1
|
Lancione M, Cencini M, Scaffei E, Cipriano E, Buonincontri G, Schulte RF, Pirkl CM, Buchignani B, Pasquariello R, Canapicchi R, Battini R, Biagi L, Tosetti M. Magnetic resonance fingerprinting-based myelin water fraction mapping for the assessment of white matter maturation and integrity in typical development and leukodystrophies. NMR IN BIOMEDICINE 2024; 37:e5114. [PMID: 38390667 DOI: 10.1002/nbm.5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.
Collapse
Affiliation(s)
| | - Matteo Cencini
- Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy
| | | | - Emilio Cipriano
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Physics, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | - Roberta Battini
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, Università di Pisa, Pisa, Italy
| | | | | |
Collapse
|
2
|
Morris S, Swift-LaPointe T, Yung A, Prevost V, George S, Bauman A, Kozlowski P, Samadi-Bahrami Z, Fournier C, Mattu PS, Parker L, Streijger F, Hirsch-Reinshagen V, Moore GRW, Kwon BK, Laule C. Advanced Magnetic Resonance Imaging Biomarkers of the Injured Spinal Cord: A Comparative Study of Imaging and Histology in Human Traumatic Spinal Cord Injury. J Neurotrauma 2024; 41:1223-1239. [PMID: 38318802 DOI: 10.1089/neu.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.
Collapse
Affiliation(s)
- Sarah Morris
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Taylor Swift-LaPointe
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Valentin Prevost
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Shana George
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Andrew Bauman
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- UBC MRI Research Centre, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Zahra Samadi-Bahrami
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Caron Fournier
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | | | - Lisa Parker
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Veronica Hirsch-Reinshagen
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - G R Wayne Moore
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Vancouver, British Columbia, Canada
- Orthopaedics, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), Departments of University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Physics and Astronomy, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Radiology, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Shultz RB, Hai N, Zhong Y. Local delivery of AdipoRon from self-assembled microparticles to inhibit myelin lipid uptake and to promote lipid efflux from rat macrophages. J Neural Eng 2024; 21:016028. [PMID: 38359460 DOI: 10.1088/1741-2552/ad29d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective.Abundant lipid-laden macrophages are found at the injury site after spinal cord injury (SCI). These cells have been suggested to be pro-inflammatory and neurotoxic. AdipoRon, an adiponectin receptor agonist, has been shown to promote myelin lipid efflux from mouse macrophage foam cells. While it is an attractive therapeutic strategy, systemic administration of AdipoRon is likely to exert off-target effects. In addition, the pathophysiology after SCI in mice is different from that in humans, whereas rat and human SCI share similar functional and histological outcomes. In this study, we evaluated the effects of AdipoRon on rat macrophage foam cells and developed a drug delivery system capable of providing sustained local release of AdipoRon to the injured spinal cord.Approach.Rat macrophages were treated with myelin debris to generate anin vitromodel of SCI foam cells, and the effects of AdipoRon treatment on myelin uptake and efflux were studied. AdipoRon was then loaded into and released from microparticles made from dextran sulfate and fibrinogen for sustained release.Main results.AdipoRon treatment not only significantly promotes efflux of metabolized myelin lipids, but also inhibits uptake of myelin debris. Myelin debris alone does not appear to be inflammatory, but myelin debris treatment potentiates inflammation when administered along with pro-inflammatory lipopolysaccharide (LPS) and interferon-γ. AdipoRon significantly attenuated myelin lipid-induced potentiation of inflammation. Bioactive AdipoRon can be released in therapeutic doses from microparticles.Significance.These data suggest that AdipoRon is a promising therapeutic capable of reducing lipid accumulation via targeting both myelin lipid uptake and efflux, which potentially addresses chronic inflammation following SCI. Furthermore, we developed microparticle-based drug delivery systems for local delivery of AdipoRon to avoid deleterious side effects. This is the first study to release AdipoRon from drug delivery systems designed to reduce lipid accumulation and inflammation in reactive macrophages after SCI.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Nan Hai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| |
Collapse
|
4
|
Wu C, Shi L, Ma Y, Pan Y, Wang L, Chen S, Zhang Y, Wang J, Liu M, Guo Y. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett 2023:137345. [PMID: 37308055 DOI: 10.1016/j.neulet.2023.137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
