1
|
Miao Q, Hua S, Gong Y, Lyu Z, Qian P, Liu C, Jin W, Hu P, Qi H. Free-Breathing Non-Contrast T1ρ Dispersion MRI of Myocardial Interstitial Fibrosis in Comparison with Extracellular Volume Fraction. J Cardiovasc Magn Reson 2024:101093. [PMID: 39245148 DOI: 10.1016/j.jocmr.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Myocardial fibrosis is a common feature in various cardiac diseases. It causes adverse cardiac remodeling and is associated with poor clinical outcomes. Late gadolinium enhancement (LGE) and extracellular volume fraction (ECV) are the standard MRI techniques for detecting focal and diffuse myocardial fibrosis. However, these contrast-enhanced techniques require the administration of gadolinium contrast agents, which is not applicable to patients with gadolinium contraindications. To eliminate the need of contrast agents, we develop and apply an endogenous free-breathing T1ρ dispersion imaging technique (FB-MultiMap) for diagnosing diffuse myocardial fibrosis in a cohort with suspected cardiomyopathies. METHODS The proposed FB-MultiMap technique, enabling T2, T1ρ and their difference (myocardial fibrosis index, mFI) quantification in a single scan was developed in phantoms and 15 healthy subjects. In the clinical study, 55 patients with suspected cardiomyopathies were imaged using FB-MultiMap, conventional native T1 mapping, LGE, and ECV imaging. The accuracy of the endogenous parameters for predicting increased ECV was evaluated using receiver operating characteristic (ROC) curve analysis. In addition, the correlation of native T1, T1ρ, and mFI with ECV was respectively assessed using Pearson correlation coefficients. RESULTS FB-MultiMap showed a good agreement with conventional separate breath-hold mapping techniques in phantoms and healthy subjects. Considering all the patients, T1ρ was more accurate than mFI and native T1 for predicting increased ECV, with area under the curve (AUC) values of 0.91, 0.79 and 0.75, respectively, and showed stronger correlation with ECV (correlation coefficient r: 0.72 vs. 0.52 vs. 0.40). In the subset of 47 patients with normal T2 values, the diagnostic performance of mFI was significantly strengthened (AUC=0.90, r=0.83), outperforming T1ρ and native T1. CONCLUSION The proposed free-breathing T1ρ dispersion imaging technique enabling simultaneous quantification of T2, T1ρ and mFI in a single scan has shown great potential for diagnosing diffuse myocardial fibrosis in patients with complex cardiomyopathies without contrast agents.
Collapse
Affiliation(s)
- Qinfang Miao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Gong
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Lyu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Pengfang Qian
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Chun Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Wei Jin
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
2
|
Wang K, Zhang Y, Zhang W, Jin H, An J, Cheng J, Zheng J. Role of endogenous T1ρ and its dispersion imaging in differential diagnosis of cardiac amyloidosis. J Cardiovasc Magn Reson 2024; 26:101080. [PMID: 39127261 PMCID: PMC11422604 DOI: 10.1016/j.jocmr.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) has demonstrated excellent performance in the diagnosis of cardiac amyloidosis (CA). However, misdiagnosis occasionally occurs because the morphological and functional features of CA are non-specific. This study was performed to determine the value of non-contrast CMR T1ρ in the diagnosis of CA. METHODS This prospective study included 45 patients with CA, 30 patients with hypertrophic cardiomyopathy (HCM), and 10 healthy controls (HCs). All participants underwent cine (whole heart), T1ρ mapping, pre- and post-contrast T1 mapping imaging (three slices), and late gadolinium enhancement using a 3T whole-body magnetic resonance imaging system. All participants underwent T1ρ at two spin-locking frequencies: 0 and 298 Hz. Extracellular volume (ECV) maps were obtained using pre- and post-contrast T1 maps. The myocardial T1ρ dispersion map, termed myocardial dispersion index (MDI), was also calculated. All parameters were measured in the left ventricular myocardial wall. Participants in the HC group were scanned twice on different days to assess the reproducibility of T1ρ measurements. RESULTS Excellent reproducibility was observed upon evaluation of the coefficient of variation between two scans (T1ρ [298 Hz]: 3.1%; T1ρ [0 Hz], 2.5%). The ECV (HC: 27.4 ± 2.8% vs HCM: 32.6 ± 5.8% vs CA: 46 ± 8.9%; p < 0.0001), T1ρ [0 Hz] (HC: 35.8 ± 1.7 ms vs HCM: 40.0 ± 4.5 ms vs CA: 51.4 ± 4.4 ms; p < 0.0001) and T1ρ [298 Hz] (HC: 41.9 ± 1.6 ms vs HCM: 48.8 ± 6.2 ms vs CA: 54.4 ± 5.2 ms; p < 0.0001) progressively increased from the HC group to the HCM group, and then the CA group. The MDI progressively decreased from the HCM group to the HC group, and then the CA group (HCM: 8.8 ± 2.8 ms vs HC: 6.1 ± 0.9 ms vs CA: 3.4 ± 2.1 ms; p < 0.0001). For differential diagnosis, the combination of MDI and T1ρ [298 Hz] showed the greatest sensitivity (98.3%) and specificity (95.5%) between CA and HCM, compared with the native T1 and ECV. CONCLUSION The T1ρ and MDI approaches can be used as non-contrast CMR imaging biomarkers to improve the differential diagnosis of patients with CA.
Collapse
Affiliation(s)
- Keyan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongrui Jin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Jingliang Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Han C, Xu H, Gao H, Liu F, Wu J, Liu Y, Cheng Y, Deng W, Yue X, Wu Z, Yu Y, Zhao R, Han Y, Li X. Effect of spin-lock frequency on quantitative myocardial T1ρ mapping. Insights Imaging 2024; 15:176. [PMID: 38992330 PMCID: PMC11239636 DOI: 10.1186/s13244-024-01762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVES To use T1ρ mapping to assess myocardial fibrosis and to provide a reference for future clinical application, it is necessary to understand the factors influencing T1ρ values. This study explored the influence of different spin-locking frequencies on T1ρ values under a 3.0-T MR system. METHODS Fifty-seven healthy subjects were prospectively and consecutively included in this study, and T1ρ mapping was performed on them in 3 short-axis slices with three spin-lock frequencies at the amplitude of 300 Hz, 400 Hz, and 500 Hz, then nine T1ρ images were acquired per subject. Four T1ρ-weighted images were acquired using a spin-lock preparation pulse with varying durations (0 msec, 13.3 msec, 26.6 msec, 40 msec). T1ρ relaxation times were quantified for each slice and each myocardial segment. The results were analyzed using Student's t-test and one-way analysis of variance (ANOVA) methods. RESULTS Mean T1ρ relaxation times were 43.5 ± 2.8 msec at 300 Hz, 44.9 ± 3.6 msec at 400 Hz, and 46.2 ± 3.1 msec at 500 Hz, showing a significant progressive increase from low to high spin-lock frequency (300 Hz vs. 400 Hz, p = 0.046; 300 Hz vs. 500 Hz, p < 0.001; 400 Hz vs. 500 Hz, p = 0.043). In addition, The T1ρ values of females were significantly higher than those of males (300 Hz, p = 0.049; 400 Hz, p = 0.01; 500 Hz, p = 0.002). CONCLUSION In this prospective study, myocardial T1ρ values for the specific CMR setting are provided, and we found that gender and spin-lock frequency can affect the T1ρ values. CRITICAL RELEVANCE STATEMENT T1ρ mapping could supersede late gadolinium enhancement for detection of myocardial fibrosis. Establishing reference mean values that take key technical elements into account will facilitate interpretation of data in disease states. KEY POINTS This study established myocardial T1ρ reference values for different spin-lock frequencies. T1ρ values increased with spin-lock frequency, but numerical differences were minimal. Females had higher T1ρ values than males at all frequencies.
Collapse
Affiliation(s)
- Caiyun Han
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Fang Liu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Jian Wu
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Yong Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China
| | | | | | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, 230022, Hefei, China.
