1
|
Caprifico AE, Vaghi L, Spearman P, Calabrese G, Papagni A. In vitro detection of cancer cells using a novel fluorescent choline derivative. BMC Med Imaging 2024; 24:316. [PMID: 39567942 PMCID: PMC11580358 DOI: 10.1186/s12880-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION The treatment of preinvasive lesions is more effective than treating invasive disease, hence detecting cancer at its early stages is crucial. However, currently, available screening methods show various limitations in terms of sensitivity, specificity, and practicality, thus novel markers complementing traditional cyto/histopathological assessments are needed. Alteration in choline metabolism is a hallmark of many malignancies, including cervical and breast cancers. Choline radiotracers are widely used for imaging purposes, even though many risks are associated with their radioactivity. Therefore, this work aimed to synthesise and characterise a non-radioactive choline tracer based on a fluorinated acridine scaffold (CFA) for the in vitro detection of cervical and breast cancer cells by fluorescence imaging. METHODS CFA was fully characterised and tested for its cytotoxicity on breast (MCF-7), cervical (HeLa), glioblastoma (U-87 MG) and hepatoblastoma (HepG2) cancer cell lines and in normal cell lines (epithelial, HEK-293 and human dermal fibroblasts, HDFs). The cellular uptake of CFA was investigated by a confocal microscope and its accumulation was quantified over time. The specificity of CFA over mesenchymal origin cells (HDFs), as a model of cancer-associated fibroblasts was investigated by fluorescence microscopy. RESULTS CFA was toxic at much higher concentrations (HeLa IC50 = 200 ± 18 µM and MCF-7 IC50 = 105 ± 3 µM) than needed for its detection in cancer cells (5 µM). CFA was not toxic in the other cell lines tested. The intensity of CFA in breast and cervical cancer cells was not significantly different at any time point, yet it was greater than HepG2 and U-87 MG (p ≤ 0.01 and p ≤ 0.0001, respectively) after 24 h incubation. A very weak signal intensity was recorded in HEK-293 and HDFs (p ≤ 0.001 and p ≤ 0.0001, respectively). A selective ability of CFA to accumulate in HeLa and MCF-7 was recorded upon co-culture with fibroblasts. CONCLUSIONS The results showed that CFA preferentially accumulated in cancer cells rather than in normal cells. These findings suggest that CFA may be a potential diagnostic probe for discriminating healthy tissues from malignant tissues due to its specific and highly sensitive features; CFA may also represent a useful tool for in vitro/ex vivo investigations of choline metabolism in patients with cervical and breast cancers.
Collapse
Affiliation(s)
- Anna E Caprifico
- School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| | - Luca Vaghi
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| | - Peter Spearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Gianpiero Calabrese
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames, London, KT1 2EE, UK
| | - Antonio Papagni
- Department of Material Sciences, University of Milano-Bicocca, Via Roberto Cozzi 55, Milan, 20126, Italy
| |
Collapse
|
2
|
Ostojic J, Kozic D, Panjkovic M, Georgievski-Brkic B, Dragicevic D, Lovrenski A, Boban J. Peak Resembling N-acetylaspartate (NAA) on Magnetic Resonance Spectroscopy of Brain Metastases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:662. [PMID: 38674308 PMCID: PMC11052432 DOI: 10.3390/medicina60040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Differentiating between a high-grade glioma (HGG) and solitary cerebral metastasis presents a challenge when using standard magnetic resonance imaging (MRI) alone. Magnetic resonance spectroscopy (MRS), an advanced MRI technique, may assist in resolving this diagnostic dilemma. N-acetylaspartate (NAA), an amino acid found uniquely in the central nervous system and in high concentrations in neurons, typically suggests HGG over metastatic lesions in spectra from ring-enhancing lesions. This study investigates exceptions to this norm. Materials and Methods: We conducted an MRS study on 49 histologically confirmed and previously untreated patients with brain metastases, employing single-voxel (SVS) techniques with short and long echo times, as well as magnetic resonance spectroscopic imaging (MRSI). Results: In our cohort, 44 out of 49 (90%) patients demonstrated a typical MR spectroscopic profile consistent with secondary deposits: a Cho peak, very low or absent Cr, absence of NAA, and the presence of lipids. A peak at approximately 2 ppm, termed the "NAA-like peak", was present in spectra obtained with both short and long echo times. Among the MRS data from 49 individuals, we observed a peak at 2.0 ppm in five brain metastases from mucinous carcinoma of the breast, mucinous non-small-cell lung adenocarcinoma, two metastatic melanomas, and one metastatic non-small-cell lung cancer. Pathohistological verification of mucin in two of these five cases suggested this peak likely represents N-acetyl glycoproteins, indicative of mucin expression in cancer cells. Conclusions: The identification of a prominent peak at 2.0 ppm could be a valuable diagnostic marker for distinguishing single ring-enhancing lesions, potentially associated with mucin-expressing metastases, offering a new avenue for diagnostic specificity in challenging cases.
Collapse
Affiliation(s)
- Jelena Ostojic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Dusko Kozic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Milana Panjkovic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | | | - Dusan Dragicevic
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Aleksandra Lovrenski
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| | - Jasmina Boban
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (D.K.); (M.P.); (D.D.); (A.L.); (J.B.)
| |
Collapse
|
3
|
Shi Q, Zhang X, Liu X, Yan C, Lu S. Visualization of PFOA accumulation and its effects on phospholipid in zebrafish liver by MALDI Imaging. Anal Bioanal Chem 2024:10.1007/s00216-024-05214-y. [PMID: 38451276 DOI: 10.1007/s00216-024-05214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Exposure to poly- and perfluoroalkyl substances (PFASs) can result in bioaccumulation. Initial findings suggested that PFASs could accumulate in tissues rich in both phospholipids and proteins. However, our current understanding is limited to the average concentration of PFASs or phospholipid content across entire tissue matrices, leaving unresolved the spatial variations of lipid metabolism associated with PFOA in zebrafish tissue. To address gap, we developed a novel methodology for concurrent spatial profiling of perfluorooctanoic acid (PFOA) and individual phospholipids within zebrafish hepatic tissue sections, utilizing matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-MSI). 5-diaminonapthalene (DAN) matrix and laser sensitivity of 50.0 were optimized for PFOA detection in MALDI-TOF-MSI analysis with high spatial resolution (25 μm). PFOA was observed to accumulate within zebrafish liver tissue. H&E staining results corroborating the damage inflicted by PFOA accumulation, consistent with MALDI MSI results. Significant up-regulation of 15 phospholipid species was observed in zebrafish groups exposed to PFOA, with these phospholipid demonstrating varied spatial distribution within the same tissue. Furthermore, co-localized imaging of distinct phospholipids and PFOA within identical tissue sections suggested there could be two distinct potential interactions between PFOA and phospholipids, which required further investigation. The MALDI-TOF-IMS provides a new tool to explore in situ spatial distributions and variations of the endogenous metabolites for the health risk assessment and ecotoxicology of emerging environmental pollutants.
Collapse
Affiliation(s)
- Qiuyue Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Narongrit FW, Rispoli JV. Editorial for "MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning". J Magn Reson Imaging 2024; 59:162-163. [PMID: 37052873 DOI: 10.1002/jmri.28733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Affiliation(s)
- Folk W Narongrit
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Joseph V Rispoli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, West Lafayette, Indiana, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
6
|
Mansour S, Selim A, Kassam L, Adel M, Hashem AB. Diffusion-weighted imaging or MR spectroscopy: Which to use for the assessment of the response to chemotherapy in breast cancer patients? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diffusion-weighted MRI (DWI) and MR spectroscopy (MRS) both are noninvasive MR sequences that could be used as a reliable tool to assess the functional behavior of the breast cancer. The aim of the study was to assess the value of DWI and MRS in predicting the early response to neo-adjuvant chemotherapy (NAC) and absence of residual disease after treatment.