5
|
Yao F, Luo Y, Chen Y, Li Y, Hu X, You X, Li Z, Yu S, Tian D, Zheng M, Cheng L, Jing J. Myelin Debris Impairs Tight Junctions and Promotes the Migration of Microvascular Endothelial Cells in the Injured Spinal Cord. Cell Mol Neurobiol 2023; 43:741-756. [PMID: 35147836 DOI: 10.1007/s10571-022-01203-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Clearance of myelin debris caused by acute demyelination is an essential process for functional restoration following spinal cord injury (SCI). Microvascular endothelial cells, acting as "amateur" phagocytes, have been confirmed to engulf and degrade myelin debris, promoting the inflammatory response, robust angiogenesis, and persistent fibrosis. However, the effect of myelin debris engulfment on the function of endothelial tight junctions (TJs) remains unclear. Here, we demonstrate that myelin debris uptake impairs TJs and gap junctions of endothelial cells in the lesion core of the injured spinal cord and in vitro, resulting in increased permeability and leakage. We further show that myelin debris acts as an inducer to regulate the endothelial-to-mesenchymal transition in a dose-dependent manner and promotes endothelial cell migration through the PI3K/AKT and ERK signaling pathways. Together, our results indicate that myelin debris engulfment impairs TJs and promotes the migration of endothelial cells. Accelerating myelin debris clearance may help maintain blood-spinal cord barrier integrity, thus facilitating restoration of motor and sensory function following SCI.
Collapse
Affiliation(s)
- Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xingyu You
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Rahmanzadeh R, Weigel M, Lu PJ, Melie-Garcia L, Nguyen TD, Cagol A, La Rosa F, Barakovic M, Lutti A, Wang Y, Bach Cuadra M, Radue EW, Gaetano L, Kappos L, Kuhle J, Magon S, Granziera C. A comparative assessment of myelin-sensitive measures in multiple sclerosis patients and healthy subjects. Neuroimage Clin 2022; 36:103177. [PMID: 36067611 PMCID: PMC9468574 DOI: 10.1016/j.nicl.2022.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a common neurological disease primarily characterized by myelin damage in lesions and in normal - appearing white and gray matter (NAWM, NAGM). Several quantitative MRI (qMRI) methods are sensitive to myelin characteristics by measuring specific tissue biophysical properties. However, there are currently few studies assessing the relative reproducibility and sensitivity of qMRI measures to MS pathology in vivo in patients. METHODS We performed two studies. The first study assessed of the sensitivity of qMRI measures to MS pathology: in this work, we recruited 150 MS and 100 healthy subjects, who underwent brain MRI at 3 T including quantitative T1 mapping (qT1), quantitative susceptibility mapping (QSM), magnetization transfer saturation imaging (MTsat) and myelin water imaging for myelin water fraction (MWF). The sensitivity of qMRIs to MS focal pathology (MS lesions vs peri-plaque white/gray matter (PPWM/PPGM)) was studied lesion-wise; the sensitivity to diffuse normal appearing (NA) pathology was measured using voxel-wise threshold-free cluster enhancement (TFCE) in NAWM and vertex-wise inflated cortex analysis in NAGM. Furthermore, the sensitivity of qMRI to the identification of lesion tissue was investigated using a voxel-wise logistic regression analysis to distinguish MS lesion and PP voxels. The second study assessed the reproducibility of myelin-sensitive qMRI measures in a single scanner. To evaluate the intra-session and inter-session reproducibility of qMRI measures, we have investigated 10 healthy subjects, who underwent two brain 3 T MRIs within the same day (without repositioning), and one after 1-week interval. Five region of interest (ROIs) in white and deep grey matter areas were segmented, and inter- and intra- session reproducibility was studied using the intra-class correlation coefficient (ICC). Further, we also investigated the voxel-wise reproducibility of qMRI measures in NAWM and NAGM. RESULTS qT1 and QSM showed the highest sensitivity to distinguish MS focal WM and cortical pathology from peri-plaque WM (P < 0.0001), although QSM also showed the highest variance when applied to lesions. MWF and MTsat exhibited the highest sensitivity to NAWM pathology (P < 0.01). On the other hand, qT1 appeared to be the most sensitive measure to NAGM pathology (P < 0.01). All myelin-sensitive qMRI measures exhibited high inter/intra sessional ICCs in various WM and deep GM ROIs, in NAWM and in NAGM (ICC 0.82 ± 0.12). CONCLUSION This work shows that the applied qT1, MWF, MTsat and QSM are highly reproducible and exhibit differential sensitivity to focal and diffuse WM and GM pathology in MS patients.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Alessandro Cagol
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CIBM Center for Biomedical Imaging, Lausanne, Switzerland,Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CIBM Center for Biomedical Imaging, Lausanne, Switzerland,Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland,Corresponding author.
