1
|
Seo JH, Jo YS, Oh CH, Chung JY. A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:8968. [PMID: 36433565 PMCID: PMC9694602 DOI: 10.3390/s22228968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field (B1+ field) efficiency and receive field (B1- field) sensitivity of radio-frequency (RF) coils is essential to reduce their specific absorption rate and power deposition in UHF MRI. To address these problems, we previously proposed a method to simultaneously improve the B1+ field efficiency and B1- field sensitivity of 16-leg bandpass birdcage RF coils (BP-BC RF coils) by combining a multichannel wireless RF element (MCWE) and segmented cylindrical high-permittivity material (scHPM) comprising 16 elements in 7.0 T MRI. In this work, we further improved the performance of transmit/receive RF coils. A new combination of RF coil with wireless element and HPM was proposed by comparing the BP-BC RF coil with the MCWE and the scHPM proposed in the previous study and the multichannel RF coils with a birdcage RF coil-type wireless element (BCWE) and the scHPM proposed in this study. The proposed 16-ch RF coils with the BCWE and scHPM provided excellent B1+ field efficiency and B1- field sensitivity improvement.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
| | - Young-Seung Jo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Chang-Hyun Oh
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
2
|
Ullah S, Zada M, Basir A, Yoo H. Wireless, Battery-Free, and Fully Implantable Micro-Coil System for 7 T Brain MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:430-441. [PMID: 35657838 DOI: 10.1109/tbcas.2022.3179839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An elegant solution for the concurrent transmission of data and power is essential for implantable wireless magnetic resonance imaging (MRI). This paper presents a self-tuned open interior microcoil (MC) antenna with three useful operating bands of 300 (7 T), 400, and 920 MHz, for blood vessel imaging, data telemetry, and efficient wireless transmission of power, respectively. The proposed open interior MC antenna contains two mirrorlike arms with diameters and lengths of 2.4 mm and 9.8 mm, respectively, to avoid blood flow blockage. To wirelessly show LED glow on a saline based phantom, the MC was fabricated on a flexible polyimide material and combined with a miniaturized rectifier and a micro-LED. Using a path gain, the power transfer efficiency (PTE) of the MC rotation was also analyzed. Additionally, the PTE was calculated for a range of distances between 25 and 60 mm, and a -27.1 dB PTE attained at a distance of of 30 mm. Based on the recommendations of the International Commission on Non-Ionizing Radiation Protection for human brain safety when exposed to radio-frequencies from external transmitter, a specific absorption rate analysis was analyzed. Measurements of the s-parameters were noted using a saline solution and blood vessel model to imitate a realistic human head. They were found to correlate reasonably with the simulated results.
Collapse
|
3
|
Darnell D, Truong TK, Song AW. Recent Advances in Radio-Frequency Coil Technologies: Flexible, Wireless, and Integrated Coil Arrays. J Magn Reson Imaging 2022; 55:1026-1042. [PMID: 34324753 PMCID: PMC10494287 DOI: 10.1002/jmri.27865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Radio-frequency (RF) coils are to magnetic resonance imaging (MRI) scanners what eyes are to the human body. Because of their critical importance, there have been constant innovations driving the rapid development of RF coil technologies. Over the past four decades, the breadth and depth of the RF coil technology evolution have far exceeded the space allowed for this review article. However, these past developments have laid the very foundation on which some of the recent technical breakthroughs are built upon. Here, we narrow our focus on some of the most recent RF coil advances, specifically, on flexible, wireless, and integrated coil arrays. To provide a detailed review, we discuss the theoretical underpinnings, experimental implementations, promising results, as well as future outlooks covering these exciting topics. These recent innovations have greatly improved patient comfort and ease of scan, while also increasing the signal-to-noise ratio, image resolution, temporal throughput, and diagnostic and treatment accuracy. Together with advances in other MRI subfields, they will undoubtedly continue to drive the field forward and lead us to an ever more exciting future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dean Darnell
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Allen W. Song
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
A Comparative Study of Birdcage RF Coil Configurations for Ultra-High Field Magnetic Resonance Imaging. SENSORS 2022; 22:s22051741. [PMID: 35270889 PMCID: PMC8914904 DOI: 10.3390/s22051741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Improvements in transmission and reception sensitivities of radiofrequency (RF) coils used in ultra-high field (UHF) magnetic resonance imaging (MRI) are needed to reduce specific absorption rates (SAR) and RF power deposition, albeit without applying high-power RF. Here, we propose a method to simultaneously improve transmission efficiency and reception sensitivity of a band-pass birdcage RF coil (BP-BC RF coil) by combining a multi-channel wireless RF element (MCWE) with a high permittivity material (HPM) in a 7.0 T MRI. Electromagnetic field (EM-field) simulations, performed using two types of phantoms, viz., a cylindrical phantom filled with oil and a human head model, were used to compare the effects of MCWE and HPM on BP-BC RF coils. EM-fields were calculated using the finite difference time-domain (FDTD) method and analyzed using Matlab software. Next, to improve RF transmission efficiency, we compared two HPM structures, namely, a hollow cylinder shape HPM (hcHPM) and segmented cylinder shape HPM (scHPM). The scHPM and MCWE model comprised 16 elements (16-rad BP-BC RF coil) and this coil configuration demonstrated superior RF transmission efficiency and reception sensitivity along with an acceptable SAR. We expect wider clinical application of this combination in 7.0 T MRIs, which were recently approved by the United States Food and Drug Administration.