Results
One hundred thirty-three patients diagnosed with breast cancer and scheduled for NAC were enrolled in this study. All lesions were subjected to qualitative and quantitative analysis of DCE-MRI, DWI and MRS, where the lesions size, kinetic parameters, ADC values and MRS choline peak were recorded before the start of NAC and after completion of chemotherapy. The results of each MRI modality were correlated with the findings that were found at the pathology report of the complete surgical specimen. The sensitivity and specificity of the MR modalities to predict pathological complete remission post-NAC were 73.68% and 83.33%, respectively, using the kinetic curve pattern, 78.95% and 83.33%, respectively, using the ADC value and finally 78.95% and 91.67%, respectively, using the MRS choline peak. Similar sensitivity (89.47%) to predict pathological complete remission was presented by the ADC value and the MRS choline peak together when compared to the ADC value and dynamic curve patterns.
Conclusion
DWI and MRS are valuable MRI techniques and their accuracy in detecting residual disease is almost similar to that of DCE MRI. The inclusion of these sequences in the imaging protocol of NAC candidates improve monitoring of the response to treatment and allow early distinction between complete, partial and non-responders' cases in breast cancer patients.
Collapse
|
7
|
Woitek R, McLean MA, Gill AB, Grist JT, Provenzano E, Patterson AJ, Ursprung S, Torheim T, Zaccagna F, Locke M, Laurent MC, Hilborne S, Frary A, Beer L, Rundo L, Patterson I, Slough R, Kane J, Biggs H, Harrison E, Lanz T, Basu B, Baird R, Sala E, Graves MJ, Gilbert FJ, Abraham JE, Caldas C, Brindle KM, Gallagher FA. Hyperpolarized 13C MRI of Tumor Metabolism Demonstrates Early Metabolic Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiol Imaging Cancer 2020; 2:e200017. [PMID: 32803167 PMCID: PMC7398116 DOI: 10.1148/rycan.2020200017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 04/12/2023]
Abstract
Purpose To compare hyperpolarized carbon 13 (13C) MRI with dynamic contrast material-enhanced (DCE) MRI in the detection of early treatment response in breast cancer. Materials and Methods In this institutional review board-approved prospective study, a woman with triple-negative breast cancer (age, 49 years) underwent 13C MRI after injection of hyperpolarized [1-carbon 13 {13C}]-pyruvate and DCE MRI at 3 T at baseline and after one cycle of neoadjuvant therapy. The 13C-labeled lactate-to-pyruvate ratio derived from hyperpolarized 13C MRI and the pharmacokinetic parameters transfer constant (K trans) and washout parameter (k ep) derived from DCE MRI were compared before and after treatment. Results Exchange of the 13C label between injected hyperpolarized [1-13C]-pyruvate and the endogenous lactate pool was observed, catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the 13C-labeled lactate-to-pyruvate ratio resulted in correct identification of the patient as a responder to therapy, which was subsequently confirmed via a complete pathologic response. However, DCE MRI showed an increase in mean K trans (132%) and mean k ep (31%), which could be incorrectly interpreted as a poor response to treatment. Conclusion Hyperpolarized 13C MRI enabled successful identification of breast cancer response after one cycle of neoadjuvant chemotherapy and may improve response prediction when used in conjunction with multiparametric proton MRI.Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Ramona Woitek
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Mary A. McLean
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Andrew B. Gill
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - James T. Grist
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Elena Provenzano
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Andrew J. Patterson
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Stephan Ursprung
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Turid Torheim
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Fulvio Zaccagna
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Matthew Locke
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Marie-Christine Laurent
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Sarah Hilborne
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Amy Frary
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Lucian Beer
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Leonardo Rundo
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Ilse Patterson
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Rhys Slough
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Justine Kane
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Heather Biggs
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Emma Harrison
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Titus Lanz
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Bristi Basu
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Richard Baird
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Evis Sala
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Martin J. Graves
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Fiona J. Gilbert
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Jean E. Abraham
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Carlos Caldas
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Kevin M. Brindle
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| | - Ferdia A. Gallagher
- From the Departments of Radiology (R.W., A.B.G., J.T.G., A.J.P., S.U., F.Z., M.L., M.C.L., S.H., A.F., L.B., L.R., E.S., M.J.G., F.J.G., F.A.G.), Oncology (J.K., H.B., E.H., B.B., R.B., J.E.A., C.C.), and Biochemistry (K.M.B.), the Cambridge Breast Cancer Research Unit (E.P., J.K., H.B., E.H., R.B., J.E.A., C.C.), University of Cambridge, Cambridge, England; Departments of Radiology (A.J.P., I.P., R.S., M.J.G., F.J.G., F.A.G.) and Histopathology (E.P.), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England; Cancer Research UK Cambridge Centre, Cambridge, England (R.W., M.A.M., E.P., T.T., L.B., L.R., E.S., J.E.A., C.C., K.M.B., F.A.G.); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria (R.W., L.B.); Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, England (M.A.M., T.T., C.C., K.M.B.); and RAPID Biomedical, Rimpar, Germany (T.L.)
| |
Collapse
|
8
|
The additive role of 1H-magnetic resonance spectroscopic imaging to ensure pathological complete response after neoadjuvant chemotherapy in breast cancer patients. Pol J Radiol 2020; 84:e570-e580. [PMID: 32082456 PMCID: PMC7016493 DOI: 10.5114/pjr.2019.92282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose To assess the role of 1H-magnetic resonance spectroscopy (1H-MRS) in the confirmation of pathological complete response after neoadjuvant chemotherapy in breast cancer. Material and methods Forty-seven cases (53.72 ± 8.53 years) were evaluated using magnetic resonance imaging (MRI) and 1H-MRS with choline (Cho) signal-to-noise ratio (SNR) measured followed by histopathology and ROC analyses. Results Twelve patients had complete response, and 35 patients had residual disease. Mean age was 53.72 ± 8.53 years. The mean tumour size before neoadjuvant chemotherapy (NAC) was 4.21 ± 0.99 cm and after NAC was 0.9 ± 0.44 cm.Positive total choline signal (tCho) was detected in all cases. The mean Cho SNR before NAC was 9.53 ± 1.7 and after NAC was 2.53 ± 1.3. The Cho SNR cut-off point differentiating between pathologic complete response (pCR) and the non pCR was 1.95. Dynamic MRI showed 83.3% sensitivity, 65.7% specificity, 45.5% positive predictive value, 92.0% negative predictive value, and 70.2% diagnostic accuracy. Combined evaluation done by using the dynamic MRI and 1H-MRS showed 91.5% diagnostic accuracy with 75.0% sensitivity, 97.1% specificity, 75% positive predictive value, and 91.9% negative predictive value. ROC curves of Cho SNR showed statistically significant differences between non pCR and pCR with AUC was 0.955, 82.9% sensitivity, 91.7% specificity, 96.7% positive predictive value, 64.7% negative predictive value, and 85.11% diagnostic accuracy. Conclusions 1H-MRS improves the diagnostic accuracy in the prediction of the pCR after NAC.
Collapse
|
9
|
Gallagher FA, Woitek R, McLean MA, Gill AB, Manzano Garcia R, Provenzano E, Riemer F, Kaggie J, Chhabra A, Ursprung S, Grist JT, Daniels CJ, Zaccagna F, Laurent MC, Locke M, Hilborne S, Frary A, Torheim T, Boursnell C, Schiller A, Patterson I, Slough R, Carmo B, Kane J, Biggs H, Harrison E, Deen SS, Patterson A, Lanz T, Kingsbury Z, Ross M, Basu B, Baird R, Lomas DJ, Sala E, Wason J, Rueda OM, Chin SF, Wilkinson IB, Graves MJ, Abraham JE, Gilbert FJ, Caldas C, Brindle KM. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci U S A 2020; 117:2092-2098. [PMID: 31964840 PMCID: PMC6995024 DOI: 10.1073/pnas.1913841117] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.