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, the Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University; Research Center of Clinical Medical Imaging; Anhui Province Clinical Image Quality Control Center, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
4
|
Vanmali A, Alhumaid W, White JA. Cardiovascular Magnetic Resonance-Based Tissue Characterization in Patients With Hypertrophic Cardiomyopathy. Can J Cardiol 2024; 40:887-898. [PMID: 38490449 DOI: 10.1016/j.cjca.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common hereditable cardiomyopathy that affects between 1:200 to 1:500 of the general population. The role of cardiovascular magnetic resonance (CMR) imaging in the management of HCM has expanded over the past 2 decades to become a key informant of risk in this patient population, delivering unique insights into tissue health and its influence on future outcomes. Numerous mature CMR-based techniques are clinically available for the interrogation of tissue health in patients with HCM, inclusive of contrast and noncontrast methods. Late gadolinium enhancement imaging remains a cornerstone technique for the identification and quantification of myocardial fibrosis with large cumulative evidence supporting value for the prediction of arrhythmic outcomes. T1 mapping delivers improved fidelity for fibrosis quantification through direct estimations of extracellular volume fraction but also offers potential for noncontrast surrogate assessments of tissue health. Water-sensitive imaging, inclusive of T2-weighted dark blood imaging and T2 mapping, have also shown preliminary potential for assisting in risk discrimination. Finally, emerging techniques, inclusive of innovative multiparametric methods, are expanding the utility of CMR to assist in the delivery of comprehensive tissue characterization toward the delivery of personalized HCM care. In this narrative review we summarize the contemporary landscape of CMR techniques aimed at characterizing tissue health in patients with HCM. The value of these respective techniques to identify patients at elevated risk of future cardiovascular outcomes are highlighted.
Collapse
Affiliation(s)
- Atish Vanmali
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, Alberta, Canada; Department of Diagnostic Imaging, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada; Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Waleed Alhumaid
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada; Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - James A White
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, Alberta, Canada; Department of Diagnostic Imaging, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada; Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Yang R, Chen Z, Pan J, Yang S, Hu F. Non-contrast T1ρ dispersion versus Gd-EOB-DTPA-enhanced T1mapping for the risk stratification of non-alcoholic fatty liver disease in rabbit models. Magn Reson Imaging 2024; 107:130-137. [PMID: 38278311 DOI: 10.1016/j.mri.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE To investigate the diagnostic efficacy of T1ρ dispersion and Gd-EOB-DTPAenhanced T1mapping in the identification of early liver fibrosis (LF) and non-alcoholic steatohepatitis (NASH) in a non-alcoholic fatty liver disease (NAFLD) rabbit model induced by a high-fat diet using histopathological findings as the standard reference. METHODS A total of sixty rabbits were randomly allocated into the standard control group (n = 12) and the NAFLD model groups (8 rabbits per group) corresponding to different high-fat high cholesterol diet feeding weeks. All rabbits underwent noncontrast transverse T1ρ mapping with varying spin-locking frequencies (FSL = 0 Hz and 500 Hz), native T1 mapping, and Gd-EOB-DTPA-enhanced T1 mapping during the hepatobiliary phase. The histopathological findings were assessed based on the NASH CRN Scoring System. Statistical analyses were conducted using the intraclass correlation coefficient, analysis of variance, multiple linear regression, and receiver operating characteristics. RESULTS Except for native T1, T1ρ, T1ρ dispersion, HBP T1, and △T1 values significantly differed among different liver fibrosis groups (F = 14.414, 18.736, 10.15, and 9.799, respectively; all P < 0.05). T1ρ, T1ρ dispersion, HBP T1, and △T1 values also exhibited significant differences among different NASH groups (F = 4.138, 4.594, 21.868, and 22.678, respectively; all P < 0.05). In the multiple regression analysis, liver fibrosis was the only factor that independently influenced T1ρ dispersion (R2 = 0.746, P = 0.000). Among all metrics, T1ρ dispersion demonstrated the best area under curve (AUC) for identifying early LF (≥ F1 stage) and significant LF (≥ F2 stage) (AUC, 0.849 and 0.916, respectively). The performance of △T1 and HBP T1 (AUC, 0.948 and 0.936, respectively) were better than that of T1ρ and T1ρ dispersion (AUC, 0.762 and 0.769, respectively) for diagnosing NASH. CONCLUSION T1⍴ dispersion may be suitable for detecting liver fibrosis in the complex background of NAFLD, while Gd-EOB-DTPA enhanced T1 mapping is superior to nonenhanced T1⍴ mapping (T1⍴ and T1⍴ dispersion) for identifying NASH.
