1
|
Xiong YR, Fang YC, He M, Li KJ, Qi L, Sui Y, Zhang K, Wu XC, Meng L, Li O, Zheng DQ. Patterns of spontaneous and induced genomic alterations in Yarrowia lipolytica. Appl Environ Microbiol 2025; 91:e0167824. [PMID: 39714191 PMCID: PMC11784153 DOI: 10.1128/aem.01678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
This study explored the genomic alterations in Yarrowia lipolytica, a key yeast in industrial biotechnology, under both spontaneous and mutagen-induced conditions. Our findings reveal that spontaneous mutations occur at a rate of approximately 4 × 10-10 events per base pair per cell division, primarily manifesting as single-nucleotide variations (SNVs) and small insertions and deletions (InDels). Notably, C-to-T/G-to-A transitions and C-to-A/G-to-T transversions dominate the spontaneous SNVs, while 1 bp deletions, likely resulting from template slippage, are the most frequent InDels. Furthermore, chromosomal aneuploidy and rearrangements occur, albeit at a lower frequency. Exposure to ultraviolet (UV) light, methylmethane sulfonate (MMS), and Zeocin significantly enhances the rates of SNVs and alters their mutational spectra in distinct patterns. Notably, Zeocin-induced SNVs are predominantly T-to-A and T-to-G substitutions, often occurring within the 5'-TGT*-3' motif (* denotes the mutated base). Additionally, Zeocin exhibits a higher potency in stimulating InDels compared to UV and MMS. Translesion DNA synthesis is implicated as the primary mechanism behind most Zeocin-induced SNVs and some InDels, whereas non-homologous end joining serves as the main pathway for Zeocin-mediated InDels. Intriguingly, the study identifies the gene YALI1_E21053g, encoding a protein kinase, as negatively associated with Zeocin resistance. Overall, our results not only deepened our knowledge about the genome evolution in Y. lipolytica but also provided reference to develop innovative strategies to harness its genetic potential.IMPORTANCEYarrowia lipolytica exhibits high environmental stress tolerance and lipid metabolism capabilities, making it a microorganism with significant industrial application potential. In this study, we investigated the genomic variation and evolutionary patterns of this yeast under both spontaneous and induced mutation conditions. Our results reveal distinctive mutation spectra induced by different mutagenic conditions and elucidate the underlying genetic mechanisms. We further highlight the roles of non-homologous end joining and translesion synthesis pathways in Zeocin-induced mutations, demonstrating that such treatments can rapidly confer drug resistance to the cells. Overall, our research enhances the understanding of how yeast genomes evolve under various conditions and provides guidance for developing more effective mutagenesis and breeding techniques.
Collapse
Affiliation(s)
- Yuan-Ru Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Min He
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Xue-Chang Wu
- College of Life Science, Zhejiang University, Hangzhou, China
| | | | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | | |
Collapse
|
2
|
Manavi MA, Fathian Nasab MH, Mohammad Jafari R, Dehpour AR. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J Chemother 2024; 36:623-653. [PMID: 38179685 DOI: 10.1080/1120009x.2023.2300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Dose-limiting toxicities (DLTs) are severe adverse effects that define the maximum tolerated dose of a cancer drug. In addition to the specific mechanisms of each drug, common contributing factors include inflammation, apoptosis, ion imbalances, and tissue-specific enzyme deficiencies. Among various DLTs are bleomycin-induced pulmonary fibrosis, doxorubicin-induced cardiomyopathy, cisplatin-induced nephrotoxicity, methotrexate-induced hepatotoxicity, vincristine-induced neurotoxicity, paclitaxel-induced peripheral neuropathy, and irinotecan, which elicits severe diarrhea. Currently, specific treatments beyond dose reduction are lacking for most toxicities. Further research on cellular and molecular pathways is imperative to improve their management. This review synthesizes preclinical and clinical data on the pharmacological mechanisms underlying DLTs and explores possible treatment approaches. A comprehensive perspective reveals knowledge gaps and emphasizes the need for future studies to develop more targeted strategies for mitigating these dose-dependent adverse effects. This could allow the safer administration of fully efficacious doses to maximize patient survival.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cardozo AG, Castrogiovanni DC, Bolzán AD. Bleomycin-induced chromosomal aberrations in Epstein-Barr virus-transformed human lymphoblastoid cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503823. [PMID: 39326941 DOI: 10.1016/j.mrgentox.2024.503823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