Collapse
Affiliation(s)
- Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom;
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Raquel Manzano Garcia
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Elena Provenzano
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Anita Chhabra
- Pharmacy Department, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Charlie J Daniels
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Matthew Locke
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Sarah Hilborne
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Amy Frary
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Turid Torheim
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Chris Boursnell
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Amy Schiller
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Ilse Patterson
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Rhys Slough
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Carmo
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Justine Kane
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Heather Biggs
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emma Harrison
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Andrew Patterson
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Titus Lanz
- RAPID Biomedical GmbH, 97222 Rimpar, Germany
| | - Zoya Kingsbury
- Medical Genomics Research, Illumina, Great Abington, Cambridge CB21 6DF, United Kingdom
| | - Mark Ross
- Medical Genomics Research, Illumina, Great Abington, Cambridge CB21 6DF, United Kingdom
| | - Bristi Basu
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Richard Baird
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - David J Lomas
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - James Wason
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Institute of Health and Society, Newcastle University, Newcastle-upon-Tyne NE2 4AX, United Kingdom
| | - Oscar M Rueda
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ian B Wilkinson
- Department of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jean E Abraham
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cambridge Breast Cancer Research Unit, Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust, Cambridge CB2 0QQ, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Kevin M Brindle
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
10
|
Sheha AS, Keriakos NN, Faisal MM. The role of magnetic resonance spectroscopy in the differentiation of benign and malignant adnexal masses. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
11
|
|
12
|
Greenwood HI, Wilmes LJ, Kelil T, Joe BN. Role of Breast MRI in the Evaluation and Detection of DCIS: Opportunities and Challenges. J Magn Reson Imaging 2019; 52:697-709. [PMID: 31746088 DOI: 10.1002/jmri.26985] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
Historically, breast magnetic resonance imaging (MRI) was not considered an effective modality in the evaluation of ductal carcinoma in situ (DCIS). Over the past decade this has changed, with studies demonstrating that MRI is the most sensitive imaging tool for detection of all grades of DCIS. It has been suggested that not only is breast MRI the most sensitive imaging tool for detection but it may also detect the most clinically relevant DCIS lesions. The role and outcomes of MRI in the preoperative setting for patients with DCIS remains controversial; however, several studies have shown benefit in the preoperative evaluation of extent of disease as well as predicting an underlying invasive component. The most common presentation of DCIS on MRI is nonmass enhancement (NME) in a linear or segmental distribution pattern. Maximizing breast MRI spatial resolution is therefore beneficial, given the frequent presentation of DCIS as NME on MRI. Emerging MRI techniques, such as diffusion-weighted imaging (DWI), have shown promising potential to discriminate DCIS from benign and invasive lesions. Future opportunities including advanced imaging visual techniques, radiomics/radiogenomics, and machine learning / artificial intelligence may also be applicable to the detection and treatment of DCIS. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:697-709.
Collapse
Affiliation(s)
- Heather I Greenwood
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Lisa J Wilmes
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Tatiana Kelil
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| | - Bonnie N Joe
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, USA
| |
Collapse
|
13
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J Magn Reson Imaging 2019; 50:1033-1046. [PMID: 30848037 DOI: 10.1002/jmri.26700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Proton magnetic resonance spectroscopy (MRS) is a promising noninvasive diagnostic technique for investigation of breast cancer metabolism. Spectroscopic imaging data may be obtained following contrast-enhanced MRI by applying the point-resolved spectroscopy sequence (PRESS) or the stimulated echo acquisition mode (STEAM) sequence from the MR voxel encompassing the breast lesion. Total choline signal (tCho) measured in vivo using either a qualitative or quantitative approach has been used as a diagnostic test in the workup of malignant breast lesions. In addition to tCho metabolites, other relevant metabolites, including multiple lipids, can be detected and monitored. MRS has been heavily investigated as an adjunct to morphologic and dynamic MRI to improve diagnostic accuracy in breast cancer, obviating unnecessary benign biopsies. Besides its use in the staging of breast cancer, other promising applications have been recently investigated, including the assessment of treatment response and therapy monitoring. This review provides guidance on spectroscopic acquisition and quantification methods and highlights current and evolving clinical applications of proton MRS. Level of Evidence 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Reza Fardanesh
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Sunitha B Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
15
|
Thakur SB, Horvat JV, Hancu I, Sutton OM, Bernard-Davila B, Weber M, Oh JH, Marino MA, Avendano D, Leithner D, Brennan S, Giri D, Manderski E, Morris EA, Pinker K. Quantitative in vivo proton MR spectroscopic assessment of lipid metabolism: Value for breast cancer diagnosis and prognosis. J Magn Reson Imaging 2019; 50:239-249. [PMID: 30605266 DOI: 10.1002/jmri.26622] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast magnetic resonance spectroscopy (1 H-MRS) has been largely based on choline metabolites; however, other relevant metabolites can be detected and monitored. PURPOSE To investigate whether lipid metabolite concentrations detected with 1 H-MRS can be used for the noninvasive differentiation of benign and malignant breast tumors, differentiation among molecular breast cancer subtypes, and prediction of long-term survival outcomes. STUDY TYPE Retrospective. SUBJECTS In all, 168 women, aged ≥18 years. FIELD STRENGTH/SEQUENCE Dynamic contrast-enhanced MRI at 1.5 T: sagittal 3D spoiled gradient recalled sequence with fat saturation, flip angle = 10°, repetition time / echo time (TR/TE) = 7.4/4.2 msec, slice thickness = 3.0 mm, field of view (FOV) = 20 cm, and matrix size = 256 × 192. 1 H-MRS: PRESS with TR/TE = 2000/135 msec, water suppression, and 128 scan averages, in addition to 16 reference scans without water suppression. ASSESSMENT MRS quantitative analysis of lipid resonances using the LCModel was performed. Histopathology was the reference standard. STATISTICAL TESTS Categorical data were described using absolute numbers and percentages. For metric data, means (plus 95% confidence interval [CI]) and standard deviations as well as median, minimum, and maximum were calculated. Due to skewed data, the latter were more adequate; unpaired Mann-Whitney U-tests were performed to compare groups without and with Bonferroni correction. ROC analyses were also performed. RESULTS There were 111 malignant and 57 benign lesions. Mean voxel size was 4.4 ± 4.6 cm3 . Six lipid metabolite peaks were quantified: L09, L13 + L16, L21 + L23, L28, L41 + L43, and L52 + L53. Malignant lesions showed lower L09, L21 + L23, and L52 + L53 than benign lesions (P = 0.022, 0.027, and 0.0006). Similar results were observed for Luminal A or Luminal A/B vs. other molecular subtypes. At follow-up, patients were split into two groups based on median values for the six peaks; recurrence-free survival was significantly different between groups for L09, L21 + L23, and L28 (P = 0.0173, 0.0024, and 0.0045). DATA CONCLUSION Quantitative in vivo 1 H-MRS assessment of lipid metabolism may provide an additional noninvasive imaging biomarker to guide therapeutic decisions in breast cancer. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:239-249.
