1
|
Mayr T, Riazy L, Trauzeddel RF, Bassenge JP, Wiesemann S, Blaszczyk E, Prothmann M, Hadler T, Schmitter S, Schulz-Menger J. Hypertrophic obstructive cardiomyopathy-left ventricular outflow tract shapes and their hemodynamic influences applying CMR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03242-4. [PMID: 39302632 DOI: 10.1007/s10554-024-03242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac disorders and is characterized by different phenotypes of left ventricular hypertrophy with and without obstruction. The effects of left ventricular outflow tract (LVOT) obstruction based on different anatomies may be hemodynamically relevant and influence therapeutic decision making. Cardiovascular magnetic resonance (CMR) provides anatomical information. We aimed to identify different shapes of LVOT-obstruction using Cardiovascular Magnetic Resonance (CMR). The study consisted of two parts: An in-vivo experiment for shape analysis and in-vitro part for the assessment of its hemodynamic consequences. In-vivo a 3D depiction of the LVOT was created using a 3D multi-slice reconstruction from 2D-slices (full coverage cine stack with 7 slices and a thickness of 5-6 mm with no gap) in 125 consecutive HOCM patients (age = 64.17 +/- 12.655; female n = 42). In-vitro an analysis of the LVOT regarding shape and flow behavior was conducted. For this purpose, 2D and 4D measurements were performed on 3D printed phantoms which were based on the anatomical characteristics of the in-vivo study, retrospectively. The in-vivo study identified three main shapes named K- (28.8%), X- (51.2%) and V-shape (10.4%) and a mixed one (9.6%). By analyzing the in-vitro flow measurements every shape showed an individual flow profile in relation to the maximum velocity in cm/s. Here, the V-shape showed the highest value of velocity (max. 138.87 cm/s). The X-shape was characterized by a similar profile but with lower velocity values (max. 125.39 cm/s), whereas the K-shape had an increase of the velocity without decrease (max. 137.11 cm/s). For the first time three different shapes of LVOT-obstruction could be identified. These variants seem to affect the hemodynamics in HOCM.
Collapse
Affiliation(s)
- T Mayr
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - L Riazy
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - R F Trauzeddel
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - J P Bassenge
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - S Wiesemann
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - E Blaszczyk
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - M Prothmann
- HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - T Hadler
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany
| | - S Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- ECRC Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin Berlin, Lindenberger Weg 80, 13125, Berlin, Germany.
- HELIOS Hospital Berlin-Buch, Berlin, Germany.
| |
Collapse
|
2
|
Viezzer D, Fenski M, Grandy TH, Kuhnt J, Hadler T, Lange S, Schulz-Menger J. Reslice3Dto2D: Introduction of a software tool to reformat 3D volumes into reference 2D slices in cardiovascular magnetic resonance imaging. BMC Res Notes 2024; 17:270. [PMID: 39289712 PMCID: PMC11409793 DOI: 10.1186/s13104-024-06931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Cardiovascular magnetic resonance enables the quantification of functional and morphological parameters with an impact on therapeutical decision making. While quantitative assessment is established in 2D, novel 3D techniques lack a standardized approach. Multi-planar-reformatting functionality in available software relies on visual matching location and often lacks necessary functionalities for further post-processing. Therefore, the easy-to-use Reslice3Dto2D software tool was developed as part of another research project to fill this gap and is now introduced with this work. RESULTS The Reslice3Dto2D reformats 3D data at the exact location of a reference slice with a two-step-based interpolation in order to reflect in-plane discretization and through-plane slice thickness including a slice profile selection. The tool was successfully validated on an artificial dataset and tested on 119 subjects with different underlying pathologies. The exported reformatted data could be imported into three different post-processing software tools. The quantified image sharpness by the Frequency Domain Image Blur Measure was significantly decreased by around 40% on rectangular slice profiles with 7 mm slice thickness compared to 0 mm due to partial volume effects. Consequently, Reslice3Dto2D enables the quantification of 3D data with conventional post-processing tools as well as the comparison of 3D acquisitions with their established 2D version.
Collapse
Affiliation(s)
- Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany.