We have evaluated the induction of complete (i.e., without open ends) and incomplete (i.e., with non-rejoined or open ends) chromosomal aberrations by the radiomimetic antibiotic bleomycin (BLM) in human lymphoblastoid cells immortalized with the Epstein-Barr virus (EBV). An EBV-induced lymphoblastoid cell line (T-37) was exposed to BLM (10-200 µg/mL) for 2 h at 37ºC, and chromosomal aberrations were analyzed 24 h after treatment, using PNA-FISH with pan-telomeric and pan-centromeric probes. Both complete (multicentrics, rings, compound acentric fragments, and interstitial deletions) and incomplete (incomplete chromosomes or IC, and terminal acentric fragments or TAF) chromosomal aberrations increased significantly in BLM-exposed cells, although the concentration-response relationship was non-linear. Of the acentric fragments (ace) induced by BLM, 40 % were compound fragments (CF, ace +/+). TAF (ace, +/-) and interstitial fragments (IAF, ace -/-) were induced at similar frequencies (30 %). 230 ICE were induced by BLM, of which 52 % were IC and 48 % TAF. The average ratio between total incomplete chromosome elements (ICE) and multicentrics was 1.52. These findings suggest that human lymphoblastoid cells exhibit less repair capacity than human lymphocytes, with respect to BLM-induced ICE, and that chromosomal incompleteness is a common event following exposure of these cells to BLM.
Collapse
Affiliation(s)
- Andrea G Cardozo
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-UNLP-CICPBA), calle 526 y Camino General Belgrano, La Plata, Buenos Aires B1906APO, Argentina
| | - Daniel C Castrogiovanni
- Sector de Cultivos Celulares, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-UNLP-CICPBA), calle 526 y Camino General Belgrano, La Plata, Buenos Aires B1906APO, Argentina
| | - Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CONICET-UNLP-CICPBA), calle 526 y Camino General Belgrano, La Plata, Buenos Aires B1906APO, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Qi Z, Yang W, Xue B, Chen T, Lu X, Zhang R, Li Z, Zhao X, Zhang Y, Han F, Kong X, Liu R, Yao X, Jia R, Feng S. ROS-mediated lysosomal membrane permeabilization and autophagy inhibition regulate bleomycin-induced cellular senescence. Autophagy 2024; 20:2000-2016. [PMID: 38762757 PMCID: PMC11346523 DOI: 10.1080/15548627.2024.2353548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Bleomycin exhibits effective chemotherapeutic activity against multiple types of tumors, and also induces various side effects, such as pulmonary fibrosis and neuronal defects, which limit the clinical application of this drug. Macroautophagy/autophagy has been recently reported to be involved in the functions of bleomycin, and yet the mechanisms of their crosstalk remain insufficiently understood. Here, we demonstrated that reactive oxygen species (ROS) produced during bleomycin activation hampered autophagy flux by inducing lysosomal membrane permeabilization (LMP) and obstructing lysosomal degradation. Exhaustion of ROS with N-acetylcysteine relieved LMP and autophagy defects. Notably, we observed that LMP and autophagy blockage preceded the emergence of cellular senescence during bleomycin treatment. In addition, promoting or inhibiting autophagy-lysosome degradation alleviated or exacerbated the phenotypes of senescence, respectively. This suggests the alternation of autophagy activity is more a regulatory mechanism than a consequence of bleomycin-induced cellular senescence. Taken together, we reveal a specific role of bleomycin-induced ROS in mediating defects of autophagic degradation and further regulating cellular senescence in vitro and in vivo. Our findings, conversely, indicate the autophagy-lysosome degradation pathway as a target for modulating the functions