1
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Linking Benzene, in Utero Carcinogenicity and Fetal Hematopoietic Stem Cell Niches: A Mechanistic Review. Int J Mol Sci 2023; 24:ijms24076335. [PMID: 37047305 PMCID: PMC10094243 DOI: 10.3390/ijms24076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Previous research reported that prolonged benzene exposure during in utero fetal development causes greater fetal abnormalities than in adult-stage exposure. This phenomenon increases the risk for disease development at the fetal stage, particularly carcinogenesis, which is mainly associated with hematological malignancies. Benzene has been reported to potentially act via multiple modes of action that target the hematopoietic stem cell (HSCs) niche, a complex microenvironment in which HSCs and multilineage hematopoietic stem and progenitor cells (HSPCs) reside. Oxidative stress, chromosomal aberration and epigenetic modification are among the known mechanisms mediating benzene-induced genetic and epigenetic modification in fetal stem cells leading to in utero carcinogenesis. Hence, it is crucial to monitor exposure to carcinogenic benzene via environmental, occupational or lifestyle factors among pregnant women. Benzene is a well-known cause of adult leukemia. However, proof of benzene involvement with childhood leukemia remains scarce despite previously reported research linking incidences of hematological disorders and maternal benzene exposure. Furthermore, accumulating evidence has shown that maternal benzene exposure is able to alter the developmental and functional properties of HSPCs, leading to hematological disorders in fetus and children. Since HSPCs are parental blood cells that regulate hematopoiesis during the fetal and adult stages, benzene exposure that targets HSPCs may induce damage to the population and trigger the development of hematological diseases. Therefore, the mechanism of in utero carcinogenicity by benzene in targeting fetal HSPCs is the primary focus of this review.
Collapse
|
3
|
Bongaerts E, Lecante LL, Bové H, Roeffaers MBJ, Ameloot M, Fowler PA, Nawrot TS. Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies. Lancet Planet Health 2022; 6:e804-e811. [PMID: 36208643 PMCID: PMC9553674 DOI: 10.1016/s2542-5196(22)00200-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Maternal exposure to particulate air pollution during pregnancy has been linked to multiple adverse birth outcomes causing burden of disease later in the child's life. To date, there is a paucity of data on whether or not ambient particles can both reach and cross the human placenta to exert direct effects on fetal organ systems during gestation. METHODS In this analysis, we used maternal-perinatal and fetal samples collected within the framework of two independent studies: the ENVIRONAGE (Environmental Influences on Ageing in Early Life) birth cohort of mothers giving birth at the East-Limburg Hospital in Genk, Belgium, and the SAFeR (Scottish Advanced Fetal Research) cohort of terminated, normally progressing pregnancies among women aged 16 years and older in Aberdeen and the Grampian region, UK. From the ENVIRONAGE study, we included 60 randomly selected mother-neonate pairs, excluding all mothers who reported that they ever smoked. From the SAFeR study, we included 36 fetuses of gestational age 7-20 weeks with cotinine concentrations indicative of non-smoking status. We used white light generation under femtosecond pulsed illumination to detect black carbon particles in samples collected at the maternal-fetal interface. We did appropriate validation experiments of all samples to confirm the carbonaceous nature of the identified particles. FINDINGS We found evidence of the presence of black carbon particles in cord blood, confirming the ability of these particles to cross the placenta and enter the fetal circulation system. We also found a strong correlation (r ≥0·50; p<0·0001) between the maternal-perinatal particle load (in maternal blood [n=60], term placenta [n=60], and cord blood [n=60]) and residential ambient black carbon exposure during pregnancy. Additionally, we found the presence of black carbon particles in first and second trimester tissues (fetal liver [n=36], lung [n=36], and brain [n=14]) of electively terminated and normally progressing pregnancies from an independent study. INTERPRETATION We found that maternally inhaled carbonaceous air pollution particles can cross the placenta and then translocate into human fetal organs during gestation. These findings are especially concerning because this window of exposure is key to organ development. Further studies are needed to elucidate the mechanisms of particle translocation. FUNDING European Research Council, Flemish Scientific Research Foundation, Kom op Tegen Kanker, UK Medical Research Council, and EU Horizon 2020.