| |
Collapse
|
7
|
Rahmanzadeh R, Galbusera R, Lu PJ, Bahn E, Weigel M, Barakovic M, Franz J, Nguyen TD, Spincemaille P, Schiavi S, Daducci A, La Rosa F, Absinta M, Sati P, Cuadra MB, Radue EW, Leppert D, Kuhle J, Kappos L, Brück W, Reich DS, Stadelmann C, Wang Y, Granziera C. A new advanced MRI biomarker for remyelinated lesions in Multiple Sclerosis. Ann Neurol 2022; 92:486-502. [PMID: 35713309 PMCID: PMC9527017 DOI: 10.1002/ana.26441] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Objectives Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS. Methods We performed 3 studies: (1) a cross‐sectional study in a prospective cohort of 115 patients with MS and 76 healthy controls, who underwent 3 T magnetic resonance imaging (MRI) for quantitative susceptibility mapping (QSM), myelin water fraction (MWF), and neurite density index (NDI) maps. White matter (WM) lesions in QSM were classified into 5 QSM lesion types (iso‐intense, hypo‐intense, hyperintense, lesions with hypo‐intense rims, and lesions with paramagnetic rim legions [PRLs]); (2) a longitudinal study of 40 patients with MS to study the evolution of lesions over 2 years; (3) a postmortem histopathology‐QSM validation study in 3 brains of patients with MS to assess the accuracy of QSM classification to identify neuropathological lesion types in 63 WM lesions. Results At baseline, hypo‐ and isointense lesions showed higher mean MWF and NDI values compared to other QSM lesion types (p < 0.0001). Further, at 2‐year follow‐up, hypo‐/iso‐intense lesions showed an increase in MWF. Postmortem analyses revealed that QSM highly accurately identifies (1) fully remyelinated areas as hypo‐/iso‐intense (sensitivity = 88.89% and specificity = 100%), (2) chronic inactive lesions as hyperintense (sensitivity = 71.43% and specificity = 92.00%), and (3) chronic active/smoldering lesions as PRLs (sensitivity = 92.86% and specificity = 86.36%). Interpretation These results provide the first evidence that it is possible to distinguish chronic MS lesions in a clinical setting, hereby supporting with new biomarkers to develop and assess remyelinating treatments. ANN NEUROL 2022;92:486–502
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Erik Bahn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jonas Franz
- Institute of Neuropathology, University Medical Center, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University and Hospital, Milan, Italy
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive MSC 1400, Building 10 Room 5C103, Bethesda, Maryland, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Medical Image Analysis Laboratory (MIAL), Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, 10 Center Drive MSC 1400, Building 10 Room 5C103, Bethesda, Maryland, USA
| | | | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Luo Y, Yao F, Hu X, Li Y, Chen Y, Li Z, Zhu Z, Yu S, Tian D, Cheng L, Zheng M, Jing J. M1 macrophages impair tight junctions between endothelial cells after spinal cord injury. Brain Res Bull 2022; 180:59-72. [PMID: 34995751 DOI: 10.1016/j.brainresbull.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITC-dextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL-6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Zhenyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China; School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| |
Collapse
|
9
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
10
|
Russell-Schulz B, Vavasour IM, Zhang J, MacKay AL, Purcell V, Muller AM, Brucar LR, Torres IJ, Panenka WJ, Virji-Babul N. Myelin water fraction decrease in individuals with chronic mild traumatic brain injury and persistent symptoms. Heliyon 2021; 7:e06709. [PMID: 33898831 PMCID: PMC8056430 DOI: 10.1016/j.heliyon.2021.e06709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
The diffuse and continually evolving secondary changes after mild traumatic brain injury (mTBI) make it challenging to assess alterations in brain-behaviour relationships. In this study we used myelin water imaging to evaluate changes in myelin water fraction (MWF) in individuals with chronic mTBI and persistent symptoms and measured their cognitive status using the NIH Toolbox Cognitive Battery. Fifteen adults with mTBI with persistent symptoms and twelve age, gender and education matched healthy controls took part in this study. We found a significant decrease in global white matter MWF in patients compared to the healthy controls. Significantly lower MWF was evident in most white matter region of interest (ROIs) examined including the corpus callosum (separated into genu, body and splenium), minor forceps, right anterior thalamic radiation, left inferior longitudinal fasciculus; and right and left superior longitudinal fasciculus and corticospinal tract. Although patients showed lower cognitive functioning, no significant correlations were found between MWF and cognitive measures. These results suggest that individuals with chronic mTBI who have persistent symptoms have reduced MWF.