of bleomycin. These provide a new perspective for optimizing bleomycin as a clinically applicable chemotherapeutics devoid of severe side-effects.Abbreviations: AT2 cells: type II alveolar epithelial cells; ATG7: autophagy related 7; bEnd.3: mouse brain microvascular endothelial cells; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCL2: C-C motif chemokine ligand 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; FTH1: ferritin heavy polypeptide 1; γ-H2AX: phosphorylated H2A.X variant histone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cells; HT22: hippocampal neuronal cell lines; Il: interleukin; LAMP: lysosomal-associated membrane protein; LMP: lysosome membrane permeabilization; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NCOA4: nuclear receptor coactivator 4; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; RPS6KB/S6K: ribosomal protein S6 kinase; SA-GLB1/β-gal: senescence-associated galactosidase, beta 1; SAHF: senescence-associated heterochromatic foci; SASP: senescence-associated secretory phenotype; SEC62: SEC62 homolog, preprotein translocation; SEP: superecliptic pHluorin; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Weiqi Yang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baibing Xue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingjun Chen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Rong Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhichao Li
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoqing Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yang Zhang
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruikang Liu
- Shandong Research Institute of Industrial Technology, Jinan, Shandong, China
| | - Xue Yao
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Jia
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopaedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Ge J, Ge J, Tang G, Xiong D, Zhu D, Ding X, Zhou X, Sang M. Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas. J Transl Med 2024; 22:775. [PMID: 39152432 PMCID: PMC11328457 DOI: 10.1186/s12967-024-05590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinomas (PAADs) often exhibit a "cold" or immunosuppressive tumor milieu, which is associated with resistance to immune checkpoint blockade therapy; however, the underlying mechanisms are incompletely understood. Here, we aimed to improve our understanding of the molecular mechanisms occurring in the tumor microenvironment and to identify biomarkers, therapeutic targets, and potential drugs to improve PAAD treatment. METHODS Patients were categorized according to immunologically hot or cold PAAD subtypes with distinct disease outcomes. Cox regression and weighted correlation network analysis were performed to construct a novel gene signature, referred to as 'Downregulated in hot tumors, Prognostic, and Immune-Related Genes' (DPIRGs), which was used to develop prognostic models for PAAD via machine learning (ML). The role of DPIRGs in PAAD was comprehensively analyzed, and biomarker genes able to distinguish PAAD immune subtypes and predict prognosis were identified by ML. The expression of biomarkers was verified using public single-cell transcriptomic and proteomic resources. Drug candidates for turning cold tumors hot and corresponding target proteins were identified via molecular docking studies. RESULTS Using the DPIRG signature as input data, a combination of survival random forest and partial least squares regression Cox was selected from 137 ML combinations to construct an optimized PAAD prognostic model. The effects and molecular mechanisms of DPIRGs were investigated by analysis of genetic/epigenetic alterations, immune infiltration, pathway enrichment, and miRNA regulation. Biomarkers and potential therapeutic targets, including PLEC, TRPV1, and ITGB4, among others, were identified, and the cell type-specific expression of the biomarkers was validated. Drug candidates, including thalidomide, SB-431542, and bleomycin A2, were identified based on their ability to modulate DPIRG expression favorably. CONCLUSIONS By combining multiple ML algorithms, we developed a novel prognostic model with excellent performance in PAAD cohorts. ML also proved to be powerful for identifying biomarkers and potential targets for improved PAAD patient stratification and immunotherapy.
