1
|
Li X, Saiyin H, Chen X, Yu Q, Ma L, Liang W. Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling. Mol Psychiatry 2024; 29:1647-1659. [PMID: 36414713 PMCID: PMC11371642 DOI: 10.1038/s41380-022-01864-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3β and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu H, Wang C, Lan X, Li W, Zhang F, Fu L, Ye Y, Ning Y, Zhou Y. Functional connectivity of the amygdala and the antidepressant and antisuicidal effects of repeated ketamine infusions in major depressive disorder. Front Neurosci 2023; 17:1123797. [PMID: 36816116 PMCID: PMC9932998 DOI: 10.3389/fnins.2023.1123797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Background Dysfunction of the amygdala is the core pathogenesis of major depressive disorder (MDD). However, it remains unclear whether ketamine treatment could modulate characteristics of amygdala-related networks. We aimed to explore the relationship between changes in the resting-state functional connectivity (RSFC) of the amygdala and the treatment of ketamine in MDD patients and to identify important neuroimaging predictors of treatment outcome. Methods Thirty-nine MDD patients received six subanesthetic dose infusions of ketamine. Depressive and suicidal symptoms were assessed and magnetic resonance imaging (MRI) scans were performed before and after six ketamine infusions. Forty-five healthy controls also underwent once MRI scans. Seed-based RSFC analyses were performed, focusing on the bilateral amygdala. Results After ketamine treatment, the RSFC between the left amygdala (LA) and the left medial superior frontal gyrus (mSFG) of MDD patients enhanced significantly, and this change was positively correlated with the reduction in depressive symptoms (r = 0.40, p = 0.012). The combination baseline RSFC of LA - right putamen and right amygdala (RA) - right putamen was related to the antidepressant and antisuicidal effects of ketamine. The combination baseline RSFC of LA - right putamen and RA - right putamen could predict the ineffective antidepressant (AUC = 0.739, p = 0.011) and antisuicidal effects of ketamine (AUC = 0.827, p = 0.001). Conclusion Ketamine can regulate the relevant circuits of amygdala and mSFG, and the baseline RSFC between bilateral amygdala and right putamen may be a predictor of the response of ketamine's antidepressant and antisuicidal treatment. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=20875, identifier ChiCTR-OOC-17012239.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ling Fu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Yuping Ning,
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Yanling Zhou,
| |
Collapse
|
3
|
Rao JS, Zhao C, Wei RH, Feng T, Bao SS, Zhao W, Tian Z, Liu Z, Yang ZY, Li XG. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys. Ann Med 2022; 54:1867-1883. [PMID: 35792748 PMCID: PMC9272921 DOI: 10.1080/07853890.2022.2089728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Spinal cord injury (SCI) destroys the sensorimotor pathway and induces brain plasticity. However, the effect of treatment-induced spinal cord tissue regeneration on brain functional reorganization remains unclear. This study was designed to investigate the large-scale functional interactions in the brains of adult female Rhesus monkeys with injured and regenerated thoracic spinal cord. MATERIALS AND METHODS Resting-state functional magnetic resonance imaging (fMRI) combined with Granger Causality analysis (GCA) and motor behaviour analysis were used to assess the causal interaction between sensorimotor cortices, and calculate the relationship between causal interaction and hindlimb stepping in nine Rhesus monkeys undergoing lesion-induced spontaneous recovery (injured, n = 4) and neurotrophin-3/chitosan transplantation-induced regeneration (NT3-chitosan, n = 5) after SCI. RESULTS The results showed that the injured and NT3-chitosan-treated animals had distinct spatiotemporal features of brain functional reorganization. The spontaneous recovery followed the model of "early intra-hemispheric reorganization dominant, late inter-hemispheric reorganization dominant", whereas regenerative therapy animals showed the opposite trend. Although the variation degree of information flow intensity was consistent, the tendency and the relationship between local neuronal activity properties and coupling strength were different between the two groups. In addition, the injured and NT3-chitosan-treated animals had similar motor adjustments but various relationship modes between motor performance and information flow intensity. CONCLUSIONS Our findings show that brain functional reorganization induced by regeneration therapy differed from spontaneous recovery after SCI. The influence of unique changes in brain plasticity on the therapeutic effects of future regeneration therapy strategies should be considered. Key messagesNeural regeneration elicited a unique spatiotemporal mode of brain functional reorganization in the spinal cord injured monkeys, and that regeneration does not simply reverse the process of brain plasticity induced by spinal cord injury (SCI).Independent "properties of local activity - intensity of information flow" relationships between the injured and treated animals indicating that spontaneous recovery and regenerative therapy exerted different effects on the reorganization of the motor network after SCI.A specific information flow from the left thalamus to the right insular can serve as an indicator to reflect a heterogeneous "information flow - motor performance" relationship between injured and treated animals at similar motor adjustments.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, PR China