Collapse
Affiliation(s)
- Sunitha B Thakur
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joao V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Olivia M Sutton
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell University, New York, New York, USA
| | - Blanca Bernard-Davila
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Adele Marino
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Italy
| | - Daly Avendano
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Breast Imaging, Breast Cancer Center TecSalud, ITESM Monterrey, Nuevo Leon, Mexico
| | - Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sandra Brennan
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dilip Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth Manderski
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Abstract
Continued progress is being made in understanding the breast cancer metabolism using analytical magnetic resonance (MR)-based methods like nuclear magnetic resonance (NMR) and in-vivo MR spectroscopy (MRS). Analyses using these methods have enhanced the knowledge of altered biochemical pathways associated with breast cancer progression, regression, and pathogenesis. Comprehensive metabolic profiling of biological samples like tissues, cell lines, fine needle aspirate, and biofluids such as sera and urine enables identification of new biomarkers and abnormalities in biochemical pathways. These methods are not only useful for diagnosis, therapy monitoring, disease progression, and staging of cancer but also for the identification of new therapeutic targets and designing new treatment strategies. Additionally, in-vivo MRS studies have established choline-containing compounds (tCho) as biomarkers of malignancy, which is useful for enhancing the diagnostic specificity of magnetic resonance imaging (MRI). Recent technological developments related to in-vivo MRS such as increased magnetic field strength, multichannel phased array breast coils, and absolute quantification of tCho have provided a better understanding of the tumor heterogeneity, metabolism, and pathogenesis. This chapter focuses on providing the experimental aspects of in-vitro, ex-vivo, and in-vivo MR spectroscopy methods used for metabolomics studies of breast cancer.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
17
|
Di Leo G, Ioan I, Luciani ML, Midulla C, Podo F, Sardanelli F, Pediconi F. Changes in total choline concentration in the breast of healthy fertile young women in relation to menstrual cycle or use of oral contraceptives: a 3-T 1H-MRS study. Eur Radiol Exp 2018; 2:43. [PMID: 30560497 PMCID: PMC6297122 DOI: 10.1186/s41747-018-0075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/26/2018] [Indexed: 02/03/2023] Open
Abstract
Background To evaluate changes in total choline (tCho) absolute concentration ([tCho]) in the breast of healthy fertile women in relation to menstrual cycle (MC) or use of oral contraceptives (OC). Methods After institutional review board approval, we prospectively evaluated 40 healthy fertile volunteers: 20 with physiological MC, aged 28 ± 3 years (mean ± standard deviation; nOC group); 20 using OC, aged 26 ± 3 years (OC group). Hormonal assays and water-suppressed single-voxel 3-T proton magnetic resonance spectroscopy (1H-MRS) were performed on MC days 7, 14, and 21 in the nOC group and only on MC day 14 in the OC group. [tCho] was measured versus an external phantom. Mann-Whitney U test and Spearman coefficient were used; data are given as median and interquartile interval. Results All spectra had good quality. In the nOC group, [tCho] (mM) did not change significantly during MC: 0.8 (0.3–2.4) on day 7, 0.9 (0.4–1.2) on day 14, and 0.4 (0.2–0.8) on day 21 (p = 0.963). In the OC group, [tCho] was 0.7 (0.2–1.7) mM. The between-groups difference was not significant on all days (p ≥ 0.411). All hormones except prolactin changed during MC (p ≤ 0.024). In the OC group, [tCho] showed a borderline correlation with estradiol (r = 0.458, p = 0.056), but no correlation with other hormones (p ≥ 0.128). In the nOC group, [tCho] negatively correlated with prolactin (r = -0.587, p = 0.006) on day 7; positive correlation was found with estradiol on day 14 (r = 0.679, p = 0.001). Conclusions A tCho peak can be detected in the normal mammary gland using 3-T 1H-MRS. The [tCho] in healthy volunteers was 0.4–0.9 mM, constant over the MC and independent of OC use.
Collapse
Affiliation(s)
- Giovanni Di Leo
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| | - Ileana Ioan
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Maria Laura Luciani
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Cecilia Midulla
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Sardanelli
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, San Donato Milanese, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Chen Y, Panda A, Pahwa S, Hamilton JI, Dastmalchian S, McGivney DF, Ma D, Batesole J, Seiberlich N, Griswold MA, Plecha D, Gulani V. Three-dimensional MR Fingerprinting for Quantitative Breast Imaging. Radiology 2018; 290:33-40. [PMID: 30375925 DOI: 10.1148/radiol.2018180836] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose To develop a fast three-dimensional method for simultaneous T1 and T2 quantification for breast imaging by using MR fingerprinting. Materials and Methods In this prospective study, variable flip angles and magnetization preparation modules were applied to acquire MR fingerprinting data for each partition of a three-dimensional data set. A fast postprocessing method was implemented by using singular value decomposition. The proposed technique was first validated in phantoms and then applied to 15 healthy female participants (mean age, 24.2 years ± 5.1 [standard deviation]; range, 18-35 years) and 14 female participants with breast cancer (mean age, 55.4 years ± 8.8; range, 39-66 years) between March 2016 and April 2018. The sensitivity of the method to B1 field inhomogeneity was also evaluated by using the Bloch-Siegert method. Results Phantom results showed that accurate and volumetric T1 and T2 quantification was achieved by using the proposed technique. The acquisition time for three-dimensional quantitative maps with a spatial resolution of 1.6 × 1.6 × 3 mm3 was approximately 6 minutes. For healthy participants, averaged T1 and T2 relaxation times for fibroglandular tissues at 3.0 T were 1256 msec ± 171 and 46 msec ± 7, respectively. Compared with normal breast tissues, higher T2 relaxation time (68 msec ± 13) was observed in invasive ductal carcinoma (P < .001), whereas no statistical difference was found in T1 relaxation time (1183 msec ± 256; P = .37). Conclusion A method was developed for breast imaging by using the MR fingerprinting technique, which allows simultaneous and volumetric quantification of T1 and T2 relaxation times for breast tissues. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yong Chen
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Ananya Panda
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Shivani Pahwa
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Jesse I Hamilton
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Sara Dastmalchian
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Debra F McGivney
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Dan Ma
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Joshua Batesole
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Nicole Seiberlich
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Mark A Griswold
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Donna Plecha
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| | - Vikas Gulani
- From the Departments of Radiology (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., N.S., M.A.G., D.P., V.G.) and Biomedical Engineering (J.I.H., N.S., M.A.G., V.G.), Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106; and Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio (Y.C., A.P., S.P., S.D., D.F.M., D.M., J.B., M.A.G., D.P., V.G.)
| |
Collapse
|
19
|
Ma FH, Li YA, Liu J, Li HM, Zhang GF, Qiang JW. Role of proton MR spectroscopy in the differentiation of borderline from malignant epithelial ovarian tumors: A preliminary study. J Magn Reson Imaging 2018; 49:1684-1693. [PMID: 30353967 DOI: 10.1002/jmri.26541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/27/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Feng Hua Ma
- Department of Radiology, Jinshan Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
- Department of Radiology, Obstetrics & Gynecology Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| | - Jia Liu
- Department of Radiology, Obstetrics & Gynecology Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| | - Hai Ming Li
- Department of Radiology, Jinshan Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| | - Guo Fu Zhang
- Department of Radiology, Obstetrics & Gynecology Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Shanghai Medical College Fudan University Shanghai P.R. China
| |
Collapse
|
20
|
Sghedoni R, Coniglio A, Mazzoni LN, Busoni S, Belli G, Tarducci R, Nocetti L, Fedeli L, Esposito M, Ciccarone A, Altabella L, Bellini A, Binotto L, Caivano R, Carnì M, Ricci A, Cimolai S, D'Urso D, Gasperi C, Levrero F, Mangili P, Morzenti S, Nitrosi A, Oberhofer N, Parruccini N, Toncelli A, Valastro LM, Gori C, Gobbi G, Giannelli M. A straightforward multiparametric quality control protocol for proton magnetic resonance spectroscopy: Validation and comparison of various 1.5 T and 3 T clinical scanner systems. Phys Med 2018; 54:49-55. [PMID: 30337010 DOI: 10.1016/j.ejmp.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023] Open
Abstract
PURPOSE The aim of this study was to propose and validate across various clinical scanner systems a straightforward multiparametric quality assurance procedure for proton magnetic resonance spectroscopy (MRS). METHODS Eighteen clinical 1.5 T and 3 T scanner systems for MRS, from 16 centres and 3 different manufacturers, were enrolled in the study. A standard spherical water phantom was employed by all centres. The acquisition protocol included 3 sets of single (isotropic) voxel (size 20 mm) PRESS acquisitions with unsuppressed water signal and acquisition voxel position at isocenter as well as off-center, repeated 4/5 times within approximately 2 months. Water peak linewidth (LW) and area under the water peak (AP) were estimated. RESULTS LW values [mean (standard deviation)] were 1.4 (1.0) Hz and 0.8 (0.3) Hz for 3 T and 1.5 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficient of variation of LW and AP for different spatial positions of acquisition voxel were 43% (20%) and 11% (11%), respectively. The mean (standard deviation) phantom T2values were 1145 (50) ms and 1010 (95) ms for 1.5 T and 3 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficients of variation for repeated measurements of LW, AP and T2 were 25% (20%), 10% (14%) and 5% (2%), respectively. CONCLUSIONS We proposed a straightforward multiparametric and not time consuming quality control protocol for MRS, which can be included in routine and periodic quality assurance procedures. The protocol has been validated and proven to be feasible in a multicentre comparison study of a fairly large number of clinical 1.5 T and 3 T scanner systems.