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Maximilian Fenski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Thomas Hiroshi Grandy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Johanna Kuhnt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Steffen Lange
- Faculty for Computer Sciences, Hochschule Darmstadt (University of Applied Sciences), Darmstadt, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
3
|
Merton R, Bosshardt D, Strijkers GJ, Nederveen AJ, Schrauben EM, van Ooij P. Assessing Aortic Motion with Automated 3D Cine Balanced SSFP MRI Segmentation. J Cardiovasc Magn Reson 2024:101089. [PMID: 39218220 DOI: 10.1016/j.jocmr.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE To apply free-running three-dimensional (3D) cine balanced steady state free precession (bSSFP) CMR framework in combination with AI segmentations to quantify time-resolved aortic displacement, diameter and diameter change. METHODS In this prospective study, we implemented a free-running 3D cine bSSFP sequence with scan time of about 4minutes facilitated by pseudo-spiral Cartesian undersampling and compressed-sensing reconstruction. Automated segmentation of all cardiac timeframes was applied through the use of nnU-Net. Dynamic 3D motion maps were created for three repeated scans per volunteer, leading to the detailed quantification of motion, as well as the measurement and change in diameter of the ascending aorta. RESULTS A total of 14 adult healthy volunteers (median age, 28 years (IQR: 26.0-31.3), 6 female) were included. Automated segmentation compared to manual segmentation of the aorta test set showed a Dice score of 0.93 ± 0.02. The median (interquartile range) over all volunteers for the largest maximum and mean ascending aorta (AAo) displacement in the first scan was 13.0 (4.4) mm and 5.6 (2.4) mm, respectively. Peak mean diameter in the AAo was 25.9 (2.2) mm and peak mean diameter change was 1.4 (0.5) mm. The maximum individual variability over the three repeated scans of maximum and mean AAo displacement was 3.9 (1.6) mm and 2.2 (0.8) mm, respectively. The maximum individual variability of mean diameter and diameter change were 1.2 (0.5) mm and 0.9 (0.4) mm. CONCLUSION A free-running 3D cine bSSFP CMR scan with a scan time of four minutes combined with an automated nnU-net segmentation consistently captured the aorta's cardiac motion-related 4D displacement, diameter, and diameter change.
Collapse
Affiliation(s)
- Renske Merton
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, the Netherlands.
| | - Daan Bosshardt
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, the Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eric M Schrauben
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Pim van Ooij
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Falcão MBL, Mackowiak ALC, Rossi GMC, Prša M, Tenisch E, Rumac S, Bacher M, Rutz T, van Heeswijk RB, Speier P, Markl M, Bastiaansen JAM, Stuber M, Roy CW. Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals. J Cardiovasc Magn Reson 2024; 26:101006. [PMID: 38309581 PMCID: PMC11211232 DOI: 10.1016/j.jocmr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Giulia M C Rossi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman, Mother, Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Estelle Tenisch
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Simone Rumac
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Siemens Healthcare GmbH, Erlangen, Germany
| | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Sachdeva R, Armstrong AK, Arnaout R, Grosse-Wortmann L, Han BK, Mertens L, Moore RA, Olivieri LJ, Parthiban A, Powell AJ. Novel Techniques in Imaging Congenital Heart Disease: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:63-81. [PMID: 38171712 PMCID: PMC10947556 DOI: 10.1016/j.jacc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Recent years have witnessed exponential growth in cardiac imaging technologies, allowing better visualization of complex cardiac anatomy and improved assessment of physiology. These advances have become increasingly important as more complex surgical and catheter-based procedures are evolving to address the needs of a growing congenital heart disease population. This state-of-the-art review presents advances in echocardiography, cardiac magnetic resonance, cardiac computed tomography, invasive angiography, 3-dimensional modeling, and digital twin technology. The paper also highlights the integration of artificial intelligence with imaging technology. While some techniques are in their infancy and need further refinement, others have found their way into clinical workflow at well-resourced centers. Studies to evaluate the clinical value and cost-effectiveness of these techniques are needed. For techniques that enhance the value of care for congenital heart disease patients, resources will need to be allocated for education and training to promote widespread implementation.