Collapse
|
5
|
Chen Y, Wang Q, Choi S, Zeng H, Takahashi K, Qian C, Yu X. Focal fMRI signal enhancement with implantable inductively coupled detectors. Neuroimage 2022; 247:118793. [PMID: 34896291 PMCID: PMC8842502 DOI: 10.1016/j.neuroimage.2021.118793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.
Collapse
Affiliation(s)
- Yi Chen
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
| | - Qi Wang
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sangcheon Choi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Kengo Takahashi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Qian W, Yu X, Qian C. Wireless Powered Encoding and Broadcasting of Frequency Modulated Detection Signals. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:200450-200460. [PMID: 33828933 PMCID: PMC8023641 DOI: 10.1109/access.2020.3035938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wireless transmission of locally detected RF signals is necessary for long-term operation of batteryless and embedded transducers. To improve signal transmission efficiency over larger distances, multi-stage circuits were employed to down-convert RF signals before encoding them onto the emitted carrier wave. Such multi-stage arrangement had complicated design and high-power consumption. Here, a compact and low-power wireless modulator is introduced to directly encode input RF signals onto its oscillation carrier wave. The modulator consists of a double frequency parametric resonator that is overlaid with a single frequency passive resonator to create three resonance modes. By properly adjusting the substrate thickness between resonators, the highest resonance frequency is tuned to approximately the sum of lower two resonance frequencies, enabling efficient conversion of wireless pumping power into sustained oscillation currents. When an input RF signal is present with a certain frequency offset, the oscillation signal can be frequency modulated by the input signal to create multiple modulation sidebands separated by the offset frequency. The frequency encoded carrier wave can transmit MRI signals over larger distance separations to maintain constant image sensitivity, making the modulator useful to improve the remote detectability of miniaturized implantable and interventional devices.
Collapse
Affiliation(s)
- Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chunqi Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Qian W, Yu X, Qian C. Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:136594-136604. [PMID: 33747678 PMCID: PMC7971173 DOI: 10.1109/access.2020.3011905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wirelessly Amplified NMR Detectors (WAND) can utilize wireless pumping power to amplify MRI signals in situ for sensitivity enhancement of deep-lying tissues that are difficult to access by conventional surface coils. To reconfigure between selective and simultaneous activation in a multielement array, each WAND has a dipole resonance mode for MR signal acquisition and two butterfly modes that support counter-rotating current circulation. Because detectors in the same row share the same lower butterfly frequency but different higher butterfly frequency, a pumping signal at the sum frequency of the dipole mode and the higher butterfly mode can selectively activate individual resonators, leading to 4-fold sensitivity gain over passive coupling. Meanwhile, a pumping signal at the sum frequency of the dipole mode and the lower butterfly mode can simultaneously activate multiple resonators in the same row, leading to 3-fold sensitivity gain over passive coupling. When multiple rows of detectors are parallelly aligned, each row has a unique lower butterfly frequency for consecutive activation during the acquisition interval of the others. This wireless detector array can be embedded beneath a headpost that is normally required for multi-modal brain imaging, enabling easy reconfiguration between focal imaging of individual vessels and multiregional mapping of brain connectivity.