Collapse
Affiliation(s)
| | - Angela Coniglio
- Medical Physics Unit, Ospedale San Giovanni Calibita Fatebenefratelli, Roma, Italy.
| | | | | | | | - Roberto Tarducci
- Health Physics Unit, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Luca Nocetti
- Health Physics Unit, Azienda Ospedaliera di Modena, Modena, Italy
| | - Luca Fedeli
- Physics and Astronomy Department, University of Florence, Firenze, Italy
| | - Marco Esposito
- Health Physics Unit, Azienda USL Toscana Centro, Firenze, Italy
| | | | | | | | - Luca Binotto
- Medical Physics Unit, Azienda ULSS 3 Serenissima, Mestre, Italy
| | - Rocchina Caivano
- Radiotherapy and Health Physics Unit, IRCCS CROB, Rionero in Vulture - Potenza, Italy
| | - Marco Carnì
- Health Physics Unit, Policlinico Umberto I, Roma, Italy
| | | | - Sara Cimolai
- Health Physics Unit, Azienda ULSS 2 Marca Trevigiana, Treviso, Italy
| | - Davide D'Urso
- Health Physics Unit, Azienda ULSS 2 Marca Trevigiana, Treviso, Italy
| | - Chiara Gasperi
- Health Physics Unit, Azienda USL Toscana Sud Est, Arezzo, Italy
| | - Fabrizio Levrero
- Medical and Health Physics Unit, IRCCS AOU San Martino, Genova, Italy
| | - Paola Mangili
- Medical Physics Unit, IRCCS San Raffaele, Milano, Italy
| | | | - Andrea Nitrosi
- Medical Physics Unit, Arcispedale Santa Maria Nuova - IRCCS, Reggio Emilia, Italy
| | - Nadia Oberhofer
- Health Physics, Azienda Sanitaria della Provincia Autonoma di Bolzano, Bolzano, Italy
| | | | | | | | - Cesare Gori
- Health Physics Unit, AOU Careggi, Firenze, Italy
| | - Gianni Gobbi
- Health Physics Unit, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | | |
Collapse
|
21
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
22
|
Fowler AM, Mankoff DA, Joe BN. Imaging Neoadjuvant Therapy Response in Breast Cancer. Radiology 2017; 285:358-375. [DOI: 10.1148/radiol.2017170180] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amy M. Fowler
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| | - David A. Mankoff
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| | - Bonnie N. Joe
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| |
Collapse
|
23
|
Cheng M, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K. Molecular Effects of Doxorubicin on Choline Metabolism in Breast Cancer. Neoplasia 2017; 19:617-627. [PMID: 28654865 PMCID: PMC5487306 DOI: 10.1016/j.neo.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022]
Abstract
Abnormal choline phospholipid metabolism is a hallmark of cancer. The magnetic resonance spectroscopy (MRS) detected total choline (tCho) signal can serve as an early noninvasive imaging biomarker of chemotherapy response in breast cancer. We have quantified the individual components of the tCho signal, glycerophosphocholine (GPC), phosphocholine (PC) and free choline (Cho), before and after treatment with the commonly used chemotherapeutic drug doxorubicin in weakly metastatic human MCF7 and triple-negative human MDA-MB-231 breast cancer cells. While the tCho concentration did not change following doxorubicin treatment, GPC significantly increased and PC decreased. Of the two phosphatidylcholine-specific PLD enzymes, only PLD1, but not PLD2, mRNA was down-regulated by doxorubicin treatment. For the two reported genes encoding GPC phosphodiesterase, the mRNA of GDPD6, but not GDPD5, decreased following doxorubicin treatment. mRNA levels of choline kinase α (ChKα), which converts Cho to PC, were reduced following doxorubicin treatment. PLD1 and ChKα protein levels decreased following doxorubicin treatment in a concentration dependent manner. Treatment with the PLD1 specific inhibitor VU0155069 sensitized MCF7 and MDA-MB-231 breast cancer cells to doxorubicin-induced cytotoxicity. Low concentrations of 100 nM of doxorubicin increased MDA-MB-231 cell migration. GDPD6, but not PLD1 or ChKα, silencing by siRNA abolished doxorubicin-induced breast cancer cell migration. Doxorubicin induced GPC increase and PC decrease are caused by reductions in PLD1, GDPD6, and ChKα mRNA and protein expression. We have shown that silencing or inhibiting these genes/proteins can promote drug effectiveness and reduce adverse drug effects. Our findings emphasize the importance of detecting PC and GPC individually.
Collapse
Affiliation(s)
- Menglin Cheng
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asif Rizwan
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Greenwood HI, Freimanis RI, Carpentier BM, Joe BN. Clinical Breast Magnetic Resonance Imaging: Technique, Indications, and Future Applications. Semin Ultrasound CT MR 2017; 39:45-59. [PMID: 29317039 DOI: 10.1053/j.sult.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for the detection of breast cancer, and it is indicated for breast cancer screening in patients at high-risk of developing breast cancer. It is limited to this group given the high cost. In addition, breast MRI is also indicated for evaluating the extent of disease in patients with new breast cancer diagnoses, monitoring the response to neoadjuvant treatment, and evaluating implant integrity. New promising innovations in breast MRI include fast abbreviated MRI, and functional techniques including diffusion-weighted imaging and magnetic resonance spectroscopy are promising particularly as regards to treatment response.
Collapse
Affiliation(s)
- Heather I Greenwood
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA.
| | - Rita I Freimanis
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Bianca M Carpentier
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Bonnie N Joe
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
25
|
Marino MA, Helbich T, Baltzer P, Pinker-Domenig K. Multiparametric MRI of the breast: A review. J Magn Reson Imaging 2017. [DOI: 10.1002/jmri.25790] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Maria Adele Marino
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino; University of Messina; Messina Italy
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
| | - Katja Pinker-Domenig
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging; Medical University of Vienna; Austria
- Department of Radiology; Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center; New York New York USA
| |
Collapse
|
26
|
van der Kemp WJ, Stehouwer BL, Boer VO, Luijten PR, Klomp DW, Wijnen JP. Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7 T. NMR IN BIOMEDICINE 2017; 30:e3684. [PMID: 28032377 PMCID: PMC5248643 DOI: 10.1002/nbm.3684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 05/18/2023]
Abstract
In vivo water- and fat-suppressed 1 H magnetic resonance spectroscopy (MRS) and 31 P magnetic resonance adiabatic multi-echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31 P metabolites were determined, and the reproducibility of 1 H and 31 P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi-exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi-exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ-ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono-exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1 H total choline (tChol) and the 31 P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31 P MRS imaging was superior to the reproducibility of 1 H MRS for tChol. 1 H and 31 P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.
Collapse
Affiliation(s)
| | | | - Vincent O. Boer
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
27
|
Sajjadi AY, Isakoff SJ, Deng B, Singh B, Wanyo CM, Fang Q, Specht MC, Schapira L, Moy B, Bardia A, Boas DA, Carp SA. Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI). BIOMEDICAL OPTICS EXPRESS 2017; 8:555-569. [PMID: 28270967 PMCID: PMC5330555 DOI: 10.1364/boe.8.000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
We characterize novel breast cancer imaging biomarkers for monitoring neoadjuvant chemotherapy (NACT) and predicting outcome. Specifically, we recruited 30 patients for a pilot study in which NACT patients were imaged using dynamic tomographic optical breast imaging (DTOBI) to quantify the hemodynamic changes due to partial mammographic compression. DTOBI scans were obtained pre-treatment (referred to as day 0), as well as 7 and 30 days into therapy on female patients undergoing NACT. We present data for the 13 patients who participated in both day 0 and 7 measurements and had evaluable data, of which 7 also returned for day 30 measurements. We acquired optical images over 2 minutes following 4-8 lbs (18-36 N) of compression. The timecourses of tissue-volume averaged total hemoglobin (HbT), as well as hemoglobin oxygen saturation (SO2) in the tumor vs. surrounding tissues were compared. Outcome prediction metrics based on the differential behavior in tumor vs. normal areas for responders (>50% reduction in maximum diameter) vs. non-responders were analyzed for statistical significance. At baseline, all patients exhibit an initial decrease followed by delayed recovery in HbT, and SO2 in the tumor area, in contrast to almost immediate recovery in surrounding tissue. At day 7 and 30, this contrast is maintained in non-responders; however, in responders, the contrast in hemodynamic time-courses between tumor and normal tissue starts decreasing at day 7 and substantially disappears at day 30. At day 30 into NACT, responding tumors demonstrate "normalization" of compression induced hemodynamics vs. surrounding normal tissue whereas non-responding tumors did not. This data suggests that DTOBI imaging biomarkers, which are governed by the interplay between tissue biomechanics and oxygen metabolism, may be suitable for guiding NACT by offering early predictions of treatment outcome.