Collapse
Affiliation(s)
- Ritu Sachdeva
- Department of Pediatrics, Division of Pediatric Cardiology, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, Department of Pediatrics, Division of Cardiology, Ohio State University, Columbus, Ohio, USA
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Lars Grosse-Wortmann
- Division of Cardiology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - B Kelly Han
- Division of Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura J Olivieri
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anitha Parthiban
- Department of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Panayiotou HR, Mills LK, Broadbent DA, Shelley D, Scheffczik J, Olaru AM, Jin N, Greenwood JP, Michael H, Plein S, Bissell MM. Comprehensive Neonatal Cardiac, Feed and Wrap, Non-contrast, Non-sedated, Free-breathing Compressed Sensing 4D Flow MRI Assessment. J Magn Reson Imaging 2023; 57:789-799. [PMID: 35792484 DOI: 10.1002/jmri.28325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cardiac MRI is an important imaging tool in congenital cardiac disease, but its use has been limited in the neonatal population as general anesthesia has been needed for breath-holding. Technological advances in four-dimensional (4D) flow MRI have now made nonsedated free-breathing acquisition protocols a viable clinical option, but the method requires prospective validation in neonates. PURPOSE To test the feasibility of compressed sensing (CS) 4D flow MRI in the neonatal population and to compare with standard previously validated two-dimensional (2D) phase-contrast (PC) flow MRI. STUDY TYPE Prospective, cohort, image quality. POPULATION A total of 14 healthy neonates (median [range] age: 2.5 [0-80] days; 8 male). FIELD STRENGTH AND SEQUENCE Noncontrast 2D cine gradient echo sequence with through-plane velocity encoding (PC) sequence and compressed sensing (CS) three-dimensional (3D), time-resolved, cine phase-contrast MRI with 3D velocity-encoding (4D flow MRI) at 3 T. ASSESSMENT Aortic 2D PC, and aortic, pulmonary trunk and superior vena cava CS 4D flow MRI were acquired using the feed and wrap technique (nonsedated) and quantified using commercially available software. Aortic flow and peak velocity were compared between methods. Internal consistency of 4D flow MRI was determined by comparing mean forward flow of the main pulmonary artery (MPA) vs. the sum of left and right pulmonary artery flows (LPA and RPA) and by comparing mean ascending aorta forward flow (AAo) vs. the sum of superior vena cava (SVC) and descending aorta flows (DAo). STATISTICAL TESTS Flow and peak-velocity comparisons were assessed using paired t-tests, with P < 0.05 considered significant, and Bland-Altman analysis. Interobserver and intraobserver agreement and internal consistency were analyzed by intraclass correlation co-efficient (ICC). RESULTS There was no statistically significant difference between ascending aortic forward flow between 2D PC and CS 4D Flow MRI (P = 0.26) with a bias of 0.11 mL (-0.59 to 0.82 mL) nor peak velocity (P = 0.11), with a bias of -5 cm/sec and (-26 to 16 cm/sec). There was excellent interobserver and intraobserver agreement for each vessel (interobserver ICC: AAo 1.00; DAo 0.94, SVC 0.90, MPA 0.99, RPA 0.98, LPA 0.96; intraobserver ICC: AAo 1.00; DAo 0.99, SVC 0.98, MPA 1.00, RPA 1.00, LPA 0.99). Internal consistency measures showed excellent agreement for both mean forward flow of main pulmonary artery vs. the sum of left and right pulmonary arteries (ICC: 0.95) and mean ascending aorta forward flow vs. the sum of superior vena cava and descending aorta flows (ICC: 1.00). CONCLUSION Sedation-free neonatal feed and wrap MRI is well tolerated and feasible. CS 4D flow MRI quantification is similar to validated 2D PC free-breathing imaging with excellent interobserver and intraobserver agreement. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
| | - Lily K Mills
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK
| | - David A Broadbent
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK.,Department of Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David Shelley
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK
| | - Jutta Scheffczik
- Department of Anaesthesiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Ning Jin
- Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | - John P Greenwood
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK
| | - Helen Michael
- Department of Paediatric Cardiology, Leeds Teaching Hospitals NHS Trust, UK
| | - Sven Plein
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK
| | - Malenka M Bissell
- Biomedical Imaging Sciences Department, University of Leeds, Leeds, UK.,Department of Paediatric Cardiology, Leeds Teaching Hospitals NHS Trust, UK
| |
Collapse
|
7
|
Steele JM, Moore RA, Lang SM. Use of advanced cardiac imaging in congenital heart disease: growth, indications and innovations. Curr Opin Pediatr 2021; 33:495-502. [PMID: 34374664 DOI: 10.1097/mop.0000000000001051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Significant improvements in the diagnosis and management of patients with congenital heart disease (CHD) have led to improved survival. These patients require life-long noninvasive evaluation. The use of advanced imaging such as cardiac magnetic resonance imaging (CMR) and cardiac computed tomography (CCT) has increased to support this need. The purpose of this review is to discuss the basics of advanced cardiac imaging, indications and review the recent innovations. RECENT FINDINGS Recent literature has demonstrated the increasing reliance of advanced imaging for CHD patients. In addition, research is focusing on CMR techniques to shorten scan time and address previous limitations that made imaging younger and sicker patients more challenging. CCT research has involved demonstrating high-quality images with low radiation exposure. Advances in digital technology have impacted the interactivity of 3D imaging through the use of virtual and augmented reality platforms. With the increased reliance of advanced imaging, appropriate use criteria have been developed to address possible under or over utilization. SUMMARY The utilization of advanced cardiac imaging continues to increase. As CMR and CCT continue to grow, increased knowledge of these modalities and their usage will be necessary for clinicians caring for CHD patients.
Collapse
Affiliation(s)
- Jeremy M Steele
- Department of Pediatrics, Section of Pediatric Cardiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ryan A Moore
- Heart Institute, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean M Lang
- Heart Institute, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|