Collapse
Affiliation(s)
- Jia Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Juan Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China
- Department of Respiratory Medicine, Affiliated Nantong Hospital of Shanghai University, Nantong, 226011, China
| | - Gu Tang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Dejun Xiong
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China
| | - Dongyan Zhu
- Department of Rehabilitation, the Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaoling Ding
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Yu Q, Dong Y, Wang X, Su C, Zhang R, Xu W, Jiang S, Dang Y, Jiang W. Pharmacological induction of MHC-I expression in tumor cells revitalizes T cell antitumor immunity. JCI Insight 2024; 9:e177788. [PMID: 39106105 PMCID: PMC11385079 DOI: 10.1172/jci.insight.177788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/18/2024] [Indexed: 08/09/2024] Open
Abstract
Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related-NF-κB. Furthermore, BLM improved T cell-dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| | - Yu Dong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| | - Chenxuan Su
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runkai Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Xu
- Institute of Immunological Innovation and Translation and
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and
| |
Collapse
|
7
|
Anoud M, Delagoutte E, Helleu Q, Brion A, Duvernois-Berthet E, As M, Marques X, Lamribet K, Senamaud-Beaufort C, Jourdren L, Adrait A, Heinrich S, Toutirais G, Hamlaoui S, Gropplero G, Giovannini I, Ponger L, Geze M, Blugeon C, Couté Y, Guidetti R, Rebecchi L, Giovannangeli C, De Cian A, Concordet JP. Comparative transcriptomics reveal a novel tardigrade-specific DNA-binding protein induced in response to ionizing radiation. eLife 2024; 13:RP92621. [PMID: 38980300 PMCID: PMC11233135 DOI: 10.7554/elife.92621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.
Collapse
Affiliation(s)
- Marwan Anoud
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- Université Paris-SaclayOrsayFrance
| | | | - Quentin Helleu
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Alice Brion
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | | - Marie As
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Xavier Marques
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | | | - Catherine Senamaud-Beaufort
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Laurent Jourdren
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Sophie Heinrich
- Institut Curie, Inserm U1021-CNRS UMR 3347, Université Paris-Saclay, Université PSLOrsay CedexFrance
- Plateforme RADEXP, Institut CurieOrsayFrance
| | | | | | | | - Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Loic Ponger
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | - Marc Geze
- CeMIM, MNHN, CNRS UMR7245ParisFrance
| | - Corinne Blugeon
- Génomique ENS, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEAGrenobleFrance
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio EmiliaModenaItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | | | - Anne De Cian
- Département AVIV, MNHN, CNRS UMR7196, INSERM U1154ParisFrance
| | | |
Collapse
|
8
|
Han L, Xiang X, Fu Y, Wei S, Zhang C, Li L, Liu Y, Lv H, Shan B, Zhao L. Periplcymarin targets glycolysis and mitochondrial oxidative phosphorylation of esophageal squamous cell carcinoma: Implication in anti-cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155539. [PMID: 38522311 DOI: 10.1016/j.phymed.2024.155539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.
Collapse
Affiliation(s)
- Lujuan Han
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Department of Pathogenic Biology, Hebei Medical University, Zhongshan Road 361, Shijiazhuang, 050017, PR China
| | - Xiaohan Xiang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yuhui Fu
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Sisi Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Cong Zhang
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Lei Li
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Department of Pathology, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Huilai Lv
- Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, PR China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, Hebei Province, Shijiazhuang, 050011, PR China.
| |
Collapse
|
9
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Urbańska M, Sofińska K, Czaja M, Szymoński K, Skirlińska-Nosek K, Seweryn S, Lupa D, Szymoński M, Lipiec E. Molecular alterations in metaphase chromosomes induced by bleomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124026. [PMID: 38368817 DOI: 10.1016/j.saa.2024.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Chromosomes are intranuclear structures, their main function is to store and transmit genetic information during cell division. They are composed of tightly packed DNA in the form of chromatin, which is constantly exposed to various damaging factors. The resulting changes in DNA can have serious consequences (e.g. mutations) if they are not repaired or repaired incorrectly. In this article, we studied chromosomes isolated from human cervical cancer cells (HeLa) exposed to a genotoxic drug causing both single- and double-strand breaks. Specifically, we used bleomycin to induce DNA damage. We followed morphological and chemical changes in chromosomes upon damage induction. Atomic force microscopy was used to visualize the morphology of chromosomes, while Raman microspectroscopy enabled the detection of changes in the chemical structure of chromatin with the resolution close to the diffraction limit. Additionally, we extracted spectra corresponding to chromosome I or chromatin from hyperspectral Raman maps with convolutional neural networks (CNN), which were further analysed with the principal component analysis (PCA) algorithm to reveal molecular markers of DNA damage in chromosomes. The applied multimodal approach revealed simultaneous morphological and molecular changes, including chromosomal aberrations, alterations in DNA conformation, methylation pattern, and increased protein expression upon the bleomycin treatment at the level of the single chromosome.
