1
|
Han B, Liang W, Hai Y, Sun D, Ding H, Yang Y, Yin P. Neurophysiological, histological, and behavioral characterization of animal models of distraction spinal cord injury: a systematic review. Neural Regen Res 2024; 19:563-570. [PMID: 37721285 PMCID: PMC10581570 DOI: 10.4103/1673-5374.380871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity. With the increased degree and duration of distraction, spinal cord injuries become more serious in terms of their neurophysiology, histology, and behavior. Very few studies have been published on the specific characteristics of distraction spinal cord injury. In this study, we systematically review 22 related studies involving animal models of distraction spinal cord injury, focusing particularly on the neurophysiological, histological, and behavioral characteristics of this disease. In addition, we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury. We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research, and provide reference guidelines for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongtao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yihan Yang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Middleton DM, Li Y, Chen A, Shinohara R, Fisher J, Krisa L, Elliot M, Faro SH, Woo JH, Flanders AE, Mohamed FB. Harmonization of multi-site diffusion tensor imaging data for cervical and thoracic spinal cord at 1.5 T and 3 T using longitudinal ComBat. Sci Rep 2023; 13:19809. [PMID: 37957164 PMCID: PMC10643628 DOI: 10.1038/s41598-023-46465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
MRI scanner hardware, field strengths, and sequence parameters are major variables in diffusion studies of the spinal cord. Reliability between scanners is not well known, particularly for the thoracic cord. DTI data was collected for the entire cervical and thoracic spinal cord in thirty healthy adult subjects with different MR vendors and field strengths. DTI metrics were extracted and averaged for all slices within each vertebral level. Metrics were examined for variability and then harmonized using longitudinal ComBat (longComBat). Four scanners were used: Siemens 3 T Prisma, Siemens 1.5 T Avanto, Philips 3 T Ingenia, Philips 1.5 T Achieva. Average full cord diffusion values/standard deviation for all subjects and scanners were FA: 0.63, σ = 0.10, MD: 1.11, σ = 0.12 × 10-3 mm2/s, AD: 1.98, σ = 0.55 × 10-3 mm2/s, RD: 0.67, σ = 0.31 × 10-3 mm2/s. FA metrics averaged for all subjects by level were relatively consistent across scanners, but large variability was found in diffusivity measures. Coefficients of variation were lowest in the cervical region, and relatively lower for FA than diffusivity measures. Harmonized metrics showed greatly improved agreement between scanners. Variability in DTI of the spinal cord arises from scanner hardware differences, pulse sequence differences, physiological motion, and subject compliance. The use of longComBat resulted in large improvement in agreement of all DTI metrics between scanners. This study shows the importance of harmonization of diffusion data in the spinal cord and potential for longitudinal and multisite clinical research and clinical trials.
Collapse
Affiliation(s)
- Devon M Middleton
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA.
| | - Yutong Li
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew Chen
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Russell Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Laura Krisa
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark Elliot
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott H Faro
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| | - John H Woo
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam E Flanders
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| | - Feroze B Mohamed
- Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor COB, Philadelphia, PA, 19107, USA
| |
Collapse
|
3
|
Bao XX, Zhao C, Bao SS, Rao JS, Yang ZY, Li XG. Recognition of necrotic regions in MRI images of chronic spinal cord injury based on superpixel. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 228:107252. [PMID: 36434959 DOI: 10.1016/j.cmpb.2022.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE The cystic cavity and its surrounding dense glial scar formed in chronic spinal cord injury (SCI) hinder the regeneration of nerve axons. Accurate location of the necrotic regions formed by the scar and the cavity is conducive to eliminate the re-growth obstacles and promote SCI treatment. This work aims to realize the accurate and automatic location of necrotic regions in the chronic SCI magnetic resonance imaging (MRI). METHODS In this study, a method based on superpixel is proposed to identify the necrotic regions of spinal cord in chronic SCI MRI. Superpixels were obtained by a simple linear iterative clustering algorithm, and feature sets were constructed from intensity statistical features, gray level co-occurrence matrix features, Gabor texture features, local binary pattern features and superpixel areas. Subsequently, the recognition effects of support vector machine (SVM) and random forest (RF) classification model on necrotic regions were compared from accuracy (ACC), positive predictive value (PPV), sensitivity (SE), specificity (SP), Dice coefficient and algorithm running time. RESULTS The method is evaluated on T1- and T2-weighted MRI spinal cord images of 24 adult female Wistar rats. And an automatic recognition method for spinal cord necrosis regions was established based on the SVM classification model finally. The recognition results were 1.00±0.00 (ACC), 0.89±0.09 (PPV), 0.88±0.12 (SE), 1.00±0.00 (SP) and 0.88±0.07 (Dice), respectively. CONCLUSIONS The proposed method can accurately and noninvasively identify the necrotic regions in MRI, which is helpful for the pre-intervention assessment and post-intervention evaluation of chronic SCI research and treatments, and promoting the clinical transformation of chronic SCI research.
Collapse
Affiliation(s)
- Xing-Xing Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China.