Collapse
Affiliation(s)
- Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Zhongshan Chen
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Jin Pan
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Shimin Yang
- Shanghai United Imaging Healthcare Co., Ltd., No.2258, Chengbei Road, Shanghai, China
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Shu H, Xu H, Pan Z, Liu Y, Deng W, Zhao R, Sun Y, Wang Z, Yang J, Gao H, Yao K, Zheng J, Yu Y, Li X. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1335899. [PMID: 38510696 PMCID: PMC10952821 DOI: 10.3389/fendo.2024.1335899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.
Collapse
Affiliation(s)
- Hongmin Shu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zixiang Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Sun
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Kaixuan Yao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
7
|
Alajmi F, Kang M, Dundas J, Haenel A, Parker J, Blanke P, Coghlan F, Khoo JK, Bin Zaid AA, Singh A, Heydari B, Yeung D, Roston TM, Ong K, Leipsic J, Laksman Z. Novel Magnetic Resonance Imaging Tools for Hypertrophic Cardiomyopathy Risk Stratification. Life (Basel) 2024; 14:200. [PMID: 38398708 PMCID: PMC10889913 DOI: 10.3390/life14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder with a well described risk of sudden cardiac death; however, risk stratification has remained a challenge. Recently, novel parameters in cardiac magnetic resonance imaging (CMR) have shown promise in helping to improve upon current risk stratification paradigms. In this manuscript, we have reviewed novel CMR risk markers and their utility in HCM. The results of the review showed that T1, extracellular volume, CMR feature tracking, and other miscellaneous novel CMR variables have the potential to improve sudden death risk stratification and may have additional roles in diagnosis and prognosis. The strengths and weaknesses of these imaging techniques, and their potential utility and implementation in HCM risk stratification are discussed.
Collapse
Affiliation(s)
- Fahad Alajmi
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Mehima Kang
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - James Dundas
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
- Department of Cardiology, North Tees and Hartlepool NHS Foundation Trust, Hardwick Rd, Hardwick, Stockton-on-Tees TS19 8PE, UK
| | - Alexander Haenel
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Jeremy Parker
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Philipp Blanke
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
| | - Fionn Coghlan
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - John King Khoo
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Abdulaziz A. Bin Zaid
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Amrit Singh
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Medical Sciences, 2176 Health Sciences Mall Block C217, Vancouver, BC V6T 2A1, Canada;
| | - Bobby Heydari
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Darwin Yeung
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Thomas M. Roston
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Kevin Ong
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, 2775 Laurel Street, 11th Floor, Vancouver, BC V5Z 1M9, Canada; (J.D.); (J.L.)
| | - Zachary Laksman
- Center for Cardiovascular Innovation, Division of Cardiology, Department of Medicine, University of British Columbia, 2775 Laurel St, 9th Floor, Vancouver, BC V5Z 1M9, Canada; (M.K.); (A.H.); (J.P.); (P.B.); (F.C.); (J.K.K.); (A.A.B.Z.); (B.H.); (D.Y.); (T.M.R.); (K.O.)