Collapse
Affiliation(s)
- Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chunqi Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Reber J, Marjanovic J, Brunner DO, Port A, Schmid T, Dietrich BE, Moser U, Barmet C, Pruessmann KP. An In-Bore Receiver for Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:997-1007. [PMID: 31484112 DOI: 10.1109/tmi.2019.2939090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In magnetic resonance imaging, the use of array detection and the number of detector elements have seen a steady increase over the past two decades. As a result, per-channel analog connection via long coaxial cable, as commonly used, poses an increasing challenge in terms of handling, safety, and coupling among cables. This situation is exacerbated when complementary recording of radiofrequency transmission or NMR-based magnetic field sensing further add to channel counts. A generic way of addressing this trend is the transition to digital signal transmission, enabled by digitization and first-level digital processing close to detector coils and sensors in the magnet bore. The foremost challenge that comes with this approach is to achieve high dynamic range, linearity, and phase stability despite interference by strong static, audiofrequency, and radiofrequency fields. The present work reports implementation of a 16-channel in-bore receiver, performing signal digitization and processing with subsequent optical transmission over fiber. Along with descriptions of the system design and construction, performance evaluation is reported. The resulting device is fully MRI compatible providing practically equal performance and signal quality compared to state-of-the-art RF digitizers operating outside the magnet. Its use is demonstrated by examples of head imaging and magnetic field recording.
Collapse
|
9
|
Park BS, Rajan SS, McCright B. Sensitivity and uniformity improvement of phased array MR images using inductive coupling and RF detuning circuits. MAGMA (NEW YORK, N.Y.) 2020; 33:725-733. [PMID: 31980963 DOI: 10.1007/s10334-020-00827-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To improve sensitivity and uniformity of MR images obtained using a phased array RF coil, an inductively coupled secondary resonator with RF detuning circuits at 300 MHz was designed. MATERIALS AND METHODS A secondary resonator having detuning circuits to turn off the resonator during the transmit mode was constructed. The secondary resonator was located at the opposite side of the four-channel phased array to improve sensitivity and uniformity of the acquired MR images. Numerical simulations along with phantom and in vivo experiments were conducted to evaluate the designed secondary resonator. RESULTS The numerical simulation results of |B1+| in a transmit mode showed that magnetic field uniformity would be decreased with a secondary resonator having no detuning circuits because of unwanted interferences between the transmit birdcage coil and the secondary resonator. The standard deviation (SD) of |B1+| was decreased 57% with a secondary resonator containing detuning circuits. The sensitivity and uniformity of |B1-| in the receive mode using a four-channel phased array were improved with the secondary resonator. Phantom experiments using a uniform saline phantom had 20% improvement of the mean signal intensity and 50% decrease in the SD with the secondary resonator. Mice with excess adipose tissue were imaged to demonstrate the utility of the secondary resonator. CONCLUSION The designed secondary resonator having detuning circuits improved sensitivity and uniformity of mouse MR images acquired using the four-channel phased array.
Collapse
Affiliation(s)
- Bu S Park
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA.
| | - Sunder S Rajan
- Division of Biomedical Physics (DBP)/OSEL/CDRH, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| | - Brent McCright
- Division of Cellular and Gene Therapies (DCGT)/OTAT/CBER, Food and Drug Administration, Silver Spring, MD, 20993-0002, USA
| |
Collapse
|
10
|
Nouls JC, Virgincar RS, Culbert AG, Morand N, Bobbert DW, Yoder AD, Schopler RS, Bashir MR, Badea A, Hochgeschwender U, Driehuys B. Applications of 3D printing in small animal magnetic resonance imaging. J Med Imaging (Bellingham) 2019; 6:021605. [PMID: 31131288 PMCID: PMC6519666 DOI: 10.1117/1.jmi.6.2.021605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/15/2019] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional (3D) printing has significantly impacted the quality, efficiency, and reproducibility of preclinical magnetic resonance imaging. It has vastly expanded the ability to produce MR-compatible parts that readily permit customization of animal handling, achieve consistent positioning of anatomy and RF coils promptly, and accelerate throughput. It permits the rapid and cost-effective creation of parts customized to a specific imaging study, animal species, animal weight, or even one unique animal, not routinely used in preclinical research. We illustrate the power of this technology by describing five preclinical studies and specific solutions enabled by different 3D printing processes and materials. We describe fixtures, assemblies, and devices that were created to ensure the safety of anesthetized lemurs during an MR examination of their brain or to facilitate localized, contrast-enhanced measurements of white blood cell concentration in a mouse model of pancreatitis. We illustrate expansive use of 3D printing to build a customized birdcage coil and components of a ventilator to enable imaging of pulmonary gas exchange in rats using hyperpolarizedXe 129 . Finally, we present applications of 3D printing to create high-quality, dual RF coils to accelerate brain connectivity mapping in mouse brain specimens and to increase the throughput of brain tumor examinations in a mouse model of pituitary adenoma.