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Rao JS, Zhao C, Wei RH, Feng T, Bao SS, Zhao W, Tian Z, Liu Z, Yang ZY, Li XG. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys. Ann Med 2022; 54:1867-1883. [PMID: 35792748 PMCID: PMC9272921 DOI: 10.1080/07853890.2022.2089728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Spinal cord injury (SCI) destroys the sensorimotor pathway and induces brain plasticity. However, the effect of treatment-induced spinal cord tissue regeneration on brain functional reorganization remains unclear. This study was designed to investigate the large-scale functional interactions in the brains of adult female Rhesus monkeys with injured and regenerated thoracic spinal cord. MATERIALS AND METHODS Resting-state functional magnetic resonance imaging (fMRI) combined with Granger Causality analysis (GCA) and motor behaviour analysis were used to assess the causal interaction between sensorimotor cortices, and calculate the relationship between causal interaction and hindlimb stepping in nine Rhesus monkeys undergoing lesion-induced spontaneous recovery (injured, n = 4) and neurotrophin-3/chitosan transplantation-induced regeneration (NT3-chitosan, n = 5) after SCI. RESULTS The results showed that the injured and NT3-chitosan-treated animals had distinct spatiotemporal features of brain functional reorganization. The spontaneous recovery followed the model of "early intra-hemispheric reorganization dominant, late inter-hemispheric reorganization dominant", whereas regenerative therapy animals showed the opposite trend. Although the variation degree of information flow intensity was consistent, the tendency and the relationship between local neuronal activity properties and coupling strength were different between the two groups. In addition, the injured and NT3-chitosan-treated animals had similar motor adjustments but various relationship modes between motor performance and information flow intensity. CONCLUSIONS Our findings show that brain functional reorganization induced by regeneration therapy differed from spontaneous recovery after SCI. The influence of unique changes in brain plasticity on the therapeutic effects of future regeneration therapy strategies should be considered. Key messagesNeural regeneration elicited a unique spatiotemporal mode of brain functional reorganization in the spinal cord injured monkeys, and that regeneration does not simply reverse the process of brain plasticity induced by spinal cord injury (SCI).Independent "properties of local activity - intensity of information flow" relationships between the injured and treated animals indicating that spontaneous recovery and regenerative therapy exerted different effects on the reorganization of the motor network after SCI.A specific information flow from the left thalamus to the right insular can serve as an indicator to reflect a heterogeneous "information flow - motor performance" relationship between injured and treated animals at similar motor adjustments.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, PR China
| | - Rui-Han Wei
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Ting Feng
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Shu-Sheng Bao
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Zhaolong Tian
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, PR China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, PR China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Xiao-Guang Li
- School of Biological Science and Medical Engineering, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
5
|
Sadeghmousavi S, Soltani Khaboushan A, Jafarnezhad-Ansariha F, Nejad-Gashti R, Farsi M, Esmaeil-Pour R, Alijani M, Majidi Zolbin M, Niknejad H, Kajbafzadeh AM. The role of spinal cord tractography in detecting lesions following selective bladder afferent and efferent fibers: A novel method for induction of neurogenic lower urinary tract dysfunction in rabbit. Neurourol Urodyn 2022; 41:1539-1552. [PMID: 35842827 DOI: 10.1002/nau.25009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neurogenic lower urinary tract dysfunction (NLUTD), a challenging disorder, is defined by lack of bladder control due to the abnormalities in neural pathways and can be classified based on the location of lesions within the nervous system, thus investigating the neural pathways can help us to know the site of the lesion and specify the class of the NLUTD. Diffusion Tensor Imaging (DTI) tractography, a noninvasive advanced imaging method, is capable of detecting central nervous system pathologies, even if routine magnetic resonance imaging shows no abnormality. Accordingly, tractography is an ideal technique to evaluate patients with NLUTD and visualize the pathology site within the spine. This study aimed to introduce a novel method of spinal cord injury (SCI) to establish NLUTD in the rabbit and to investigate the potential of tractography in tracing neural tracts of the spinal cord in an induced NLUTD animal model. MATERIALS AND METHODS An animal model of NLUTD was induced through cauterization of the spinal cord at the level T12-L1 in 12 rabbits. Then rabbits were assessed via DTI, urodynamic studies (UDS), voiding cystourethrogram (VCUG), and pathology assessments using antineurofilament 200 (NF200) antibody, anti-S100, anti-Smooth Muscle Actin, anti-Myogenin, and anti-MyoD1. RESULTS The tractography visualized lesions within spinal cord fibers. DTI parameters including fractional anisotropy (FA) value and tract density were significantly decreased (FA: p-value = 0.01, Tract density: p-value = 0.05) after injury. The mean diffusivity (MD) was insignificantly increased compared to before the injury. Also, the results of UDS and pathology assessments corroborated that applying SCI and the establishment of the NLUTD model was completely successful. CONCLUSION In the present study, we investigated the auxiliary role of tractography in detecting the spinal cord lesions in the novel established rabbit model of NLUTD. The introduced method of NLUTD induction was without the leg's neurological deficit, easily applicable, low-cost, and was accompanied by minimal surgical preparation and a satisfactory survival rate in comparison with other SCI animal models.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Fahimeh Jafarnezhad-Ansariha
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Nejad-Gashti
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farsi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Esmaeil-Pour
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alijani