| | - Rui-Han Wei
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Ting Feng
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Shu-Sheng Bao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zhaolong Tian
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, PR China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, PR China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Xiao-Guang Li
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
4
|
Cerebral blood flow and cardiovascular risk effects on resting brain regional homogeneity. Neuroimage 2022; 262:119555. [PMID: 35963506 PMCID: PMC10044499 DOI: 10.1016/j.neuroimage.2022.119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Regional homogeneity (ReHo) is a measure of local functional brain connectivity that has been reported to be altered in a wide range of neuropsychiatric disorders. Computed from brain resting-state functional MRI time series, ReHo is also sensitive to fluctuations in cerebral blood flow (CBF) that in turn may be influenced by cerebrovascular health. We accessed cerebrovascular health with Framingham cardiovascular risk score (FCVRS). We hypothesize that ReHo signal may be influenced by regional CBF; and that these associations can be summarized as FCVRS→CBF→ReHo. We used three independent samples to test this hypothesis. A test-retest sample of N = 30 healthy volunteers was used for test-retest evaluation of CBF effects on ReHo. Amish Connectome Project (ACP) sample (N = 204, healthy individuals) was used to evaluate association between FCVRS and ReHo and testing if the association diminishes given CBF. The UKBB sample (N = 6,285, healthy participants) was used to replicate the effects of FCVRS on ReHo. We observed strong CBF→ReHo links (p<2.5 × 10-3) using a three-point longitudinal sample. In ACP sample, marginal and partial correlations analyses demonstrated that both CBF and FCVRS were significantly correlated with the whole-brain average (p<10-6) and regional ReHo values, with the strongest correlations observed in frontal, parietal, and temporal areas. Yet, the association between ReHo and FCVRS became insignificant once the effect of CBF was accounted for. In contrast, CBF→ReHo remained significantly linked after adjusting for FCVRS and demographic covariates (p<10-6). Analysis in N = 6,285 replicated the FCVRS→ReHo effect (p = 2.7 × 10-27). In summary, ReHo alterations in health and neuropsychiatric illnesses may be partially driven by region-specific variability in CBF, which is, in turn, influenced by cardiovascular factors.
Collapse
|
5
|
Zhong J, Wu H, Wu F, He H, Zhang Z, Huang J, Cao P, Fan N. Abnormal fractional Amplitude of Low-Frequency Fluctuation in chronic ketamine users. Psychiatry Res Neuroimaging 2022; 326:111536. [PMID: 36067548 DOI: 10.1016/j.pscychresns.2022.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ketamine has become a major substance of abuse worldwide. Nevertheless, The long-term effects of ketamine use on intrinsic spontaneous neural activity remain unknown. OBJECTIVES In the present study, rs-fMRI was used to explore whether chronic ketamine use changes the intrinsic spontaneous neural activity, and whether the intrinsic spontaneous neural activity changes in chronic ketamine users(CKUs) are associated with cognitive impairments observed in chronic ketamine users. METHODS 28 CKUs and 30 healthy controls(HC) were enrolled. The fractional amplitude of low-frequency fluctuations (fALFF) was measured to evaluate the intrinsic spontaneous neural activity in multiple brain regions. Cognitive alterations were assessed using MATRICS Consensus Cognitive Battery (MCCB). RESULTS CKUs showed higher fALFF in the right parahippocampal gyrus(PHG), right anterior cingulate cortex(ACC), left cerebellar vermis, left posterior cingulate cortex(PCC), bilateral caudate, and lower fALFF in the right middle occipital gyrus(MOG), left cuneus, right precuneus. The fALFF in the right PHG, left cerebellar vermis, bilateral caudate, right ACC of CKUs presented a negative correlation with the average quantity of ketamine use/day(g) and estimated total ketamine consumption. The fALFF in left PCC had a negative correlation with the average quantity of ketamine use/day(g). Speed of processing on MCCB presented a negative correlation with the fALFF in the right MOG. CONCLUSION Our study found abnormal fALFF in multiple brain areas in CKUs, which indicated the changes of intrinsic spontaneous neural activity in multiple brain areas. The changes of fALFF were associated with the severity of ketamine use and cognitive impairment in CKUs.