Collapse
Affiliation(s)
- Bretta Russell-Schulz
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Irene M. Vavasour
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Zhang
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alex L. MacKay
- UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Victoria Purcell
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Angela M. Muller
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leyla R. Brucar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J. Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - William J. Panenka
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Rahmanzadeh R, Lu PJ, Barakovic M, Weigel M, Maggi P, Nguyen TD, Schiavi S, Daducci A, La Rosa F, Schaedelin S, Absinta M, Reich DS, Sati P, Wang Y, Bach Cuadra M, Radue EW, Kuhle J, Kappos L, Granziera C. Myelin and axon pathology in multiple sclerosis assessed by myelin water and multi-shell diffusion imaging. Brain 2021; 144:1684-1696. [PMID: 33693571 PMCID: PMC8374972 DOI: 10.1093/brain/awab088] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022] Open
Abstract
Damage to the myelin sheath and the neuroaxonal unit is a cardinal feature of multiple sclerosis; however, a detailed characterization of the interaction between myelin and axon damage in vivo remains challenging. We applied myelin water and multi-shell diffusion imaging to quantify the relative damage to myelin and axons (i) among different lesion types; (ii) in normal-appearing tissue; and (iii) across multiple sclerosis clinical subtypes and healthy controls. We also assessed the relation of focal myelin/axon damage with disability and serum neurofilament light chain as a global biological measure of neuroaxonal damage. Ninety-one multiple sclerosis patients (62 relapsing-remitting, 29 progressive) and 72 healthy controls were enrolled in the study. Differences in myelin water fraction and neurite density index were substantial when lesions were compared to healthy control subjects and normal-appearing multiple sclerosis tissue: both white matter and cortical lesions exhibited a decreased myelin water fraction and neurite density index compared with healthy (P < 0.0001) and peri-plaque white matter (P < 0.0001). Periventricular lesions showed decreased myelin water fraction and neurite density index compared with lesions in the juxtacortical region (P < 0.0001 and P < 0.05). Similarly, lesions with paramagnetic rims showed decreased myelin water fraction and neurite density index relative to lesions without a rim (P < 0.0001). Also, in 75% of white matter lesions, the reduction in neurite density index was higher than the reduction in the myelin water fraction. Besides, normal-appearing white and grey matter revealed diffuse reduction of myelin water fraction and neurite density index in multiple sclerosis compared to healthy controls (P < 0.01). Further, a more extensive reduction in myelin water fraction and neurite density index in normal-appearing cortex was observed in progressive versus relapsing-remitting participants. Neurite density index in white matter lesions correlated with disability in patients with clinical deficits (P < 0.01, beta = -10.00); and neurite density index and myelin water fraction in white matter lesions were associated to serum neurofilament light chain in the entire patient cohort (P < 0.01, beta = -3.60 and P < 0.01, beta = 0.13, respectively). These findings suggest that (i) myelin and axon pathology in multiple sclerosis is extensive in both lesions and normal-appearing tissue; (ii) particular types of lesions exhibit more damage to myelin and axons than others; (iii) progressive patients differ from relapsing-remitting patients because of more extensive axon/myelin damage in the cortex; and (iv) myelin and axon pathology in lesions is related to disability in patients with clinical deficits and global measures of neuroaxonal damage.
