N 5E5, Canada; College of Pharmacy and Nutrition, Saskatoon, SK, S7N 5E5, Canada; College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| | - Phyllis G Paterson
- Neuroscience Research Cluster, Saskatoon, SK, S7N 5E5, Canada; College of Pharmacy and Nutrition, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
11
|
Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2014; 33:1-25. [PMID: 25267705 DOI: 10.1016/j.mri.2014.09.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 01/13/2023]
Abstract
Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps. We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.
| | - Saifeng Liu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sagar Buch
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Weili Zheng
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
House MJ, Fleming AJ, de Jonge MD, Paterson D, Howard DL, Carpenter JP, Pennell DJ, St Pierre TG. Mapping iron in human heart tissue with synchrotron x-ray fluorescence microscopy and cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:80. [PMID: 25270330 PMCID: PMC4177424 DOI: 10.1186/s12968-014-0080-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MRI assessment of cardiac iron is particularly important for assessing transfusion-dependent anaemia patients. However, comparing the iron distribution from histology or bulk samples to MRI is not ideal. Non-destructive, high-resolution imaging of post-mortem samples offers the ability to examine iron distributions across large samples at resolutions closer to those used in MRI. The aim of this ex vivo case study was to compare synchrotron X-ray fluorescence microscopy (XFM) elemental iron maps with magnetic resonance transverse relaxation rate maps of cardiac tissue samples from an iron-loaded patient. METHODS Two 5 mm thick slices of formalin fixed cardiac tissue from a Diamond Blackfan anaemia patient were imaged in a 1.5 T MR scanner. R2 and R2* transverse relaxation rate maps were generated for both slices using RF pulse recalled spin echo and gradient echo acquisition sequences. The tissue samples were then imaged at the Australian Synchrotron on the X-ray Fluorescence Microscopy beamline using a focussed incident X-ray beam of 18.74 keV and the Maia 384 detector. The event data were analyzed to produce elemental iron maps (uncalibrated) at 25 to 60 microns image resolution. RESULTS The R2 and R2* maps and profiles for both samples showed very similar macro-scale spatial patterns compared to the XFM iron distribution. Iron appeared to preferentially load into the lateral epicardium wall and there was a strong gradient of decreasing iron, R2 and R2* from the epicardium to the endocardium in the lateral wall of the left ventricle and to a lesser extent in the septum. On co-registered images XFM iron was more strongly correlated to R2* (r = 0.86) than R2 (r = 0.79). There was a strong linear relationship between R2* and R2 (r = 0.87). CONCLUSIONS The close qualitative and quantitative agreement between the synchrotron XFM iron maps and MR relaxometry maps indicates that iron is a significant determinant of R2 and R2* in these ex vivo samples. The R2 and R2* maps of human heart tissue give information on the spatial distribution of tissue iron deposits.
Collapse
Affiliation(s)
- Michael J House
- />School of Physics, The University of Western Australia, Crawley, Western Australia Australia
| | - Adam J Fleming
- />School of Physics, The University of Western Australia, Crawley, Western Australia Australia
| | | | | | | | - John-Paul Carpenter
- />NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- />Imperial College, London, UK
| | - Dudley J Pennell
- />NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- />Imperial College, London, UK
| | - Tim G St Pierre
- />School of Physics, The University of Western Australia, Crawley, Western Australia Australia
| |
Collapse
|
13
|
Zheng W, Nichol H, Liu S, Cheng YCN, Haacke EM. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage 2013; 78:68-74. [PMID: 23591072 DOI: 10.1016/j.neuroimage.2013.04.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 01/25/2023] Open
Abstract
Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10±0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content.
Collapse
Affiliation(s)
- Weili Zheng
- HUH-MR Research/Radiology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|