Collapse
Affiliation(s)
- Marta Urbańska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michał Czaja
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Krzysztof Szymoński
- Jagiellonian University Medical College, Department of Pathomorphology, Grzegorzecka 16, 31-531, Krakow, Poland; University Hospital, Department of Pathomorphology, Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
11
|
Karetnikova ES, Jarzebska N, Rodionov RN, Spieth PM, Markov AG. Transcriptional Levels of Intercellular Junction Proteins in an Alveolar Epithelial Cell Line Exposed to Irradiation or Bleomycin. Bull Exp Biol Med 2024; 176:442-446. [PMID: 38488962 DOI: 10.1007/s10517-024-06043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 03/17/2024]
Abstract
We performed a comparative study of the effects of X-ray irradiation and bleomycin on the mRNA levels of E-cadherin and tight junction proteins (claudin-3, claudin-4, claudin-18, ZO-2, and occludin) in an alveolar epithelial cell line L2. Irradiation decreased claudin-4 levels and increased occludin levels, while the levels of other mRNAs remained unchanged. Bleomycin increased the expression levels of all proteins examined except claudin-3. Irradiation and bleomycin have different effects on the expression level of intercellular junction proteins, indicating different reactions triggered in alveolar epithelial cells and a great prospects of further comparative studies.
Collapse
Affiliation(s)
- E S Karetnikova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - N Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - R N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - P M Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - A G Markov
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
12
|
Hu X, He C, Zhang L, Zhang Y, Chen L, Sun C, Wei J, Yang L, Tan X, Yang J, Zhang Y. Mesenchymal stem cell-derived exosomes attenuate DNA damage response induced by cisplatin and bleomycin. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503651. [PMID: 37491116 DOI: 10.1016/j.mrgentox.2023.503651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/27/2023]
Abstract
Stem cell-derived exosomes (SC-Exos) have been shown to protect cells from chemical-induced deoxyribonucleic acid (DNA) damage. However, there has been no systematic comparison of the efficacy of exosomes against different types of DNA damage. Therefore, in this study, we assessed the protective effect of exosomes derived from human embryonic stem cell-induced mesenchymal stem cells (hESC-MSC-Exos) on two types of DNA damage, namely, intra-/inter-strand crosslinks and DNA double-strand breaks induced by cisplatin (Pt) and bleomycin (BLM), respectively, in HeLa cells. The alkaline comet assay demonstrated that hESC-MSC-Exos effectively inhibited Pt- and BLM-induced DNA damage in a dose-dependent manner. When the concentration of hESC-MSC-Exos reaches 2.0 × 106 and 4.0 × 106 particles/mL in Pt- and BLM-treated groups, respectively, there was a significant decrease in tail DNA percentage (Pt: 20.80 ± 1.61 vs 9.40 ± 1.14, p < 0.01; BLM: 21.80 ± 1.31 vs 6.70 ± 0.60, p < 0.01), tail moment (Pt: 10.00 ± 1.21 vs 2.08 ± 0.51, p < 0.01; BLM: 12.00 ± 0.81 vs 2.00 ± 0.21, p < 0.01), and olive tail moment (Pt: 6.01 ± 0.55 vs 2.09 ± 0.25, p < 0.01; BLM: 6.03 ± 0.37 vs 1.53 ± 0.13, p < 0.01). Phospho-histone H2AX (γH2AX) immunofluorescence and western blotting showed an over 50 % decrease in γH2AX expression when the cells were pretreated with hESC-MSC-Exos. As reactive oxygen species (ROS) are important mediators of Pt- and BLM-induced DNA damage, dichloro-dihydro-fluorescein diacetate staining indicated that hESC-MSC-Exos inhibited the increase in intracellular ROS in drug-treated cells. In conclusion, our findings suggest that hESC-MSC-Exos can protect cells from the two types of DNA-damaging drugs and that reduced intracellular ROS is involved in this effect.