Collapse
Affiliation(s)
- Amir Y Sajjadi
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA; These authors contributed equally to this work;
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; These authors contributed equally to this work;
| | - Bin Deng
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bhawana Singh
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Christy M Wanyo
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 0211, USA
| | - Michelle C Specht
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Lidia Schapira
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Beverly Moy
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David A Boas
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stefan A Carp
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
28
|
Cheng M, Bhujwalla ZM, Glunde K. Targeting Phospholipid Metabolism in Cancer. Front Oncol 2016; 6:266. [PMID: 28083512 PMCID: PMC5187387 DOI: 10.3389/fonc.2016.00266] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
All cancers tested so far display abnormal choline and ethanolamine phospholipid metabolism, which has been detected with numerous magnetic resonance spectroscopy (MRS) approaches in cells, animal models of cancer, as well as the tumors of cancer patients. Since the discovery of this metabolic hallmark of cancer, many studies have been performed to elucidate the molecular origins of deregulated choline metabolism, to identify targets for cancer treatment, and to develop MRS approaches that detect choline and ethanolamine compounds for clinical use in diagnosis and treatment monitoring. Several enzymes in choline, and recently also ethanolamine, phospholipid metabolism have been identified, and their evaluation has shown that they are involved in carcinogenesis and tumor progression. Several already established enzymes as well as a number of emerging enzymes in phospholipid metabolism can be used as treatment targets for anticancer therapy, either alone or in combination with other chemotherapeutic approaches. This review summarizes the current knowledge of established and relatively novel targets in phospholipid metabolism of cancer, covering choline kinase α, phosphatidylcholine-specific phospholipase D1, phosphatidylcholine-specific phospholipase C, sphingomyelinases, choline transporters, glycerophosphodiesterases, phosphatidylethanolamine N-methyltransferase, and ethanolamine kinase. These enzymes are discussed in terms of their roles in oncogenic transformation, tumor progression, and crucial cancer cell properties such as fast proliferation, migration, and invasion. Their potential as treatment targets are evaluated based on the current literature.
Collapse
Affiliation(s)
- Menglin Cheng
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Porembka JH, Seiler SJ, Sharma PB. Advanced Breast MRI Techniques: Helpful for Screening Breast Cancer? CURRENT BREAST CANCER REPORTS 2016. [DOI: 10.1007/s12609-016-0226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol 2016; 90:20160715. [PMID: 27805423 DOI: 10.1259/bjr.20160715] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5-7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer.
Collapse
Affiliation(s)
- Katja Pinker
- 1 Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria.,3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas H Helbich
- 2 Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Elizabeth A Morris
- 3 Department of Radiology, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Sardanelli F, Carbonaro LA, Montemezzi S, Cavedon C, Trimboli RM. Clinical Breast MR Using MRS or DWI: Who Is the Winner? Front Oncol 2016; 6:217. [PMID: 27840809 PMCID: PMC5083850 DOI: 10.3389/fonc.2016.00217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the breast gained a role in clinical practice thanks to the optimal sensitivity of contrast-enhanced (CE) protocols. This approach, first proposed 30 years ago and further developed as bilateral highly spatially resolved dynamic study, is currently considered superior for cancer detection to any other technique. However, other directions than CE imaging have been explored. Apart from morphologic features on unenhanced T2-weighted images, two different non-contrast molecular approaches were mainly run in vivo: proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). Both approaches have shown aspects of breast cancer (BC) hidden to CE-MRI: 1H-MRS allowed for evaluating the total choline peak (tCho) as a biomarker of malignancy; DWI showed that restricted diffusivity is correlated with high cellularity and tumor aggressiveness. Secondary evidence on the two approaches is now available from systematic reviews and meta-analyses, mainly considered in this article: pooled sensitivity ranged 71–74% for 1H-MRS and 84–91% for DWI; specificity 78–88% and 75–84%, respectively. Interesting research perspectives are opened for both techniques, including multivoxel MRS and statistical strategies for classification of MR spectra as well as diffusion tensor imaging and intravoxel incoherent motion for DWI. However, when looking at a clinical perspective, while MRS remained a research tool with important limitations, such as relatively long acquisition times, frequent low quality spectra, difficult standardization, and quantification of tCho tissue concentration, DWI has been integrated in the standard clinical protocols of breast MRI and several studies showed its potential value as a stand-alone approach for BC detection.
Collapse
Affiliation(s)
- Francesco Sardanelli
- Utà di Radiologia, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | | | - Stefania Montemezzi
- Dipartimento di Radiologia, Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | - Carlo Cavedon
- Dipartimento di Fisica Sanitaria, Azienda Ospedaliera Universitaria Integrata , Verona , Italy
| | | |
Collapse
|
32
|
Abstract
Breast MR imaging has increased in popularity over the past 2 decades due to evidence of its high sensitivity for cancer detection. Current clinical MR imaging approaches rely on the use of a dynamic contrast-enhanced acquisition that facilitates morphologic and semiquantitative kinetic assessments of breast lesions. The use of more functional and quantitative parameters holds promise to broaden the utility of MR imaging and improve its specificity. Because of wide variations in approaches for measuring these parameters and the considerable technical challenges, robust multicenter data supporting their routine use are not yet available, limiting current applications of many of these tools to research purposes.
Collapse
Affiliation(s)
- Habib Rahbar
- Breast Imaging Section, Department of Radiology, Seattle Cancer Care Alliance, University of Washington, 825 Eastlake Avenue East, PO Box 19023, Seattle, WA 98109-1023, USA
| | - Savannah C Partridge
- Breast Imaging Section, Department of Radiology, Seattle Cancer Care Alliance, University of Washington, 825 Eastlake Avenue East, PO Box 19023, Seattle, WA 98109-1023, USA.
| |
Collapse
|
33
|
Abstract
Magnetic resonance spectroscopy (MRS) is a noninvasive functional technique to evaluate the biochemical behavior of human tissues. This property has been widely used in assessment and therapy monitoring of brain tumors. MRS studies can be implemented outside the brain, with successful and promising results in the evaluation of prostate and breast cancer, although still with limited reproducibility. As a result of technical improvements, malignancies of the musculoskeletal system and abdominopelvic organs can benefit from the molecular information that MRS provides. The technical challenges and main applications in oncology of (1)H MRS in a clinical setting are the focus of this review.
Collapse
|
34
|
Park VY, Yoon D, Koo JS, Kim EK, Kim SI, Choi JS, Park S, Park HS, Kim S, Kim MJ. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer. Medicine (Baltimore) 2016; 95:e3398. [PMID: 27082613 PMCID: PMC4839857 DOI: 10.1097/md.0000000000003398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy. This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based on data from a single tissue sample.
Collapse
Affiliation(s)
- Vivian Youngjean Park
- From the Department of Radiology and Research Institute of Radiological Science (VYP, E-KK, MJK), Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Chemistry and Chemistry Institute for Functional Materials (DY, SK), Pusan National University, Busan; Department of Pathology (JSK), Department of Surgery (SIK, SP, HSP), Severance Hospital, Yonsei University College of Medicine; and Department of Radiology (JSC), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Magnetic Resonance Imaging: Advanced Applications in Breast Cancer. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv Ther 2016; 33:1-28. [PMID: 26809251 PMCID: PMC4735235 DOI: 10.1007/s12325-015-0275-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. FUNDING Bayer HealthCare.