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Paul A Fowler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Holmes TH, Winn LM. DNA damage, DNA repair gene expression, and topoisomerase IIα activity in CD-1 mice following in utero benzene exposure. Toxicol Lett 2022; 368:47-55. [PMID: 35963423 DOI: 10.1016/j.toxlet.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Benzene is an environmental toxicant and known human carcinogen. Recent epidemiological studies show a relationship between exposure to benzene in pregnant women and increased incidence of childhood leukemias. Studies in murine models demonstrate a relationship between carcinogenicity and in utero benzene exposure which was sex dependent, thus the cellular mechanisms of benzene toxicity by sex require further studies. A hypothesized mechanism of benzene-induced in utero carcinogenicity is through increased DNA damage and reduced fetal DNA repair capacity. This includes the potential inhibition of topoisomerase IIα (topo IIα), in part, to generate double stranded DNA (dsDNA) breaks and induction of error-prone DNA repair. Using a mouse model of transplacental benzene carcinogenicity, gestational day (GD) 14 fetal livers were harvested 2, 6, and 24 h following maternal exposure to 200 mg/kg benzene and used to assess DNA damage, DNA repair gene expression and topo IIα activity. DNA damage, measured by levels of modified histone H2AX (γH2AX), is significantly increased in benzene exposed pups, with sex-dependent significance seen only in female pups. Comet assay results confirmed that benzene exposure in utero induces dsDNA damage in the GD14 fetal liver. Genes involved in DNA repair were assessed, and DNA repair gene expression changes were observed after 24 h in genes related to nucleotide excision repair, homologous recombination, and non-homologous end-joining. There were no significant differences in topo IIα activity in GD14 fetal livers at any timepoint, or between sexes. Overall, this study shows that 200 mg/kg benzene exposure induces dsDNA damage and alters fetal DNA repair gene expression in utero, without perturbing fetal topo IIα in CD-1 mice.
Collapse
Affiliation(s)
- Trent H Holmes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Qiao W, Huang P, Wang X, Meng L. Susceptibility to DNA damage caused by abrogation of Rad54 homolog B: A putative mechanism for chemically induced cleft palate. Toxicology 2021; 456:152772. [PMID: 33823233 DOI: 10.1016/j.tox.2021.152772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Exposure to environmental toxicants such as all-trans retinoic acid (atRA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may cause cleft palate (CP), which process is related to DNA damage. Rad54B, an important DNA damage repaired protein, has been proved to be associated with non-syndromic cleft lip with palate (NSCLP). In the present study, we sought to clarify the role of Rad54B in palatal development and environment-induced CP. atRA (100 mg/kg) and TCDD (40 μg/kg) were used to induce CP in mice (C57BL/6 J mice). In this study, mouse embryonic heads were collected on embryonic day (E) 13.5∼16.5. The expression level of DNA repair protein Rad54 homolog B (Rad54B) was significantly decreased while those of the DNA double-strand breaks (DSBs) marker γ-H2A.X, apoptosis marker caspase-3 and p53 were significantly increased in the palatal shelves upon exposure to atRA and TCDD relative to the control. Primary mouse embryonic palatal mesenchymal cells (MEPMs) were cultured and transfected with siRNA or adenovirus in vitro to knock down or increase the level of Rad54B. Rad54B knockdown resulted in increased cellular S-phase arrest and apoptosis as well as decreased cell proliferation. Rad54B overexpression also increased apoptosis and reduced cell proliferation. Western blotting was used to detect the level of γ-H2A.X in transfected cells stimulated with etoposide (ETO, a DSBs inducer), and after 5 μM ETO stimulation of transfected MEPMs, the expression of γ-H2A.X was increased in Rad54B-knockdown cells. The expression of Mdm2, Mdmx and p53 with changes in Rad54B was also detected and coimmunoprecipitation was performed to analyze the combination of Mdm2 and p53 when Rad54B was changed in MEPMs. Knockdown of Rad54B inhibited the expression of Mdm2 and Mdmx, while the level of p53 increased. The coimmunoprecipitation results showed a decreased combination of Mdm2 and p53 when Rad54B was knocked down. Therefore, Rad54B can regulate the cell cycle, proliferation, and apoptosis of MEPMs. The loss of Rad54B increased the sensitivity of MEPMs to DSBs inducers, promoted apoptosis, and suppressed the proliferation of MEPMs by inhibiting the degradation of p53. Taken together, these findings suggest that Rad54B may play a key regulatory role in environment-induced CP.