Collapse
Affiliation(s)
- Reza Rahmanzadeh
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Pietro Maggi
- Department of Neurology, Lausanne University Hospital, Lausanne, Switzerland.,Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussel, Belgium
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | - Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Sabine Schaedelin
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Radiology Department, Center for Biomedical Imaging (CIBM), Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ernst-Wilhelm Radue
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Department of Medicine and Biomedical Engineering, Translational Imaging in Neurology Basel, University Hospital Basel and University of Basel, Basel, Switzerland.,Departments of Medicine, Clinical Research and Biomedical Engineering Neurologic Clinic and Policlinic, Switzerland, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
13
|
Wang S, Deng J, Fu H, Guo Z, Zhang L, Tang P. Astrocytes directly clear myelin debris through endocytosis pathways and followed by excessive gliosis after spinal cord injury. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30337-5. [PMID: 32070495 DOI: 10.1016/j.bbrc.2020.02.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Persisted myelin debris inhibit axon regeneration and contribute to further tissue damage after spinal cord injury (SCI). The traditional view is that myelin debris is mainly cleared by microglia and macrophages, while astrocytes cannot directly engulf myelin debris because they are absent from lesion core. Here, we definitely showed that astrocytes could directly uptake myelin debris both in vitro and in vivo to effectively complement the clearance function. Therefore, it can be shown that astrocytes can exert myelin clearance effect directly and indirectly after spinal cord injury. The damaged myelin debris was transported to lysosomes for degradation through endocytosis pathways, finally resulting in excessive gliosis. This process may be a potential target for regulating neural tissue repair and excessive glia scar formation after SCI.
Collapse
Affiliation(s)
- Song Wang
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Haitao Fu
- Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Zhongkui Guo
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China.
| | - Peifu Tang
- School of Medicine, Nankai University, Tianjin, China; Department of Orthopedics, The General Hospital of People's Liberation Army, Beijing, China.
| |
Collapse
|
14
|
Laule C, Moore GW. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 2018; 28:750-764. [PMID: 30375119 PMCID: PMC8028667 DOI: 10.1111/bpa.12645] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic resonance imaging (MRI) has revolutionized our ability to detect and monitor MS pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weightings that yield superb in vivo visualization of central nervous system tissue and have proved invaluable as diagnostic and patient management tools in MS. However, standard clinical MR methods are not specific to the types of tissue damage they visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise normal on conventional MRIs. Myelin water imaging is an MR method that provides in vivo measurement of myelin. Histological validation work in both human brain and spinal cord tissue demonstrates a strong correlation between myelin water and staining for myelin, validating myelin water as a marker for myelin. Myelin water varies throughout the brain and spinal cord in healthy controls, and shows good intra- and inter-site reproducibility. MS plaques show variably decreased myelin water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal study of myelin water can provide insights into the dynamics of demyelination and remyelination in plaques. Normal appearing brain and spinal cord tissues show reduced myelin water, an abnormality which becomes progressively more evident over a timescale of years. Diffusely abnormal white matter, which is evident in 20%-25% of MS patients, also shows reduced myelin water both in vivo and postmortem, and appears to originate from a primary lipid abnormality with relative preservation of myelin proteins. Active research is ongoing in the quest to refine our ability to image myelin and its perturbations in MS and other disorders of the myelin sheath.
Collapse
Affiliation(s)
- Cornelia Laule
- RadiologyUniversity of British ColumbiaVancouverBCCanada
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Physics & AstronomyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - G.R. Wayne Moore
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Medicine (Neurology)University of British ColumbiaVancouverBCCanada
| |
Collapse
|
15
|
Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res 2017; 96:969-977. [PMID: 28696010 DOI: 10.1002/jnr.24114] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement-mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review the processes by which myelin debris may be cleared through macrophage surface receptors and the complement system, how this differentially influences macrophage and microglial activation states, and how the cellular functions of these myelin macrophages and complement proteins contribute to chronic inflammation and secondary injury after SCI.