Collapse
Affiliation(s)
- Jessica Lohrke
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Thomas Frenzel
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Jan Endrikat
- Global Medical Affairs Radiology, Bayer HealthCare, Berlin, Germany
- Saarland University Hospital, Homburg, Germany
| | | | - Thomas M Grist
- Radiology, Medical Physics and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Meng Law
- Radiology and Neurological Surgery, University of South California, Keck School of Medicine, USC University Hospital, Los Angeles, CA, USA
| | - Jeong Min Lee
- College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tim Leiner
- Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Kun-Cheng Li
- Radiology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Konstantin Nikolaou
- Radiology, Ludwig-Maximilians University, University Hospitals, Munich, Germany
| | - Martin R Prince
- Radiology, Weill Cornell Medical College, New York, NY, USA
- Columbia College of Physicians and Surgeons, New York, NY, USA
| | | | | | - Kohki Yoshikawa
- Graduate Division of Medical Health Sciences, Graduate School of Komazawa University, Tokyo, Japan
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany.
| |
Collapse
|
37
|
El Fiki IM, Abdel-Rahman HM, Morsy MM. Assessment of breast mass: Utility of diffusion-weighted MR and MR spectroscopy imaging. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2015. [DOI: 10.1016/j.ejrnm.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Breast magnetic resonance imaging performance: safety, techniques, and updates on diffusion-weighted imaging and magnetic resonance spectroscopy. Top Magn Reson Imaging 2015; 23:373-84. [PMID: 25463410 DOI: 10.1097/rmr.0000000000000035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dynamic contrast-enhanced breast magnetic resonance imaging (MRI) is a well-established, highly sensitive technique for the detection and evaluation of breast cancer. Optimal performance of breast MRI continues to evolve. This article addresses breast MRI applications, covers emerging breast MRI safety concerns; outlines the technical aspects of breast MRI, including equipment and protocols at 3 T and 1.5 T; and describes current promising areas of research including diffusion-weighted imaging and magnetic resonance spectroscopy.
Collapse
|
39
|
MR Spectroscopy for Differentiating Benign From Malignant Solid Adnexal Tumors. AJR Am J Roentgenol 2015; 204:W724-30. [PMID: 26001263 DOI: 10.2214/ajr.14.13391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Wang X, Wang XJ, Song HS, Chen LH. 1H-MRS evaluation of breast lesions by using total choline signal-to-noise ratio as an indicator of malignancy: a meta-analysis. Med Oncol 2015; 32:160. [PMID: 25895597 DOI: 10.1007/s12032-015-0603-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the diagnostic performance of the use of total choline signal-to-noise ratio (tCho SNR) criteria in MRS studies for benign/malignant discrimination of focal breast lesions. We conducted (1) a meta-analysis based on 10 studies including 480 malignant breast lesions and 312 benign breast lesions and (2) a subgroup meta-analysis of tCho SNR ≥ 2 as cutoff for malignancy based on 7 studies including 371 malignant breast lesions and 239 benign breast lesions. (1) The pooled sensitivity and specificity of proton MRS with tCho SNR were 0.74 (95 % CI 0.69-0.77) and 0.76 (95 % CI 0.71-0.81), respectively. The PLR and NLR were 3.67 (95 % CI 2.30-5.83) and 0.25 (95 % CI 0.14-0.42), respectively. From the fitted SROC, the AUC and Q* index were 0.89 and 0.82. Publication bias was present (t = 2.46, P = 0.039). (2) Meta-regression analysis suggested that neither threshold effect nor evaluated covariates including strength of field, pulse sequence, TR and TE were sources of heterogeneity (all P value >0.05). (3) Subgroup meta-analysis: The pooled sensitivity and specificity were 0.79 and 0.72, respectively. The PLR and NLR were 3.49 and 0.20, respectively. The AUC and Q* index were 0.92 and 0.85. The use of tCho SNR criteria in MRS studies was helpful for differentiation between malignant and benign breast lesions. However, pooled diagnostic measures might be overestimated due to publication bias. A tCho SNR ≥ 2 as cutoff for malignancy resulted in higher diagnostic accuracy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | | | | |
Collapse
|
41
|
Wu LA, Chang RF, Huang CS, Lu YS, Chen HH, Chen JY, Chang YC. Evaluation of the treatment response to neoadjuvant chemotherapy in locally advanced breast cancer using combined magnetic resonance vascular maps and apparent diffusion coefficient. J Magn Reson Imaging 2015; 42:1407-20. [PMID: 25875904 DOI: 10.1002/jmri.24915] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the treatment response of locally advanced breast cancer (LABC) to neoadjuvant chemotherapy using magnetic resonance (MR) vascular maps and apparent diffusion coefficient (ADC) at 3T. Materials and Methods Thirty-one patients with LABC who underwent breast MR studies before, after the first course, and after completing neoadjuvant chemotherapy were enrolled. Vascular morphology was retrieved via Hessian matrix and the voxels of the vessels and volume of vessels were measured automatically. Whole tumor mean ADC values were calculated. Clinical responders were defined as >50% tumor reduction in the final MR studies. Pathologically complete responders were also recorded. RESULTS There were 21 clinical responders and 10 nonresponders. Compared to the nonresponders after the first course, the responders were characterized by more vascular reduction of the breast lesion and decreased bilateral vascular discrepancy (voxels and volume), and increments in the ADC value and ADC percentage of the lesions (all P < 0.05). There were three pathological complete responders who showed more apparent early vascular reduction of the lesion breast (voxels and volume) and increments in the ADC value than others (P = 0.02, 0.01 and 0.02, respectively). CONCLUSION The early changes of MR vascular maps and ADC are associated with the final treatment response of LABC.
Collapse
Affiliation(s)
- Li-An Wu
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Imaging, Taipei City Hospital, Heping, Branch, Taipei, Taiwan
| | - Ruey-Feng Chang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Hao Chen
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Yu Chen
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
42
|
Hui SK, Arentsen L, Sueblinvong T, Brown K, Bolan P, Ghebre RG, Downs L, Shanley R, Hansen KE, Minenko AG, Takhashi Y, Yagi M, Zhang Y, Geller M, Reynolds M, Lee CK, Blaes AH, Allen S, Zobel BB, Le C, Froelich J, Rosen C, Yee D. A phase I feasibility study of multi-modality imaging assessing rapid expansion of marrow fat and decreased bone mineral density in cancer patients. Bone 2015; 73:90-7. [PMID: 25536285 PMCID: PMC4336831 DOI: 10.1016/j.bone.2014.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022]
Abstract
PURPOSE Cancer survivors are at an increased risk for fractures, but lack of effective and economical biomarkers limits quantitative assessments of marrow fat (MF), bone mineral density (BMD) and their relation in response to cytotoxic cancer treatment. We report dual energy CT (DECT) imaging, commonly used for cancer diagnosis, treatment and surveillance, as a novel biomarker of MF and BMD. METHODS We validated DECT in pre-clinical and phase I clinical trials and verified with water-fat MRI (WF-MRI), quantitative CT (QCT) and dual-energy X-ray absorptiometry (DXA). Basis material composition framework was validated using water and small-chain alcohols simulating different components of bone marrow. Histologic validation was achieved by measuring percent adipocyte in the cadaver vertebrae and compared with DECT and WF-MRI. For a phase I trial, sixteen patients with gynecologic malignancies (treated with oophorectomy, radiotherapy or chemotherapy) underwent DECT, QCT, WF-MRI and DXA before and 12months after treatment. BMD and MF percent and distribution were quantified in the lumbar vertebrae and the right femoral neck. RESULTS Measured precision (3mg/cm(3)) was sufficient to distinguish test solutions. Adiposity in cadaver bone histology was highly correlated with MF measured using DECT and WF-MRI (r=0.80 and 0.77, respectively). In the clinical trial, DECT showed high overall correlation (r=0.77, 95% CI: 0.69, 0.83) with WF-MRI. MF increased significantly after treatment (p<0.002). Chemotherapy and radiation caused greater increases in MF than oophorectomy (p<0.032). L4 BMD decreased 14% by DECT, 20% by QCT, but only 5% by DXA (p<0.002 for all). At baseline, we observed a statistically significant inverse association between MF and BMD which was dramatically attenuated after treatment. CONCLUSION Our study demonstrated that DECT, similar to WF-MRI, can accurately measure marrow adiposity. Both imaging modalities show rapid increase in MF following cancer treatment. Our results suggest that MF and BMD cannot be used interchangeably to monitor skeletal health following cancer therapy.