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatrics' Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Childern's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Takamiya S, Kawabori M, Yamazaki K, Yamaguchi S, Tanimori A, Yamamoto K, Ohnishi S, Seki T, Konno K, Tha KK, Hashimoto D, Watanabe M, Houkin K, Fujimura M. Intravenous transplantation of amnion-derived mesenchymal stem cells promotes functional recovery and alleviates intestinal dysfunction after spinal cord injury. PLoS One 2022; 17:e0270606. [PMID: 35802703 PMCID: PMC9269969 DOI: 10.1371/journal.pone.0270606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is often accompanied by gastrointestinal dysfunction due to the disconnection of the spinal autonomic nervous system. Gastrointestinal dysfunction reportedly upregulates intestinal permeability, leading to bacterial translocation of the gut microbiome to the systemic circulation, which further activates systemic inflammation, exacerbating neuronal damage. Mesenchymal stem cells (MSC) reportedly ameliorate SCI. Here, we aimed to investigate their effect on the associated gastrointestinal dysfunction. Human amnion-derived MSC (AMSCs) were intravenously transplanted one day after a rat model of midthoracic SCI. Biodistribution of transplanted cells, behavioral assessment, and histological evaluations of the spinal cord and intestine were conducted to elucidate the therapeutic effect of AMSCs. Bacterial translocation of the gut microbiome was examined by in situ hybridization and bacterial culture of the liver. Systemic inflammations were examined by blood cytokines, infiltrating immune cells in the spinal cord, and the size of the peripheral immune tissue. AMSCs released various neurotrophic factors and were mainly distributed in the liver and lung after transplantation. AMSC-transplanted animals showed smaller spinal damage and better neurological recovery with preserved neuronal tract. AMSCs transplantation ameliorated intestinal dysfunction both morphologically and functionally, which prevented translocation of the gut microbiome to the systemic circulation. Systemic inflammations were decreased in animals receiving AMSCs in the chronic phase. Intravenous AMSC administration during the acute phase of SCI rescues both spinal damage and intestinal dysfunction. Reducing bacterial translocation may contribute to decreasing systemic inflammation.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Kazuyoshi Yamazaki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sho Yamaguchi
- Regenerative Medicine and Cell Therapy Laboratories, Kaneka Corporation, Kobe, Hyogo, Japan
| | - Aki Tanimori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshitaka Seki
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Konno
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Khin Khin Tha
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Daigo Hashimoto
- Department of Hematology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Gong L, Gu Y, Han X, Luan C, Liu C, Wang X, Sun Y, Zheng M, Fang M, Yang S, Xu L, Sun H, Yu B, Gu X, Zhou S. Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury. Neurosci Bull 2022; 39:213-244. [PMID: 35788904 PMCID: PMC9905408 DOI: 10.1007/s12264-022-00897-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaoxiao Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chengcheng Luan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yufeng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Mengru Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Mengya Fang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shuhai Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Zhao C, Rao JS, Duan H, Hao P, Shang J, Fan Y, Zhao W, Gao Y, Yang Z, Sun YE, Li X. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct Target Ther 2022; 7:184. [PMID: 35710784 PMCID: PMC9203793 DOI: 10.1038/s41392-022-01010-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a severe damage usually leading to limb dysesthesia, motor dysfunction, and other physiological disability. We have previously shown that NT3-chitosan could trigger an acute SCI repairment in rats and non-human primates. Due to the negative effect of inhibitory molecules in glial scar on axonal regeneration, however, the role of NT3-chitosan in the treatment of chronic SCI remains unclear. Compared with the fresh wound of acute SCI, how to handle the lesion core and glial scars is a major issue related to chronic-SCI repair. Here we report, in a chronic complete SCI rat model, establishment of magnetic resonance-diffusion tensor imaging (MR-DTI) methods to monitor spatial and temporal changes of the lesion area, which matched well with anatomical analyses. Clearance of the lesion core via suction of cystic tissues and trimming of solid scar tissues before introducing NT3-chitosan using either a rigid tubular scaffold or a soft gel form led to robust neural regeneration, which interconnected the severed ascending and descending axons and accompanied with electrophysiological and motor functional recovery. In contrast, cystic tissue extraction without scar trimming followed by NT3-chitosan injection, resulted in little, if any regeneration. Taken together, after lesion core clearance, NT3-chitosan can be used to enable chronic-SCI repair and MR-DTI-based mapping of lesion area and monitoring of ongoing regeneration can potentially be implemented in clinical studies for subacute/chronic-SCI repair.
Collapse
Affiliation(s)
- Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junkui Shang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China.,School of Engineering Medicine, Beihang University, Beijing, 10083, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yi Eve Sun
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,Department of Psychiatry and Biobehavioral Sciences, UCLA Medical School, Los Angeles, CA, 90095, USA.
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Chen S, Wang Y, Wu X, Chang J, Jin W, Li W, Song P, Wu Y, Zhu J, Qian Y, Shen C, Yu Y, Dong F. Degeneration of the Sensorimotor Tract in Degenerative Cervical Myelopathy and Compensatory Structural Changes in the Brain. Front Aging Neurosci 2022; 14:784263. [PMID: 35444527 PMCID: PMC9014124 DOI: 10.3389/fnagi.2022.784263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Degenerative cervical myelopathy is a progressive neurodegenerative disease, that has become increasingly prevalent in the aging population worldwide. The current study determined the factors affecting degeneration in the sensorimotor tract with degenerative cervical myelopathy and its relationship with brain structure. We divided patients into hyperintensity (HS) and non-hyperintensity (nHS) groups and measured the fractional anisotropy and apparent diffusion coefficients of the lateral corticospinal tract (CST), fasciculus gracilis and fasciculus cuneatus (FGC). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) techniques were used to estimate brain structure changes. Correlation of the modified Japanese Orthopaedic Association (mJOA) score, light touch, pinprick, motor score, and fractional anisotropy (FA) ratios of the CST at different levels were analyzed. Compared to healthy controls, the FA ratios of CST in the HS and nHS groups were decreased at all levels, and the apparent diffusion coefficient (ADC) ratio was increased only at C4/5 levels in the HS group. The FA ratio of FGC was decreased at the C3/4 and C4/5 levels in the HS group and only decreased at the C4/5 level in the nHS group. The ADC ratio was decreased only at the C4/5 level in the HS group. VBM analysis revealed that the volume of the precentral gyrus, postcentral gyrus, and paracentral lobule increased in patients compared to controls. TBSS analysis found no statistical significance between the sensory and motor tracts in white matter. The volume of clusters in HS and nHS groups negatively correlated with the C1/2 FA ratio of the CST. The results showed that the degeneration distance of the CST was longer than the FGC, and the degeneration distance was related to the degree of compression and spinal cord damage. Structural compensation and the neurotrophin family may lead to enlargement of the brain.