Collapse
Affiliation(s)
- Timothy J Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 2017; 652:3-10. [DOI: 10.1016/j.neulet.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
|
17
|
Chen HSM, Holmes N, Liu J, Tetzlaff W, Kozlowski P. Validating myelin water imaging with transmission electron microscopy in a rat spinal cord injury model. Neuroimage 2017; 153:122-130. [PMID: 28377211 DOI: 10.1016/j.neuroimage.2017.03.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022] Open
Abstract
Myelin content is an important marker for neuropathology and MRI generated myelin water fraction (MWF) has been shown to correlate well with myelin content. However, because MWF is based on the amount of signal from myelin water, that is, the water trapped between the myelin lipid bilayers, the reading may depend heavily on myelin morphology. This is of special concern when there is a mix of intact myelin and myelin debris, as in the case of injury. To investigate what MWF measures in the presence of debris, we compared MWF to transmission electron microscopy (TEM) derived myelin fraction that measures the amount of compact appearing myelin. A rat spinal cord injury model was used with time points at normal (normal myelin), 3 weeks post-injury (myelin debris), and 8 weeks post-injury (myelin debris, partially cleared). The myelin period between normal and 3 or 8 weeks post-injury cords did not differ significantly, suggesting that as long as the bilayer structure is intact, myelin debris has the same water content as intact myelin. The MWF also correlated strongly with the TEM-derived myelin fraction, suggesting that MWF measures the amount of compact appearing myelin in both intact myelin and myelin debris. From the TEM images, it appears that as myelin degenerates, it tends to form large watery spaces within the myelin sheaths that are not classified as myelin water. The results presented in this study improve our understanding and allows for better interpretation of MWF in the presence of myelin debris.
Collapse
Affiliation(s)
- Henry Szu-Meng Chen
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; University of British Columbia MRI Research Centre, Vancouver, Canada.
| | - Nathan Holmes
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada.
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Zoology, University of British Columbia, Vancouver, Canada.
| | - Piotr Kozlowski
- University of British Columbia MRI Research Centre, Vancouver, Canada; International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada; Department of Radiology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
18
|
Rougon G, Brasselet S, Debarbieux F. Advances in Intravital Non-Linear Optical Imaging of the Central Nervous System in Rodents. Brain Plast 2016; 2:31-48. [PMID: 29765847 PMCID: PMC5928564 DOI: 10.3233/bpl-160028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose of review: Highly coordinated cellular interactions occur in the healthy or pathologic adult rodent central nervous system (CNS). Until recently, technical challenges have restricted the analysis of these events to largely static modes of study such as immuno-fluorescence and electron microscopy on fixed tissues. The development of intravital imaging with subcellular resolution is required to probe the dynamics of these events in their natural context, the living brain. Recent findings: This review focuses on the recently developed live non-linear optical imaging modalities, the core principles involved, the identified technical challenges that limit their use and the scope of their applications. We highlight some practical applications for these modalities with a specific attention given to Experimental Autoimmune Encephalomyelitis (EAE), a rodent model of a chronic inflammatory disease of the CNS characterized by the formation of disseminated demyelinating lesions accompanied by axonal degeneration. Summary: We conclude that label-free nonlinear optical imaging combined to two photon imaging will continue to contribute richly to comprehend brain function and pathogenesis and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Geneviève Rougon
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France
| | - Franck Debarbieux
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| |
Collapse
|
19
|
Abstract
Myelin is critical for healthy brain function. An accurate in vivo measure of myelin content has important implications for understanding brain plasticity and neurodegenerative diseases. Myelin water imaging is a magnetic resonance imaging method which can be used to visualize myelination in the brain and spinal cord in vivo. This review presents an overview of myelin water imaging data acquisition and analysis, post-mortem validation work, findings in both animal and human studies and a brief discussion about other MR techniques purported to provide in vivo myelin content. Multi-echo T2 relaxation approaches continue to undergo development and whole-brain imaging time now takes less than 10 minutes; the standard analysis method for this type of data acquisition is a non-negative least squares approach. Alternate methods including the multi-flip angle gradient echo mcDESPOT are also being used for myelin water imaging. Histological validation studies in animal and human brain and spinal cord tissue demonstrate high specificity of myelin water imaging for myelin. Potential confounding factors for in vivo myelin water fraction measurement include the presence of myelin debris and magnetization exchange processes. Myelin water imaging has successfully been used to study animal models of injury, applied in healthy human controls and can be used to assess damage and injury in conditions such as multiple sclerosis, neuromyelitis optica, schizophrenia, phenylketonuria, neurofibromatosis, niemann pick’s disease, stroke and concussion. Other quantitative magnetic resonance approaches that are sensitive to, but not specific for, myelin exist including magnetization transfer, diffusion tensor imaging and T1 weighted imaging.