Collapse
Affiliation(s)
- Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Holmes TH, Winn LM. DNA Damage and Perturbed Topoisomerase IIα as a Target of 1,4-Benzoquinone Toxicity in Murine Fetal Liver Cells. Toxicol Sci 2019; 171:339-346. [PMID: 31340051 DOI: 10.1093/toxsci/kfz158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 01/10/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant. Recent studies have shown a link between the development of childhood leukemias and maternal benzene exposure, suggesting that these leukemias may be initiated in utero. Benzene crosses the placental barrier however the mechanisms behind in utero benzene toxicity have not been well elucidated. This study is the first to show that the benzene metabolite, benzoquinone (BQ), perturbs fetal topoisomerase IIα (Topo IIα), an enzyme essential for DNA repair. Using cultured murine CD-1 fetal liver cells, this study shows that Topo IIα activity decreases following 24 hours of exposure to BQ (12.5 and 15.625 µM), with the 12.5 µM confirmed to disrupt the c-kit+Lin-Sca-1-Il7rα- population of cells in culture. Pre-treatment with the antioxidant, N-acetylcysteine did not prevent the inhibtion of Topo IIα by BQ. An increase in Topo IIα-DNA covalent adducts was detected following 24-hour exposures to BQ (12.5 and 50 µM). Interestingly, BQ (12.5 µM) exposure did not significantly increase levels of 4-hydroxynonenal (4-HNE), a marker of oxidative stress after 24 hours. However, increased levels of the double-stranded DNA break marker γH2AX were detected following 24 hours of BQ exposure, confirming that Topo IIα-induced breaks are increased in BQ treated cells. This study shows that fetal Topo IIα is perturbed by BQ and suggests that this protein is a target of benzene and may be implicated with in utero benzene toxicity.
Collapse
Affiliation(s)
- Trent H Holmes
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Vulimiri SV, Olivero O. Introduction: Special Issue on Transplacental/Transgenerational Mutagenesis and Carcinogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:392-394. [PMID: 30951218 PMCID: PMC8168685 DOI: 10.1002/em.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Suryanarayana V. Vulimiri
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia
| | - Ofelia Olivero
- Intramural Diversity Workforce Branch (IDWB), Center for Cancer Training, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
8
|
O'Callaghan-Gordo C, Kogevinas M, Fthenou E, Pedersen M, Espinosa A, Chalkiadaki G, Daraki V, Dermitzaki E, Decordier I, Georgiou V, Merlo DF, Roumeliotaki T, Vande Loock K, Kleinjans J, Kirsch-Volders M, Chatzi L. Vitamin D insufficient levels during pregnancy and micronuclei frequency in peripheral blood T lymphocytes mothers and newborns (Rhea cohort, Crete). Clin Nutr 2016; 36:1029-1035. [PMID: 27396287 DOI: 10.1016/j.clnu.2016.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS Vitamin D deficiency is common among pregnant women and may be associated with several adverse health outcomes including cancer. Micronuclei frequency is a biomarker of early genetic effects and has been used to examine the association between genotoxic exposures and cancer. We examined maternal vitamin D levels during pregnancy in associations with micronuclei frequency in maternal blood and in cord blood. METHODS 173 mothers and 171 newborns born between 2007 and 2008 in Heraklion (Crete, Greece) were included in the study. Between 14th and 18th weeks of gestation we collected information on maternal diet using food frequency questionnaires (FFQs). We measured maternal serum concentrations of 25-hydroxyvitamin D [25(OH)D] between the first and second trimester of pregnancy. We estimated dietary vitamin D intake using information from FFQ. After delivery we collected cord blood and maternal peripheral blood. We used the cytokinesis-block micronucleus (CBMN) assay to assess the frequencies of micronucleated cells in binucleated T lymphocytes (MNBN). RESULTS Maternal insufficient serum levels of 25(OH)D (<50 nmol/L) during pregnancy were associated with increased MNBN frequency in cord blood [IRR = 1.32 (95%CI: 1.00, 1.72)]. This increase was higher for newborns with birth weight above the third quartile [≥3.500 kg; IRR = 2.21 (1.26, 3.89)]. Similarly, low levels of dietary vitamin D were associated with increased MNBN frequency in cord blood [middle tertile IRR = 1.08 (0.78, 1.47), lower tertile IRR = 1.51 (1.06, 2.14)]. Insufficient levels of vitamin D were not associated with MNBN in mothers. CONCLUSION Our results suggest that vitamin D deficiency during pregnancy increases genotoxic risks in newborns. The prevalence of vitamin D deficiency globally is high and it is important to further investigate whether vitamin D supplementation or similar interventions during pregnancy could prevent DNA damage at early stages of life.