Collapse
Affiliation(s)
- Senlin Chen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Xianyong Wu
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jianchao Chang
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Weiming Jin
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Wei Li
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
- *Correspondence: Fulong Dong
| |
Collapse
|
10
|
Rao JS, Zhao C, Bao SS, Feng T, Xu M. MRI metrics at the epicenter of spinal cord injury are correlated with the stepping process in rhesus monkeys. Exp Anim 2021; 71:139-149. [PMID: 34789621 PMCID: PMC9130044 DOI: 10.1538/expanim.21-0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinical evaluations of long-term outcomes in the early-stage spinal cord injury (SCI) focus on macroscopic motor performance and are limited in their prognostic precision. This study was designed to investigate the sensitivity of the magnetic resonance imaging (MRI) indexes to the data-driven gait process after SCI. Ten adult female rhesus monkeys were subjected to thoracic SCI. Kinematics-based gait examinations were performed at 1 (early stage) and 12 (chronic stage) months post-SCI. The proportion of stepping (PS) and gait stability (GS) were calculated as the outcome measures. MRI metrics, which were derived from structural imaging (spinal cord cross-sectional area, SCA) and diffusion tensor imaging (fractional anisotropy, FA; axial diffusivity, λ//), were acquired in the early stage and compared with functional outcomes by using correlation analysis and stepwise multivariable linear regression. Residual tissue SCA at the injury epicenter and residual tissue FA/remote normal-like tissue FA were correlated with the early-stage PS and GS. The extent of lesion site λ///residual tissue λ// in the early stage after SCI was correlated with the chronic-stage GS. The ratios of lesion site λ// to residual tissue λ// and early-stage GS were predictive of the improvement in the PS at follow-up. Similarly, the ratios of lesion site λ// to residual tissue λ// and early-stage PS best predicted chronic GS recovery. Our findings demonstrate the predictive power of MRI combined with the early data-driven gait indexes for long-term outcomes. Such an approach may help clinicians to predict functional recovery accurately.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute.,School of Rehabilitation, Capital Medical University
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital
| |
Collapse
|
11
|
Biktimirov A, Pak O, Bryukhovetskiy I, Sharma A, Sharma HS. Neuromodulation as a basic platform for neuroprotection and repair after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2021; 266:269-300. [PMID: 34689861 DOI: 10.1016/bs.pbr.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is one of the most challenging medical issues. Spasticity is a major complication of SCI. A combination of spinal cord stimulation, new methods of neuroprotection and biomedical cellular products provides fundamentally new options for SCI treatment and rehabilitation. The paper attempts to critically analyze the effectiveness of using these procedures for patients with SCI, suggesting a protocol for a step-by-step personalized treatment of SCI, based on continuity of modern conservative and surgical methods. The study argues the possibility of using neuromodulation as a basis for rehabilitating patients with SCI.
Collapse
Affiliation(s)
- Artur Biktimirov
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Oleg Pak
- Department of Neurosurgery, Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Schading S, Emmenegger TM, Freund P. Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Curr Neurol Neurosci Rep 2021; 21:49. [PMID: 34268621 PMCID: PMC8282571 DOI: 10.1007/s11910-021-01134-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Traumatic spinal cord injury (SCI) is a life-changing event with drastic implications for patients due to sensorimotor impairment and autonomous dysfunction. Current clinical evaluations focus on the assessment of injury level and severity using standardized neurological examinations. However, they fail to predict individual trajectories of recovery, which highlights the need for the development of advanced diagnostics. This narrative review identifies recent advances in the search of clinically relevant biomarkers in the field of SCI. RECENT FINDINGS Advanced neuroimaging and molecular biomarkers sensitive to the disease processes initiated by the SCI have been identified. These biomarkers range from advanced neuroimaging techniques, neurophysiological readouts, and molecular biomarkers identifying the concentrations of several proteins in blood and CSF samples. Some of these biomarkers improve current prediction models based on clinical readouts. Validation with larger patient cohorts is warranted. Several biomarkers have been identified-ranging from imaging to molecular markers-that could serve as advanced diagnostic and hence supplement current clinical assessments.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim M Emmenegger
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Centre, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| |
Collapse
|
13
|
Rink S, Pavlov S, Wöhler A, Bendella H, Manthou M, Papamitsou T, Dunlop SA, Angelov DN. Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. J Neuropathol Exp Neurol 2021; 79:1203-1217. [PMID: 32594136 DOI: 10.1093/jnen/nlaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
The relationships between various parameters of tissue damage and subsequent functional recovery after spinal cord injury (SCI) are not well understood. Patients may regain micturition control and walking despite large postinjury medullar cavities. The objective of this study was to establish possible correlations between morphological findings and degree of functional recovery after spinal cord compression at vertebra Th8 in rats. Recovery of motor (Basso, Beattie, Bresnahan, foot-stepping angle, rump-height index, and ladder climbing), sensory (withdrawal latency), and bladder functions was analyzed at 1, 3, 6, 9, and 12 weeks post-SCI. Following perfusion fixation, spinal cord tissue encompassing the injury site was cut in longitudinal frontal sections. Lesion lengths, lesion volumes, and areas of perilesional neural tissue bridges were determined after staining with cresyl violet. The numbers of axons in these bridges were quantified after staining for class III β-tubulin. We found that it was not the area of the spared tissue bridges, which is routinely determined by magnetic resonance imaging (MRI), but the numbers of axons in them that correlated with functional recovery after SCI (Spearman's ρ > 0.8; p < 0.001). We conclude that prognostic statements based only on MRI measurements should be considered with caution.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and Embryology, Medical University, Varna, Bulgaria
| | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Sarah A Dunlop
- School of Biological Sciences, The University of Western Australia, Australia
| | | |
Collapse
|
14
|
Effect of b Value on Imaging Quality for Diffusion Tensor Imaging of the Spinal Cord at Ultrahigh Field Strength. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4836804. [PMID: 33506018 PMCID: PMC7806383 DOI: 10.1155/2021/4836804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Objective To explore the optimal b value setting for diffusion tensor imaging of rats' spinal cord at ultrahigh field strength (7 T). Methods Spinal cord diffusion tensor imaging data were collected from 14 rats (5 healthy, 9 spinal cord injured) with a series of b values (200, 300, 400, 500, 600, 700, 800, 900, and 1000 s/mm2) under the condition that other scanning parameters were consistent. The image quality (including image signal-to-noise ratio and image distortion degree) and data quality (i.e., the stability and consistency of the DTI-derived parameters, referred to as data stability and data consistency) were quantitatively evaluated. The min-max normalization method was used to process the calculation results of the four indicators. Finally, the image and data quality under each b value were synthesized to determine the optimal b value. Results b = 200 s/mm2 and b = 900 s/mm2 ranked in the top two of the comprehensive evaluation, with the best image quality at b = 200 s/mm2 and the best data quality at b = 900 s/mm2. Conclusion Considering the shortcomings of the ability of low b values to reflect the microstructure, b = 900 s/mm2 can be used as the optimal b value for 7 T spinal cord diffusion tensor scanning.
Collapse
|
15
|
Fiani B, Noblett C, Nanney J, Doan T, Pennington E, Jarrah R, Sarno E, Nikolaidis D. Diffusion tensor imaging of the spinal cord status post trauma. Surg Neurol Int 2020; 11:276. [PMID: 33033638 PMCID: PMC7538980 DOI: 10.25259/sni_495_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/22/2020] [Indexed: 11/04/2022] Open
Abstract
Background Since its development in 1994, diffusion tensor imaging (DTI) has been successfully used to assess structural and functional changes to neurological tissue within the central nervous system. Namely, DTI is a noninvasive magnetic resonance imaging (MRI)-based technique that uses anisotropic diffusion to visualize and estimate the organization of white matter in neuronal tissue. It has been used to study various spinal pathologies including neoplastic diseases, degenerative myelopathy, demyelinating diseases, and infections involving the spinal cord. However, due to technical uncertainties and experimental limitations, DTI has rarely been clinically applied to assess trauma-related spinal pathologies. Methods An extensive review of the published literature on DTI was performed utilizing PubMed, OVID Medline, and EMBASE journals. Terms used for the search included DTI and spine trauma. Results The search yielded full text English language-related articles regarding DTIs application, limitations, and functional outcomes secondary to spinal trauma. Conclusion DTI relies on anisotropy in CNS tissues to determine the spatial orientation of surrounding axon tracts and define anatomical boundaries. Diffusion along three principle axes is used to calculate the following four DTI indices; fractional anisotropy, apparent diffusion coefficient (ADC), longitudinal ADC, and transverse ADC. Using DTI as a diagnostic tool status, post spine trauma has proven useful in examining the morphological and physiological extent of spinal lesions beyond conventional MRI. Experimental studies are now utilizing DTI to analyze the severity of spinal cord trauma during the hyperacute phase and may potentially be used to providing additional diagnostic information for improved treatment efficiency (e.g., as shown during the stem cell therapy trials).
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, CA
| | - Christian Noblett
- College of Osteopathic Medicine, University of New England, Biddeford, ME
| | - Jacob Nanney
- College of Medicine, University of Kentucky, Lexington, KY
| | - Thao Doan
- School of Medicine, University of Texas Medical Branch, Galveston, TX
| | | | - Ryan Jarrah
- College of Literature, Arts, and Sciences, University of Michigan-Flint, Flint, MI, United States
| | - Erika Sarno
- College of Osteopathic Medicine, Michigan State University, East Lansing
| | - Daniel Nikolaidis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Zhang J, Cheng T, Chen Y, Gao F, Guan F, Yao M. A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice. Biomed Mater 2020; 15:035020. [DOI: 10.1088/1748-605x/ab785f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Wade RG, Tanner SF, Teh I, Ridgway JP, Shelley D, Chaka B, Rankine JJ, Andersson G, Wiberg M, Bourke G. Diffusion Tensor Imaging for Diagnosing Root Avulsions in Traumatic Adult Brachial Plexus Injuries: A Proof-of-Concept Study. Front Surg 2020; 7:19. [PMID: 32373625 PMCID: PMC7177010 DOI: 10.3389/fsurg.2020.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cross-sectional MRI has modest diagnostic accuracy for diagnosing traumatic brachial plexus root avulsions. Consequently, patients either undergo major exploratory surgery or months of surveillance to determine if and what nerve reconstruction is needed. This study aimed to develop a diffusion tensor imaging (DTI) protocol at 3 Tesla to visualize normal roots and identify traumatic root avulsions of the brachial plexus. Seven healthy adults and 12 adults with known (operatively explored) unilateral traumatic brachial plexus root avulsions were scanned. DTI was acquired using a single-shot echo-planar imaging sequence at 3 Tesla. The brachial plexus was visualized by deterministic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated for injured and avulsed roots in the lateral recesses of the vertebral foramen. Compared to healthy nerves roots, the FA of avulsed nerve roots was lower (mean difference 0.1 [95% CI 0.07, 0.13]; p < 0.001) and the MD was greater (mean difference 0.32 × 10-3 mm2/s [95% CI 0.11, 0.53]; p < 0.001). Deterministic tractography reconstructed both normal roots and root avulsions of the brachial plexus; the negative-predictive value for at least one root avulsion was 100% (95% CI 78, 100). Therefore, DTI might help visualize both normal and injured roots of the brachial plexus aided by tractography. The precision of this technique and how it relates to neural microstructure will be further investigated in a prospective diagnostic accuracy study of patients with acute brachial plexus injuries.