Collapse
Affiliation(s)
- Susanta K Hui
- Department of Therapeutic Radiology, University of Minnesota, MN, USA; Masonic Cancer Center, University of Minnesota, MN, USA.
| | - Luke Arentsen
- Department of Therapeutic Radiology, University of Minnesota, MN, USA
| | | | | | - Pat Bolan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Rahel G Ghebre
- Department of Obstetrics and Gynecology, University of Minnesota, MN, USA
| | - Levi Downs
- Department of Obstetrics and Gynecology, University of Minnesota, MN, USA
| | - Ryan Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, MN, USA
| | - Karen E Hansen
- Department of Medicine, Division of Rheumatology, University of Wisconsin, Madison, USA
| | - Anne G Minenko
- Department of Medicine, University of Minnesota, MN, USA
| | | | - Masashi Yagi
- Department of Medicine, University of Minnesota, MN, USA; Masonic Cancer Center, University of Minnesota, MN, USA
| | - Yan Zhang
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, MN, USA
| | - Melissa Geller
- Department of Obstetrics and Gynecology, University of Minnesota, MN, USA
| | - Margaret Reynolds
- Department of Therapeutic Radiology, University of Minnesota, MN, USA
| | - Chung K Lee
- Department of Therapeutic Radiology, University of Minnesota, MN, USA
| | - Anne H Blaes
- Masonic Cancer Center, University of Minnesota, MN, USA; Department of Medicine, University of Minnesota, MN, USA
| | - Sharon Allen
- Family Medicine and Community Health, University of Minnesota, MN, USA
| | | | - Chap Le
- Department of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Jerry Froelich
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, MN, USA
| | - Clifford Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, MN, USA; Department of Medicine, University of Minnesota, MN, USA
| |
Collapse
|
43
|
Abstract
The practice of breast imaging has transitioned through a wide variety of technologic advances from the early days of direct-exposure film mammography to xeromammography to screen-film mammography to the current era of full-field digital mammography and digital breast tomosynthesis. Along with these technologic advances, organized screening, federal regulations based on the Mammography Quality Standards Act, and the development of the American College of Radiology Breast Imaging Reporting and Data System have helped to shape the specialty of breast imaging. With the development of breast ultrasonography and breast magnetic resonance imaging, both complementary to mammography, additional algorithms for diagnostic workup and screening high-risk subgroups of women have emerged. A substantial part of breast imaging practice these days also involves breast interventional procedures-both percutaneous biopsy to obtain tissue diagnosis and localization procedures to guide surgical excision. This article reviews the evolution of breast imaging starting from a historical perspective and progressing to the present day.
Collapse
Affiliation(s)
- Bonnie N Joe
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1600 Divisadero St, Room C250, Mail Box 1667, San Francisco, CA 94115
| | | |
Collapse
|
44
|
Alcantara D, Leal MP, García-Bocanegra I, García-Martín ML. Molecular imaging of breast cancer: present and future directions. Front Chem 2014; 2:112. [PMID: 25566530 PMCID: PMC4270251 DOI: 10.3389/fchem.2014.00112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.
Collapse
Affiliation(s)
- David Alcantara
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Manuel Pernia Leal
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Irene García-Bocanegra
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| | - Maria L García-Martín
- Laboratory of Metabolomics and Molecular Imaging, BIONAND, Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía, Universidad de Málaga) Malaga, Spain
| |
Collapse
|
45
|
Penet MF, Shah T, Bharti S, Krishnamachary B, Artemov D, Mironchik Y, Wildes F, Maitra A, Bhujwalla ZM. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Clin Cancer Res 2014; 21:386-95. [PMID: 25370468 DOI: 10.1158/1078-0432.ccr-14-0964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. EXPERIMENTAL DESIGN We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with (1)H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. RESULTS We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between immortalized human pancreatic cells and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. CONCLUSIONS Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with (1)H MRSI may provide an intrinsic, imaging probe-independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tariq Shah
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santosh Bharti
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yelena Mironchik
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Flonné Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anirban Maitra
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
46
|
Schneble EJ, Graham LJ, Shupe MP, Flynt FL, Banks KP, Kirkpatrick AD, Nissan A, Henry L, Stojadinovic A, Shumway NM, Avital I, Peoples GE, Setlik RF. Future directions for the early detection of recurrent breast cancer. J Cancer 2014; 5:291-300. [PMID: 24790657 PMCID: PMC3982042 DOI: 10.7150/jca.8017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main goal of follow-up care after breast cancer treatment is the early detection of disease recurrence. In this review, we emphasize the multidisciplinary approach to this continuity of care from surgery, medical oncology, and radiology. Challenges within each setting are briefly addressed as a means of discussion for the future directions of an effective and efficient surveillance plan of post-treatment breast cancer care.
Collapse
Affiliation(s)
- Erika J Schneble
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Lindsey J Graham
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Matthew P Shupe
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Frederick L Flynt
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Kevin P Banks
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Aaron D Kirkpatrick
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Aviram Nissan
- 2. Hadassah Medical Center, Kiryat Hadassah, POB 12000, Jerusalem, 91120, Israel
| | - Leonard Henry
- 3. IU Health Goshen, 200 High Park Ave., Goshen, IN 46526, USA
| | | | - Nathan M Shumway
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Itzhak Avital
- 4. Bon Secours Cancer Institute, 5855 Bremo Road, Richmond, VA 23226, USA
| | - George E Peoples
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| | - Robert F Setlik
- 1. San Antonio Military Medical Center (SAMMC), 3551 Roger Brooke Dr., Ft. Sam Houston, TX 78234, USA
| |
Collapse
|
47
|
Bezabeh T, Ijare OB, Nikulin AE, Somorjai RL, Smith IC. MRS-based Metabolomics in Cancer Research. MAGNETIC RESONANCE INSIGHTS 2014; 7:1-14. [PMID: 25114549 PMCID: PMC4122556 DOI: 10.4137/mri.s13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/18/2022]
Abstract
Metabolomics is a relatively new technique that is gaining importance very rapidly. MRS-based metabolomics, in particular, is becoming a useful tool in the study of body fluids, tissue biopsies and whole organisms. Advances in analytical techniques and data analysis methods have opened a new opportunity for such technology to contribute in the field of diagnostics. In the MRS approach to the diagnosis of disease, it is important that the analysis utilizes all the essential information in the spectra, is robust, and is non-subjective. Although some of the data analytic methods widely used in chemical and biological sciences are sketched, a more extensive discussion is given of a 5-stage Statistical Classification Strategy. This proposes powerful feature selection methods, based on, for example, genetic algorithms and novel projection techniques. The applications of MRS-based metabolomics in breast cancer, prostate cancer, colorectal cancer, pancreatic cancer, hepatobiliary cancers, gastric cancer, and brain cancer have been reviewed. While the majority of these applications relate to body fluids and tissue biopsies, some in vivo applications have also been included. It should be emphasized that the number of subjects studied must be sufficiently large to ensure a robust diagnostic classification. Before MRS-based metabolomics can become a widely used clinical tool, however, certain challenges need to be overcome. These include manufacturing user-friendly commercial instruments with all the essential features, and educating physicians and medical technologists in the acquisition, analysis, and interpretation of metabolomics data.
Collapse
Affiliation(s)
- Tedros Bezabeh
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| | - Omkar B Ijare
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| | | | | | - Ian Cp Smith
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba, Canada. ; Departments of Anatomy and Human Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada. ; Innovative Biodiagnostics Inc, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
Pun WK, Chow SP, Fang D, Cheng CL, Leong JC, Ng C. Post-traumatic oedema of the foot after tibial fracture. Expert Rev Mol Diagn 1990; 15:735-47. [PMID: 2592102 DOI: 10.1586/14737159.2015.1039515] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A total of 97 patients with diaphyseal tibial fractures treated with functional bracing were studied prospectively. Persistent ipsilateral foot swelling was present in 84.5 per cent of the patients. Most of the swellings subsided with time, but a small percentage of them persisted for a duration of 2 years or more after injury. The time for disappearance of the swelling in 50 per cent of the patients was 18.6 weeks. The development of oedema is not related to the age and sex of the patients, the configuration, type and level of the fractures, or the association of a fibular fracture. The bone healed quicker in those who did not have swelling of the foot. Once the swelling has developed, it seems to run its own course and its disappearance is not related to the age and sex, the configuration, type and level of fractures, the association of a fibular fracture, or the time for fracture healing. This complication does not have any adverse effect on the functional recovery of the patients.
Collapse
Affiliation(s)
- W K Pun
- Department of Orthopaedic Surgery, University of Hong Kong, Queen Mary Hospital
| | | | | | | | | | | |
Collapse
|