Collapse
Affiliation(s)
- Alex L MacKay
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Assessment of the myelin water fraction in rodent spinal cord using T2-prepared ultrashort echo time MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:875-884. [PMID: 27394911 DOI: 10.1007/s10334-016-0579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Multi-component T2 relaxation allows for assessing the myelin water fraction in nervous tissue, providing a surrogate marker for demyelination. The assessment of the number and distribution of different T2 components for devising exact models of tissue relaxation has been limited by T2 sampling with conventional MR methods. MATERIALS AND METHODS A T2-prepared UTE sequence was used to assess multicomponent T2 relaxation at 9.4 T of fixed mouse and rat spinal cord samples and of mouse spinal cord in vivo. For in vivo scans, a cryogenically cooled probe allowed for 78-µm resolution in 1-mm slices. Voxel-wise non-negative least square analysis was used to assess the number of myelin water-associated T2 components. RESULTS More than one myelin water-associated T2 component was detected in only 12 % of analyzed voxels in rat spinal cords and 6 % in mouse spinal cords, both in vivo and in vitro. However, myelin water-associated T2 values of individual voxels varied between 0.1 and 20 ms. While in fixed samples almost no components below 1 ms were identified, in vivo, these contributed 14 % of the T2 spectrum. No significant differences in MWF were observed in mouse spinal cord in vivo versus ex vivo measurements. CONCLUSION Voxel-wise analysis methods using relaxation models with one myelin water-associated T2 component are appropriate for assessing myelin content of nervous tissue.
Collapse
|
21
|
Talbott JF, Nout-Lomas YS, Wendland MF, Mukherjee P, Huie JR, Hess CP, Mabray MC, Bresnahan JC, Beattie MS. Diffusion-Weighted Magnetic Resonance Imaging Characterization of White Matter Injury Produced by Axon-Sparing Demyelination and Severe Contusion Spinal Cord Injury in Rats. J Neurotrauma 2016; 33:929-42. [PMID: 26483094 DOI: 10.1089/neu.2015.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alterations in magnetic resonance imaging (MRI)-derived measurements of water diffusion parallel (D∥) and perpendicular (D⊥) to white matter tracts have been specifically attributed to pathology of axons and myelin, respectively. We test the hypothesis that directional diffusion measurements can distinguish between axon-sparing chemical demyelination and severe contusion spinal cord white matter injury. Adult rats received either unilateral ethidium bromide (EB) microinjections (chemical demyelination) into the lateral funiculus of the spinal cord at C5 or were subjected to unilateral severe contusion spinal cord injury (SCI). Diffusion MRI metrics in the lateral funiculus were analyzed at early and late time-points following injury and correlated with histology. Early EB-demyelination resulted in a significant elevation in D⊥ and significant reduction in D∥ at the injury epicenter, with histological evidence of uniform axon preservation. Alterations in D⊥ and D∥ at the epicenter of early EB-demyelination were not significantly different from those observed with severe contusion at the epicenter, where histology demonstrated severe combined axonal and myelin injury. Diffusion abnormalities away from the injury epicenter were seen with contusion injury, but not with EB-demyelination. Chronic EB lesions underwent endogenous remyelination with normalization of diffusion metrics, whereas chronic contusion resulted in persistently altered diffusivities. In the early setting, directional diffusion measurements at the injury epicenter associated with chemical demyelination are indistinguishable from those seen with severe contusive SCI, despite dramatic pathologic differences between injury models. Caution is advised in interpretation of diffusion metrics with respect to specific white matter structural alterations. Diffusion analysis should not be limited to the epicenter of focal spinal lesions as alterations marginal to the epicenter are useful for assessing the nature of focal white matter injury.
Collapse
Affiliation(s)
- Jason F Talbott
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Yvette S Nout-Lomas
- 2 College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins, Colorado
| | - Michael F Wendland
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Pratik Mukherjee
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - J Russell Huie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Christopher P Hess
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Marc C Mabray
- 1 Department of Radiology and Biomedical Imaging, San Francisco General Hospital and University of California , San Francisco, San Francisco, California
| | - Jacqueline C Bresnahan
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| | - Michael S Beattie
- 3 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,4 Brain and Spinal Injury Center, San Francisco General Hospital , San Francisco, California
| |
Collapse
|