| |
Collapse
|
8
|
Deng W, Wang Z, Jia Z, Liu F, Wu J, Yang J, An S, Yu Y, Han Y, Zhao R, Li X. Cardiac T1ρ Mapping Values Affected by Age and Sex in a Healthy Chinese Cohort. J Magn Reson Imaging 2024. [PMID: 38168067 DOI: 10.1002/jmri.29196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE Cross-sectional. POPULATION Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE P value <0.05. RESULTS Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Shutian An
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yuchi Han
- Cardiovascular Division, Wexner Medical Center, College of Medicine, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
9
|
Coletti C, Fotaki A, Tourais J, Zhao Y, van de Steeg-Henzen C, Akçakaya M, Tao Q, Prieto C, Weingärtner S. Robust cardiac T 1 ρ $$ {\mathrm{T}}_{1_{\boldsymbol{\rho}}} $$ mapping at 3T using adiabatic spin-lock preparations. Magn Reson Med 2023; 90:1363-1379. [PMID: 37246420 PMCID: PMC10984724 DOI: 10.1002/mrm.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE The aim of this study is to develop and optimize an adiabaticT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ (T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS Adiabatic SL (aSL) preparations were optimized for resilience againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. OptimizedB 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL andB 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. MyocardialT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimizedT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE,T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS The highestT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivoT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardialT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28± $$ \pm $$ 25.53 ms, compared with 38.21± $$ \pm $$ 14.37 ms RefSL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ .T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47± $$ \pm $$ 3.71% aSL, 37.61± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64± $$ \pm $$ 2.18% aSL, 47.39± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76± $$ \pm $$ 3.65% aSL, 51.90± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations,B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients,B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations.T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Anastasia Fotaki
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yidong Zhao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Claudia Prieto
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Milleniun Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
10
|
Zellers JA, Edalati M, Eekhoff JD, McNish R, Tang SY, Lake SP, Mueller MJ, Hastings MK, Zheng J. Quantative MRI predicts tendon mechanical behavior, collagen composition, and organization. J Orthop Res 2023; 41:2329-2338. [PMID: 36324161 PMCID: PMC10151441 DOI: 10.1002/jor.25471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/06/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Quantitative magnetic resonance imaging (qMRI) measures have provided insights into the composition, quality, and structure-function of musculoskeletal tissues. Low signal-to-noise ratio has limited application to tendon. Advances in scanning sequences and sample positioning have improved signal from tendon allowing for evaluation of structure and function. The purpose of this study was to elucidate relationships between tendon qMRI metrics (T1, T2, T1ρ and diffusion tensor imaging [DTI] metrics) with tendon tissue mechanics, collagen concentration and organization. Sixteen human Achilles tendon specimens were collected, imaged with qMRI, and subjected to mechanical testing with quantitative polarized light imaging. T2 values were related to tendon mechanics [peak stress (rsp = 0.51, p = 0.044), equilibrium stress (rsp = 0.54, p = 0.033), percent relaxation (rsp = -0.55, p = 0.027), hysteresis (rsp = -0.64, p = 0.007), linear modulus (rsp = 0.67, p = 0.009)]. T1ρ had a statistically significant relationship with percent relaxation (r = 0.50, p = 0.048). Collagen content was significantly related to DTI measures (range of r = 0.56-0.62). T2 values from a single slice of the midportion of human Achilles tendons were strongest predictors of tendon tensile mechanical metrics. DTI diffusivity indices (mean diffusivity, axial diffusivity, radial diffusivity) were strongly correlated with collagen content. These findings build on a growing body of literature supporting the feasibility of qMRI to characterize tendon tissue and noninvasively measure tendon structure and function. Statement of Clinical Significance: Quantitative MRI can be applied to characterize tendon tissue and is a noninvasive measure that relates to tendon composition and mechanical behavior.
Collapse
Affiliation(s)
- Jennifer A. Zellers
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Masoud Edalati
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| | - Jeremy D. Eekhoff
- Department of Biomedical Engineering; Washington University in St. Louis
| | - Reika McNish
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
| | - Simon Y. Tang
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Spencer P. Lake
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
- Department of Mechanical Engineering & Materials Science; Washington University in St. Louis
| | - Michael J. Mueller
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| | - Mary K. Hastings
- Program in Physical Therapy; Washington University School of Medicine in St. Louis
- Department of Orthopaedic Surgery; Washington University School of Medicine in St. Louis
| | - Jie Zheng
- Mallinckrodt Institute of Radiology; Washington University School of Medicine in St. Louis
| |
Collapse
|
11
|
Normal Values of Magnetic Resonance T
1
ρ
Relaxation Times in the Adult Heart at 1.5 T
MRI. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
|