Collapse
Affiliation(s)
- Jun Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Zhaohua Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Jiaxin Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Penghui Cao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province, 510370, China.
| |
Collapse
|
6
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
7
|
Chen X, Zheng X, Cai J, Yang X, Lin Y, Wu M, Deng X, Peng YG. Effect of Anesthetics on Functional Connectivity of Developing Brain. Front Hum Neurosci 2022; 16:853816. [PMID: 35360283 PMCID: PMC8963106 DOI: 10.3389/fnhum.2022.853816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Abstract
The potential anesthetic neurotoxicity on the neonate is an important focus of research investigation in the field of pediatric anesthesiology. It is essential to understand how these anesthetics may affect the development and growth of neonatal immature and vulnerable brains. Functional magnetic resonance imaging (fMRI) has suggested that using anesthetics result in reduced functional connectivity may consider as core sequence for the neurotoxicity and neurodegenerative changes in the developed brain. Anesthetics either directly impact the primary structures and functions of the brain or indirectly alter the hemodynamic parameters that contribute to cerebral blood flow (CBF) in neonatal patients. We hypothesis that anesthetic agents may either decrease the brain functional connectivity in neonatal patients or animals, which was observed by fMRI. This review will summarize the effect and mechanism of anesthesia on the rapid growth and development infant and neonate brain with fMRI through functional connectivity. It is possible to provide the new mechanism of neuronal injury induced by anesthetics and objective imaging evidence in animal developing brain.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuemei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianghui Cai
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Department of Gynecology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengjun Wu
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Mengjun Wu,
| | - Xiaofan Deng
- Center of Organ Transplantation, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Yong G. Peng
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Giacometti C, Dureux A, Autran-Clavagnier D, Wilson CRE, Sallet J, Dirheimer M, Procyk E, Hadj-Bouziane F, Amiez C. Frontal Cortical Functional Connectivity Is Impacted by Anaesthesia in Macaques. Cereb Cortex 2021; 32:4050-4067. [PMID: 34974618 DOI: 10.1093/cercor/bhab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional magnetic resonance imaging (rs-fMRI) in anaesthetized nonhuman primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity organization of a well-characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques show that rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas, while more caudal seeds displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrated a similar functional connectivity (FC) organization of the cingulo-frontal cortical network in awake macaque to that previously uncovered in the human brain pointing toward a preserved FC organization from macaque to human. However, it can only be observed in awake state suggesting that this network is sensitive to anaesthesia and warranting significant caution when comparing FC patterns across species under different states.
Collapse
Affiliation(s)
- Camille Giacometti
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Delphine Autran-Clavagnier
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France.,Inovarion, 75005 Paris, France
| | - Charles R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Jérôme Sallet
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Manon Dirheimer
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Céline Amiez
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
9
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Yang J, Pu W, Wu G, Chen E, Lee E, Liu Z, Palaniyappan L. Connectomic Underpinnings of Working Memory Deficits in Schizophrenia: Evidence From a replication fMRI study. Schizophr Bull 2020; 46:916-926. [PMID: 32016430 PMCID: PMC7345823 DOI: 10.1093/schbul/sbz137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Working memory (WM) deficit is a key feature of schizophrenia that relates to a generalized neural inefficiency of extensive brain areas. To date, it remains unknown how these distributed regions are systemically organized at the connectome level and how the disruption of such organization brings about the WM impairment seen in schizophrenia. METHODS We used graph theory to examine the neural efficiency of the functional connectome in different granularity in 155 patients with schizophrenia and 96 healthy controls during a WM task. These analyses were repeated in another independent dataset (81 patients and 54 controls). Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. A machine-learning approach was adopted to study the ability of multivariate connectome features from one dataset to discriminate patients from controls in the second dataset. RESULTS Small-worldness of the whole-brain connectome was significantly increased in schizophrenia during the WM task; this increase is related to better (though subpar) WM accuracy in patients with more severe negative symptom burden. There was a shift in the degree distribution to a more homogeneous form in patients. The machine-learning approach classified a new set of patients from controls with 84.3% true-positivity rate for schizophrenia and 71.6% overall accuracy. CONCLUSIONS We demonstrate a putative mechanistic link between connectome topology, hub redistribution, and impaired n-back performance in schizophrenia. The task-dependent modulation of the connectome relates to, but remains inefficient in, improving the performance above par in the presence of severe negative symptoms.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Medical Psychological Institute of Central South University, Changsha, P.R. China