Collapse
Affiliation(s)
- Ryckie G. Wade
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Steven F. Tanner
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Irvin Teh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - John P. Ridgway
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
- Department of Medical Physics and Engineering, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - David Shelley
- The Advanced Imaging Centre, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Brian Chaka
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - James J. Rankine
- Department of Radiology, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Gustav Andersson
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Grainne Bourke
- Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, United Kingdom
- Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom
- Department of Integrative Medical Biology (Anatomy), Faculty of Medicine, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Science (Hand and Plastic Surgery), Faculty of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Gao Z, Zhao Y, He X, Leng Z, Zhou X, Song H, Wang R, Gao Z, Wang Y, Liu J, Niu B, Li H, Ouyang P, Chang S. Transplantation of sh-miR-199a-5p-Modified Olfactory Ensheathing Cells Promotes the Functional Recovery in Rats with Contusive Spinal Cord Injury. Cell Transplant 2020; 29:963689720916173. [PMID: 32252553 PMCID: PMC7586279 DOI: 10.1177/0963689720916173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) function as gene expression switches, and participate in diverse pathophysiological processes of spinal cord injury (SCI). Olfactory ensheathing cells (OECs) can alleviate pathological injury and facilitate functional recovery after SCI. However, the mechanisms by which OECs restore function are not well understood. This study aims to determine whether silencing miR-199a-5p would enhance the beneficial effects of the OECs. In this study, we measured miR-199a-5p levels in rat spinal cords with and without injury, with and without OEC transplants. Then, we transfected OECs with the sh-miR-199a-5p lentiviral vector to reduce miR-199a-5p expression and determined the effects of these OECs in SCI rats by Basso-Beattie-Bresnahan (BBB) locomotor scores, diffusion tensor imaging (DTI), and histological methods. We used western blotting to measure protein levels of Slit1, Robo2, and srGAP2. Finally, we used the dual-luciferase reporter assay to assess the relationship between miR-199-5p and Slit1, Robo2, and srGAP2 expression. We found that SCI significantly increased miR-199a-5p levels (P < 0.05), and OEC transplants significantly reduced miR-199a-5p expression (P < 0.05). Knockdown of miR-199a-5p in OECs had a better therapeutic effect on SCI rats, indicated by higher BBB scores and fractional anisotropy values on DTI, as well as histological findings. Reducing miR-199a-5p levels in transplanted OECs markedly increased spinal cord protein levels of Slit1, Robo2, and srGAP2. Our results demonstrated that transplantation of sh-miR-199a-5p-modified OECs promoted functional recovery in SCI rats, suggesting that miR-199a-5p knockdown was more beneficial to the therapeutic effects of OEC transplants. These findings provided new insights into miRNAs-mediated therapeutic mechanisms of OECs, which helps us to develop therapeutic strategies based on miRNAs and optimize cell therapy for SCI.
Collapse
Affiliation(s)
- Zhengchao Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yingjie Zhao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zikuan Leng
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoqian Zhou
- Department of Radiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Hui Song
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rui Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Zhongyang Gao
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yiqun Wang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jiantao Liu
- Department of Spine and Spinal Cord Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Binbin Niu
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Medical College, Xi’an, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Pengrong Ouyang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Su’e Chang
- Department of Orthopaedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
19
|
Spinal cord stimulation and intrathecal baclofen therapy for patients with severe spasticity after spinal cord injury. PROGRESS IN BRAIN RESEARCH 2020; 258:79-99. [DOI: 10.1016/bs.pbr.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Liu XY, Liang J, Wang Y, Zhong L, Zhao CY, Wei MG, Wang JJ, Sun XZ, Wang KQ, Duan JH, Chen C, Tu Y, Zhang S, Ming D, Li XH. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:123. [PMID: 31686219 DOI: 10.1007/s10856-019-6322-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Prognosis and treatment evaluation of spinal cord injury (SCI) are still in the long-term research stage. Prognostic factors for SCI treatment need effective biomarker to assess therapeutic effect. Quantitative diffusion tensor imaging (DTI) may become a potential indicators for assessing SCI repair. However, its correlation with the results of locomotor function recovery and tissue repair has not been carefully studied. The aim of this study was to use quantitative DTI to predict neurological repair of SCI with transplanting collagen/chitosan scaffold binding basic fibroblast growth factor (bFGF). To achieve our research goals, T10 complete transection SCI model was established. Then collagen/chitosan mixture adsorbed with bFGF (CCS/bFGF) were implanted into rats with SCI. At 8 weeks after modeling, implanting CCS/bFGF demonstrated more significant improvements in locomotor function according to Basso-Beattie-Bresnahan (BBB) score, inclined-grid climbing test, and electrophysiological examinations. DTI was carried out to evaluate the repair of axons by diffusion tensor tractgraphy (DTT), fractional anisotropy (FA) and apparent diffusion coefficient (ADC), a numerical measure of relative white matter from the rostral to the caudal. Parallel to locomotor function recovery, the CCS/bFGF group could significantly promote the regeneration of nerve fibers tracts according to DTT, magnetic resonance imaging (MRI), Bielschowsky's silver staining and immunofluorescence staining. Positive correlations between imaging and locomotor function or histology were found at all locations from the rostral to the caudal (P < 0.0001). These results demonstrated that DTI might be used as an effective predictor for evaluating neurological repair after SCI in experimental trails and clinical cases.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin, 300070, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yi Wang