Collapse
Affiliation(s)
- Xiaoqiang Hu
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Chuncao He
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Lijun Zhang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Yunheng Zhang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Liangjing Chen
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China
| | - Jun Wei
- State Key Laboratory of Cellular Stress Biology, Xiamen University School of Life Sciences, Xiamen 361005, China
| | - Lei Yang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Xiaohua Tan
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Jun Yang
- Department of Nutrition and Toxicology, Hangzhou Normal University School of Public Health, Hangzhou 311121, China; Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China.
| |
Collapse
|
13
|
Shilleh AH, Beard S, Russ HA. Enrichment of stem cell-derived pancreatic beta-like cells and controlled graft size through pharmacological removal of proliferating cells. Stem Cell Reports 2023; 18:1284-1294. [PMID: 37315522 DOI: 10.1016/j.stemcr.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
Transplantation of limited human cadaveric islets into type 1 diabetic patients results in ∼35 months of insulin independence. Direct differentiation of stem cell-derived insulin-producing beta-like cells (sBCs) that can reverse diabetes in animal models effectively removes this shortage constraint, but uncontrolled graft growth remains a concern. Current protocols do not generate pure sBCs, but consist of only 20%-50% insulin-expressing cells with additional cell types present, some of which are proliferative. Here, we show the selective ablation of proliferative cells marked by SOX9 by simple pharmacological treatment in vitro. This treatment concomitantly enriches for sBCs by ∼1.7-fold. Treated sBC clusters show improved function in vitro and in vivo transplantation controls graft size. Overall, our study provides a convenient and effective approach to enrich for sBCs while minimizing the presence of unwanted proliferative cells and thus has important implications for current cell therapy approaches.
Collapse
Affiliation(s)
- Ali H Shilleh
- Barbara-Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott Beard
- Barbara-Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Holger A Russ
- Barbara-Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Panizza E, Regalado BD, Wang F, Nakano I, Vacanti NM, Cerione RA, Antonyak MA. Proteomic analysis reveals microvesicles containing NAMPT as mediators of radioresistance in glioma. Life Sci Alliance 2023; 6:e202201680. [PMID: 37037593 PMCID: PMC10087103 DOI: 10.26508/lsa.202201680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Tumor-initiating cells contained within the aggressive brain tumor glioma (glioma stem cells, GSCs) promote radioresistance and disease recurrence. However, mechanisms of resistance are not well understood. Herein, we show that the proteome-level regulation occurring upon radiation treatment of several patient-derived GSC lines predicts their resistance status, whereas glioma transcriptional subtypes do not. We identify a mechanism of radioresistance mediated by the transfer of the metabolic enzyme NAMPT to radiosensitive cells through microvesicles (NAMPT-high MVs) shed by resistant GSCs. NAMPT-high MVs rescue the proliferation of radiosensitive GSCs and fibroblasts upon irradiation, and upon treatment with a radiomimetic drug or low serum, and increase intracellular NAD(H) levels. Finally, we show that the presence of NAMPT within the MVs and its enzymatic activity in recipient cells are necessary to mediate these effects. Collectively, we demonstrate that the proteome of GSCs provides unique information as it predicts the ability of glioma to resist radiation treatment. Furthermore, we establish NAMPT transfer via MVs as a mechanism for rescuing the proliferation of radiosensitive cells upon irradiation.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute Hokuto Hospital, Hokkaido, Japan
| | | | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Lampreht Tratar U, Milevoj N, Cemazar M, Znidar K, Ursic Valentinuzzi K, Brozic A, Tomsic K, Sersa G, Tozon N. Treatment of spontaneous canine mast cell tumors by electrochemotherapy combined with IL-12 gene electrotransfer: Comparison of intratumoral and peritumoral application of IL-12. Int Immunopharmacol 2023; 120:110274. [PMID: 37216797 DOI: 10.1016/j.intimp.2023.110274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