| | - Guowei Wu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhening Liu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Lena Palaniyappan
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
11
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Rao JS, Liu Z, Zhao C, Wei RH, Liu RX, Zhao W, Zhou X, Tian PY, Yang ZY, Li XG. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 2019; 48:320-328. [PMID: 31148186 DOI: 10.1111/jmp.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relatively tiny spinal cord of non-human primate (NHP) causes increased challenge in diffusion tensor imaging (DTI) post-processing. This study aimed to establish a reliable correction strategy applied to clinical DTI images of NHP. METHODS Six normal and partial spinal cord injury (SCI) rhesus monkeys underwent 3T MR scanning. A correction strategy combining multiple iterations and non-rigid deformation was used for DTI image post-processing. Quantitative evaluations were then conducted to investigate effects of distortion correction. RESULTS After correction, longitudinal geometric distortion, global distortion, and residual distance errors were all significantly decreased (P < 0.05). Fractional anisotropy at the injured site was remarkably lower than that at the contralateral site (P = 0.0488) and was substantially lower than those at the adjacent superior (P = 0.0157) and inferior (P = 0.0128) areas at the same side. CONCLUSIONS Our image correction strategy can improve the quality of the DTI images of NHP thoracic cords, contributing to the development of SCI preclinical research.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhao
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Measurement Control and Information Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ruo-Xi Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhao-Yang Yang
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
13
|
Gerb SA, Cook JE, Gochenauer AE, Young CS, Fulton LK, Grady AW, Freeman KB. Ketamine Tolerance in Sprague-Dawley Rats after Chronic Administration of Ketamine, Morphine, or Cocaine. Comp Med 2019; 69:29-34. [PMID: 30696519 DOI: 10.30802/aalas-cm-18-000053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ketamine is one of the most commonly used anesthetics in human and veterinary medicine, but its clinical effectiveness is often compromised due to tolerance to its anesthetic effects. Although ketamine tolerance has been demonstrated in a number of behavioral measures, no published work has investigated tolerance to ketamine's anesthetic effects other than duration of anesthesia. In addition, a reported practice in anesthesiology is to alter anesthetic doses for procedures when the patient has a history of drug abuse. Empirically investigating the effects of administration of a drug of abuse on ketamine's potency and efficacy to produce anesthesia could help in the creation of anesthetic plans that maximize safety for both clinicians and patients. The goal of the current study was to test the effects of repeated administration of ketamine, morphine, or cocaine on ketamine's ability to produce anesthesia. In 2 studies, male Sprague-Dawley rats received daily injections of ketamine (32 or 100 mg/kg IP), morphine (3.2 or 5.6 mg/kg IP), or cocaine (3.2 or 10 mg/kg IP) for 14 consecutive days and then were tested on day 15 for ketamine-induced anesthesia by using a cumulative-dosing procedure (32 to 320 mg/kg IP). Chronic treatment with either ketamine or morphine-but not cocaine-produced tolerance to ketamine's anesthetic effects in a dose-dependent manner. These results suggest that ketamine's clinical effectiveness as an anesthetic will vary as a function of its history of use. Furthermore, given that chronic morphine administration produced tolerance to ketamine's anesthetic effects, various pain medications may reduce ketamine's effectiveness for anesthesia.
Collapse
Affiliation(s)
- Samantha A Gerb
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi;,
| | - Jemma E Cook
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Camille S Young
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lindak K Fulton
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrew W Grady
- Center for Comparative Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
14
|
Forsyth A, McMillan R, Campbell D, Malpas G, Maxwell E, Sleigh J, Dukart J, Hipp JF, Muthukumaraswamy SD. Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation. Psychopharmacology (Berl) 2018; 235:3479-3493. [PMID: 30426183 DOI: 10.1007/s00213-018-5064-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study. METHODS We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal. RESULTS AND CONCLUSIONS Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.
Collapse
Affiliation(s)
- Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Doug Campbell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Gemma Malpas
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Elizabeth Maxwell
- Department of Anaesthesiology, Auckland District Health Board, Auckland, New Zealand
| | - Jamie Sleigh
- Department of Anaesthesiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Juergen Dukart
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Joerg F Hipp
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center, F Hoffman La Roche, Basel, Switzerland
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland, 92019, New Zealand.
| |
Collapse
|