- Department of Neurology, Tianjin Hospital of Tianjin, Tianjin, 300211, China
| | - Lin Zhong
- Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chang-Yu Zhao
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Meng-Guang Wei
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Xiao-Zhe Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Ke-Qiang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Hao Duan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
21
|
Rao JS, Liu Z, Zhao C, Wei RH, Liu RX, Zhao W, Zhou X, Tian PY, Yang ZY, Li XG. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 2019; 48:320-328. [PMID: 31148186 DOI: 10.1111/jmp.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 04/03/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The relatively tiny spinal cord of non-human primate (NHP) causes increased challenge in diffusion tensor imaging (DTI) post-processing. This study aimed to establish a reliable correction strategy applied to clinical DTI images of NHP. METHODS Six normal and partial spinal cord injury (SCI) rhesus monkeys underwent 3T MR scanning. A correction strategy combining multiple iterations and non-rigid deformation was used for DTI image post-processing. Quantitative evaluations were then conducted to investigate effects of distortion correction. RESULTS After correction, longitudinal geometric distortion, global distortion, and residual distance errors were all significantly decreased (P < 0.05). Fractional anisotropy at the injured site was remarkably lower than that at the contralateral site (P = 0.0488) and was substantially lower than those at the adjacent superior (P = 0.0157) and inferior (P = 0.0128) areas at the same side. CONCLUSIONS Our image correction strategy can improve the quality of the DTI images of NHP thoracic cords, contributing to the development of SCI preclinical research.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhao
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Measurement Control and Information Technology, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ruo-Xi Liu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhao-Yang Yang
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
22
|
Murgoci AN, Baciak L, Cubinkova V, Smolek T, Tvrdik T, Juranek I, Kafka J, Cizkova D. Diffusion Tensor Imaging: Tool for Tracking Injured Spinal Cord Fibres in Rat. Neurochem Res 2019; 45:180-187. [PMID: 31055738 DOI: 10.1007/s11064-019-02801-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023]
Abstract
Spinal cord injury (SCI) is a severe disorder of the CNS leading to tissue damage and disability. Because it is critical to understand the pathological processes, it is important to find efficient ways to diagnose the severity of injured spinal cord tracts in situ from beginning up to a certain level of recovery following therapeutic interventions. In the current study, we set-up the criteria for diffusion tensor imaging (DTI) in order to capture changes of nerve fibre tracts in rat spinal cord compression injury. We tested four DTI parameters, such as fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity at the lesion site, in time course of 7 weeks. Afterwards, we compared DTI data with histological results and locomotor outcomes to examine their consistency and capability of reflecting the lesion development in time. Our data confirm that DTI is a valuable in vivo imaging tool capable to distinguish damaged white matter tracts after mild SCI in rat. Fractional anisotropy showed decreased values for injury site, while the mean diffusivity had higher values, with increased both axial and radial diffusivity in comparison to control subjects. Thus, the combination of DTI parameters can reflect the severity of lesion in time and may correlate with histological evaluation of spared tissue, but not with locomotor recovery following mild injury associated with spontaneous recovery.
Collapse
Affiliation(s)
- Adriana-Natalia Murgoci
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Ladislav Baciak
- Central Laboratories, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Tomas Tvrdik
- Central Laboratories, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Ivo Juranek
- Institute of Experimental Pharmacology and Toxicology, CEM of the SAS, 841 04, Bratislava, Slovakia
| | - Jozef Kafka
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Kosice, 041 81, Slovakia
| | - Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia. .,Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Kosice, 041 81, Slovakia.
| |
Collapse
|
23
|
Zheng W, Xu F, Chen H, Wang N, Xiao W, Liang Y, Wen S. Time course of diffusion tensor imaging metrics in the chronic spinal cord compression rat model. Acta Radiol 2019; 60:653-662. [PMID: 30142996 DOI: 10.1177/0284185118795335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) provides information about water molecule diffusion in spinal cord. PURPOSE This study was aimed to investigate DTI changes in the different stages of compressive spinal cord induced by water-absorbing material implantation. MATERIAL AND METHODS The spinal cord compression was administered over the fourth cervical vertebral level in rat. Rat models were divided into five subgroups according to compression stages: sham group, group A: three-day compression rat models; group B: 12-day compression rat models; group C: 20-day compression rat models; group D: 60-day compression rat models. DTI including fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the compressive spinal cord were collected. The relationship between the Basso, Beattie, and Bresnahan (BBB) scores and DTI metrics was further explored. RESULTS Compared with the sham group, BBB scoring of rat model showed a decreased tendency from group A ( P < 0.05) to group B ( P < 0.05). Then the motor function of rat model hindlimbs was recovered in some degree from group C ( P < 0.05) to group D ( P < 0.05) but had significant motor defects when compared with the normal level ( P < 0.05). The DTI metrics results revealed that chronic spinal cord compression resulted in lower FA value and higher ADC value at the compressive spinal cord level assessed at all four time-points ( P < 0.05). DTI metrics also showed a close correlation with motor function ( P < 0.05). CONCLUSION DTI is an optimal pre-clinical imaging tool to reflect locomotor performance and pathological status of compressive spinal cord epicenter in chronic spinal cord compression rat model.