Collapse
Affiliation(s)
- Cristina O'Callaghan-Gordo
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 80, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 80, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eleni Fthenou
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Marie Pedersen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 80, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; INSERM (National Institute of Health and Medical Research), U823, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute Albert Bonniot, Rond-point de la Chantourne, 38706 La Tronche, Grenoble, France
| | - Ana Espinosa
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 80, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Georgia Chalkiadaki
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Vasiliki Daraki
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Eirini Dermitzaki
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Ilse Decordier
- Laboratory of Cell Genetics, Faculty of Science and Bio-engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels, Belgium
| | - Vaggelis Georgiou
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Domenico Franco Merlo
- Epidemiology, Biostatistics, and Clinical Trials, Instituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria (AOU) San Martino - Istituto Nazionale per la Ricerca sul Cancro (IST), Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Theano Roumeliotaki
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Kim Vande Loock
- Laboratory of Cell Genetics, Faculty of Science and Bio-engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels, Belgium
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, The Netherlands
| | - Micheline Kirsch-Volders
- Laboratory of Cell Genetics, Faculty of Science and Bio-engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels, Belgium
| | - Leda Chatzi
- Faculty of Medicine, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| |
Collapse
|
9
|
Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure. Neural Plast 2016; 2016:1243527. [PMID: 27382490 PMCID: PMC4921147 DOI: 10.1155/2016/1243527] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered.
Collapse
|
10
|
Bella L, Zona S, Nestal de Moraes G, Lam EWF. FOXM1: A key oncofoetal transcription factor in health and disease. Semin Cancer Biol 2014; 29:32-9. [PMID: 25068996 DOI: 10.1016/j.semcancer.2014.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 12/25/2022]
Abstract
Forkhead Box M1 (FOXM1) is a bona fide oncofoetal transcription factor, which orchestrates complex temporal and spatial gene expression throughout embryonic and foetal development as well as during adult tissue homeostasis and repair. Controlled FOXM1 expression and activity provides a balanced transcriptional programme to ensure proper growth and maturation during embryogenesis and foetal development as well as to manage appropriate homeostasis and repair of adult tissues. Conversely, deregulated FOXM1 upregulation likely affects cell migration, invasion, angiogenesis, stem cell renewal, DNA damage repair and cellular senescence, which impact tumour initiation, progression, metastasis, angiogenesis and drug resistance. A thorough understanding of the regulation and role of FOXM1 in health and in cancer should contribute to the development of better diagnostics and treatments for cancer as well as congenital disorders and other developmental diseases.
Collapse
Affiliation(s)
- Laura Bella
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Gabriela Nestal de Moraes
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom.
| |
Collapse
|
11
|
Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers. Toxicol Appl Pharmacol 2013; 273:569-79. [DOI: 10.1016/j.taap.2013.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 01/07/2023]
|
12
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
13
|
Treidel LA, Whitley BN, Benowitz-Fredericks ZM, Haussmann MF. Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus). Biol Lett 2013; 9:20130684. [PMID: 24046877 DOI: 10.1098/rsbl.2013.0684] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Elevated levels of maternal androgens in avian eggs affect numerous traits, including oxidative stress. However, current studies disagree as to whether prenatal androgen exposure enhances or ameliorates oxidative stress. Here, we tested how prenatal testosterone exposure affects oxidative stress in female domestic chickens (Gallus gallus) during the known oxidative challenge of an acute stressor. Prior to incubation, eggs were either injected with an oil vehicle or 5 ng testosterone. At either 17 or 18 days post-hatch, several oxidative stress markers were assessed from blood taken before and after a 20 min acute stressor, as well as following a 25 min recovery from the stressor. We found that, regardless of yolk treatment, during both stress and recovery all individuals were in a state of oxidative stress, with elevated levels of oxidative damage markers accompanied by a reduced total antioxidant capacity. In addition, testosterone-exposed individuals exhibited poorer DNA damage repair efficiencies in comparison with control individuals. Our work suggests that while yolk androgens do not alter oxidative stress directly, they may impair mechanisms of oxidative damage repair.
Collapse
Affiliation(s)
- L A Treidel
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | | | | | |
Collapse
|