Collapse
Affiliation(s)
- John C. Nouls
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Rohan S. Virgincar
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Alexander G. Culbert
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | | | - Dana W. Bobbert
- Duke University, Office of Information Technology, Durham, North Carolina, United States
| | - Anne D. Yoder
- Duke University, Department of Biology, Durham, North Carolina, United States
- Duke University, Lemur Center, Durham, North Carolina, United States
| | | | - Mustafa R. Bashir
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Alexandra Badea
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine, Mount Pleasant, Michigan, United States
| | - Bastiaan Driehuys
- Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
11
|
Darnell D, Cuthbertson J, Robb F, Song AW, Truong TK. Integrated radio-frequency/wireless coil design for simultaneous MR image acquisition and wireless communication. Magn Reson Med 2018; 81:2176-2183. [PMID: 30277273 DOI: 10.1002/mrm.27513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE An innovative radio-frequency (RF) coil design that allows RF currents both at the Larmor frequency and in a wireless communication band to flow on the same coil is proposed to enable simultaneous MRI signal reception and wireless data transfer, thereby minimizing the number of wired connections in the scanner without requiring any modifications or additional hardware within the scanner bore. METHODS As a first application, the proposed integrated RF/wireless coil design was further combined with an integrated RF/shim coil design to perform not only MR image acquisition and wireless data transfer, but also localized B0 shimming with a single coil. Proof-of-concept phantom experiments were conducted with such a coil to demonstrate its ability to simultaneously perform these three functions, while maintaining the RF performance, wireless data integrity, and B0 shimming performance. RESULTS Performing wirelessly controlled shimming of localized B0 inhomogeneities with the coil substantially reduced the B0 root-mean-square error (>70%) and geometric distortions in echo-planar images without degrading the image quality, signal-to-noise ratio (<1.7%), or wireless data throughput (maximum variance = 0.04 Mbps) of the coil. CONCLUSIONS The RF/wireless coil design can provide a solution for wireless data transfer that can be easily integrated into existing MRI scanners for a variety of applications.
Collapse
Affiliation(s)
- Dean Darnell
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Jonathan Cuthbertson
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | | | - Allen W Song
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| |
Collapse
|
12
|
Zeng X, Xu S, Cao C, Wang J, Qian C. Wireless amplified NMR detector for improved visibility of image contrast in heterogeneous lesions. NMR IN BIOMEDICINE 2018; 31:e3963. [PMID: 30011104 PMCID: PMC6108921 DOI: 10.1002/nbm.3963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/23/2023]
Abstract
To demonstrate the capability of a wireless amplified NMR detector (WAND) to improve the visibility of lesion heterogeneity without the use of exogenous contrast agents, a cylindrically symmetric WAND was constructed to sensitively detect and simultaneously amplify MR signals emitted from adjacent tissues. Based on a two-leg high-pass birdcage coil design, this WAND could be activated by a pumping field aligned along the main field (B0 ), without perturbing MR signal reception. Compared with an equivalent pair of external detectors, the WAND could achieve more than 10-fold gain for immediately adjacent regions. Even for regions with 3.4 radius distance separation from the detector's cylindrical center, the WAND was at least 1.4 times more sensitive than an equivalent pair of surface arrays or at least twice as sensitive as a single-sided external surface detector. When the WAND was inserted into a rat's rectum to observe adjacent tumors implanted beneath the mucosa, it could enhance the detection sensitivity of lesion regions, and thus enlarge the observable signal difference between heterogeneous tissues and clearly identify lesion boundaries as continuous lines in the intensity gradient profile. Hyperintense regions observable by the WAND existed due to higher levels of blood supply, which was indicated by a similar pattern of signal enhancement after contrast agent administration. By better observing the endogenous signal contrast, the endoluminal WAND could characterize lesions without the use of exogenous contrast agents, and thus reduce contrast-induced toxicity.