Collapse
Affiliation(s)
- Weipeng Zheng
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Fangtian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, PR China
| | - Haoyi Chen
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Ning Wang
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wende Xiao
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - YingJie Liang
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Shifeng Wen
- Department of Orthopedics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Department of Orthopedics, First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
24
|
Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging. Spinal Cord 2019; 57:404-411. [PMID: 30643168 DOI: 10.1038/s41393-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
STUDY DESIGN Animal study. OBJECTIVES To evaluate the efficacy of hyperbaric oxygen (HBO) therapy for spinal cord injury (SCI) in rats with different treatment course using diffusion tensor imaging (DTI). SETTING Hospital in Fuzhou, China. METHODS Fifty adult Sprague-Dawley rats were grouped as: (A) sham-operated group (n = 10); (B) SCI without HBO therapy group (n = 10); (C) SCI with HBO therapy for 2 weeks (SCI+HBO2W) group (n = 10); (D) SCI with HBO therapy for 4 weeks (SCI+HBO4W) group (n = 10); (E) SCI with HBO therapy for 6 weeks (SCI+HBO6W) group (n = 10). Basso Beattie Bresnahan (BBB) scores and diffusion tensor imaging parameters including fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (RD), and axial diffusion (AD) values in the injury epicenter, as well as 2 mm rostral and caudal to the injury epicenter were collected and analyzed 6 weeks post-injury. RESULTS Higher BBB score and FA values were found in the SCI+HBO4W group than in the SCI and SCI+HBO2W groups (all P < 0.05), whereas no significant differences of these metrics were observed between the SCI+HBO4W and SCI+HBO6W groups. MD and RD values of the SCI+HBO4W group were significantly lower than those of the SCI group (all P < 0.01). FA values were positively correlated with BBB scores. MD and RD values were negatively correlated with BBB scores. CONCLUSION DTI parameters, especially FA, could non-invasively and quantifiably evaluate the efficacy of HBO treatment for rats with SCI and 4 weeks may be the more appropriate treatment course.
Collapse
|
25
|
Testing Pathological Variation of White Matter Tract in Adult Rats after Severe Spinal Cord Injury with MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4068156. [PMID: 30534561 PMCID: PMC6252222 DOI: 10.1155/2018/4068156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to assess the pathological variation in white matter tracts in the adult severe thoracic contusion spinal cord injury (SCI) rat models combined with in vivo magnetic resonance imaging (MRI), as well as the effect of spared white matter (WM) quantity on hindlimb motor function recovery. 7.0T MRI was conducted for all experimental animals before SCI and 1, 3, 7, and 14 days after SCI. The variation in the white matter tract in different regions of the spinal cord after SCI was examined by luxol fast blue (LFB) staining, NF200 immunochemistry, and diffusion tensor imaging (DTI) parameters, including fraction anisotropy, mean diffusivity, axial diffusion, and radial diffusivity. Meanwhile, Basso-Beattie-Bresnahan (BBB) open-field scoring was performed to evaluate the behavior of the paraplegic hind limbs. The quantitative analysis showed that spared white matter measures assessed by LFB and MRI had a close correlation (R2 = 0.8508). The percentage of spared white matter area was closely correlated with BBB score (R2 = 0.8460). After SCI, spared white matter in the spinal cord, especially the ventral column WM, played a critical role in motor function restoration. The results suggest that the first three days provides a key time window for SCI protection and treatment; spared white matter, especially in the ventral column, plays a key role in motor function recovery in rats. Additionally, DTI may be an important noninvasive technique to diagnose acute SCI degree as well as a tool to evaluate functional prognosis. During the transition from nerve protection toward clinical treatment after SCI, in vivo DTI may serve as an emerging noninvasive technique to diagnose acute SCI degree and predict the degree of spontaneous functional recovery after SCI.
Collapse
|
26
|
Wei RH, Zhao C, Rao JS, Zhao W, Zhou X, Tian PY, Song W, Ji R, Zhang AF, Yang ZY, Li XG. The kinematic recovery process of rhesus monkeys after spinal cord injury. Exp Anim 2018; 67:431-440. [PMID: 29769463 PMCID: PMC6219880 DOI: 10.1538/expanim.18-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
After incomplete spinal cord injury (SCI), neural circuits may be plastically
reconstructed to some degree, resulting in extensive functional locomotor recovery. The
present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs
and compare the recovery degrees of different hindlimb parts, thus revealing the recovery
process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection
injury. The hindlimb locomotor performance of these animals was recorded before surgery,
as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant
parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and
analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb
endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint
even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints
showed no obvious recovery. Generally, different parts of a monkey hindlimb had different
spontaneous recovery processes; specifically, the closer the part was to the distal end,
the more extensive was the locomotor function recovery. Therefore, we speculate that
locomotor recovery may be attributed to plastic reconstruction of the motor circuits that
are mainly composed of corticospinal tract. This would help to further understand the
plasticity of motor circuits after spinal cord injury.
Collapse
Affiliation(s)
- Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,School of Instrument Science and Opto-Electronic Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
| | - Wei Song
- Rehabilitation Engineering Research Institute, China Rehabilitation Research Center, No. 10 Jiaomenbei Road, Fengtai District, Beijing 100068, P.R. China
| | - Run Ji
- Human Biomechanics Laboratory, National Research Center for Rehabilitation Technical Aids, No. 1 Ronghuazhong Road, Daxing District, Beijing 100176, P.R. China
| | - Ai-Feng Zhang
- Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing 100050, P.R. China
| | - Zhao-Yang Yang
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P.R. China.,Department of Neurobiology, Capital Medical University, No. 10 Xitoutiao Road, Youanmenwai, Xicheng District, Beijing 100191, P.R. China
| |
Collapse
|