Collapse
Affiliation(s)
- Xianchun Zeng
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Shengqiang Xu
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Changyong Cao
- Laboratory of Soft Machines and Electronics, School of Packaging, Departments of Mechanical, Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
- Correspondence: Jian Wang, 30 Gaotanyan Rd, Chongqing, China, 400038, Tel: +86 (23) 68754419; Fax: +86 (23) 65463026, , Chunqi Qian, 846 Service Rd, East Lansing, MI, 48824, Tel: +1 (517) 884-3292; Fax: +1 (517) 432-2849,
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Correspondence: Jian Wang, 30 Gaotanyan Rd, Chongqing, China, 400038, Tel: +86 (23) 68754419; Fax: +86 (23) 65463026, , Chunqi Qian, 846 Service Rd, East Lansing, MI, 48824, Tel: +1 (517) 884-3292; Fax: +1 (517) 432-2849,
| |
Collapse
|
13
|
Shchelokova AV, van den Berg CA, Dobrykh DA, Glybovski SB, Zubkov MA, Brui EA, Dmitriev DS, Kozachenko AV, Efimtcev AY, Sokolov AV, Fokin VA, Melchakova IV, Belov PA. Volumetric wireless coil based on periodically coupled split-loop resonators for clinical wrist imaging. Magn Reson Med 2018; 80:1726-1737. [DOI: 10.1002/mrm.27140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Alena V. Shchelokova
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | | | - Dmitry A. Dobrykh
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | - Stanislav B. Glybovski
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | - Mikhail A. Zubkov
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | - Ekaterina A. Brui
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | | | - Alexander V. Kozachenko
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | - Alexander Y. Efimtcev
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
- Department of Radiology; Federal Almazov North-West Medical Research Center; Saint Petersburg Russian Federation
| | - Andrey V. Sokolov
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
- Department of Radiology; Federal Almazov North-West Medical Research Center; Saint Petersburg Russian Federation
| | - Vladimir A. Fokin
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
- Department of Radiology; Federal Almazov North-West Medical Research Center; Saint Petersburg Russian Federation
| | - Irina V. Melchakova
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| | - Pavel A. Belov
- Department of Nanophotonics and Metamaterials; ITMO University; Saint Petersburg Russian Federation
| |
Collapse
|
14
|
Shchelokova AV, Slobozhanyuk AP, de Bruin P, Zivkovic I, Kallos E, Belov PA, Webb A. Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 286:78-81. [PMID: 29197694 DOI: 10.1016/j.jmr.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.
Collapse
Affiliation(s)
- Alena V Shchelokova
- Department of Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russian Federation
| | - Alexey P Slobozhanyuk
- Department of Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russian Federation; Nonlinear Physics Center, Australian National University, Canberra, ACT 2601, Australia
| | - Paul de Bruin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University, Medical Center, Leiden, The Netherlands
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University, Medical Center, Leiden, The Netherlands
| | - Efthymios Kallos
- MediWise | Medical Wireless Sensing Ltd, Queen Mary Bio Enterprise, London, UK
| | - Pavel A Belov
- Department of Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russian Federation
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University, Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Byron K, Robb F, Stang P, Vasanawala S, Pauly J, Scott G. An RF-gated wireless power transfer system for wireless MRI receive arrays. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2017; 47B:e21360. [PMID: 31057343 PMCID: PMC6498852 DOI: 10.1002/cmr.b.21360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In MRI systems, cable-free receive arrays would simplify setup while reducing the bulk and weight of coil arrays and improve patient comfort and throughput. Since battery power would limit scan time, wireless power transfer (WPT) is a viable option to continuously supply several watts of power to on-coil electronics. To minimize added noise and decouple the wireless power system from MRI coils, restrictions are placed on the coil geometry of the wireless power system, which are shown to limit its efficiency. Continuous power harvesting can also cause a large increase in the background noise of the image due to diode rectifier up-conversion of noise around the frequency of the transmitted power. However, by RF gating the transmitted power off during the MRI receive time while continuing to supply power from a storage capacitor, WPT is demonstrated to have minimal impact on image quality at received power levels up to 11 W. The integration of WPT with a 1.5T scanner is demonstrated.
Collapse
Affiliation(s)
- Kelly Byron
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | | | | | - John Pauly
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Greig Scott
- Department of Electrical Engineering, Stanford University, Stanford, CA USA
| |
Collapse
|