The combined treatment of electrochemotherapy (ECT) and interleukin-12 (IL-12) gene electrotransfer (GET) has already been used in clinical studies in dogs to treat various histological types of spontaneous tumors. The results of these studies show that the treatment is safe and effective. However, in these clinical studies, the routes of administration of IL-12 GET were either intratumoral (i.t.) or peritumoral (peri.t.). Therefore, the objective of this clinical trial was to compare the two IL-12 GET routes of administration in combination with ECT and their contribution to the enhanced ECT response. Seventy-seven dogs with spontaneous mast cell tumors (MCTs) were divided into three groups: one treated with a combination of ECT + GET peri. t. (29 dogs), the second with the combination of ECT + GET i.t. (30 dogs), and the third with ECT alone (18 dogs). In addition, immunohistochemical studies of tumor samples before treatment and flow cytometry of peripheral blood mononuclear cells (PBMCs) before and after treatment were performed to determine any immunological aspects of the treatment. The results showed that local tumor control was significantly better in the ECT + GET i.t. group (p < 0.050) than in the ECT + GET peri.t. or ECT groups. In addition, disease-free interval (DFI) and progression-free survival (PFS) were significantly longer in the ECT + GET i.t. group than in the other two groups (p < 0.050). The data on local tumor response, DFI, and PFS were consistent with immunological tests, as we detected an increased percentage of antitumor immune cells in the blood after treatment in the ECT + GET i.t. group, which also indicated the induction of a systemic immune response. In addition, we did not observe any unwanted severe or long-lasting side effects. Finally, due to the more pronounced local response after ECT + GET i.t., we suggest that treatment response assessment should be performed at least two months after treatment, which meets the iRECIST criteria.
Collapse
Affiliation(s)
- Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Nina Milevoj
- Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia.
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Andreja Brozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Katerina Tomsic
- Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Natasa Tozon
- Veterinary Faculty, University of Ljubljana, Gerbiceva 60, 1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Alves de Lima LV, da Silva MF, Concato VM, Rondina DBL, Zanetti TA, Felicidade I, Areal Marques L, Lepri SR, Simionato AS, Filho GA, Coatti GC, Mantovani MS. DNA damage and reticular stress in cytotoxicity and oncotic cell death of MCF-7 cells treated with fluopsin C. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:896-911. [PMID: 35950849 DOI: 10.1080/15287394.2022.2108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluopsin C is an antibiotic compound derived from secondary metabolism of different microorganisms, which possesses antitumor, antibacterial, and antifungal activity. Related to fluopsin C antiproliferative activity, the aim of this study was to examine the following parameters: cytotoxicity, genotoxicity, cell cycle arrest, cell death induction (apoptosis), mitochondrial membrane potential (MMP), colony formation, and mRNA expression of genes involved in adaptive stress responses and cellular death utilizing a monolayer. In addition, a three-dimensional cell culture was used to evaluate the effects on growth of tumor spheroids. Fluopsin C was cytotoxic (1) producing cell division arrest in the G1 phase, (2) elevating expression of mRNA of the CDKN1A gene and (3) decrease in expression of mRNA H2AFX gene. Further, fluopsin C enhanced DNA damage as evidenced by increased expression of mRNA of GADD45A and GPX1 genes, indicating that reactive oxygen species (ROS) may be involved in the observed genotoxic response. Reticulum stress was also detected as noted from activation of the ribonuclease inositol-requiring protein 1 (IRE1) pathway, since a rise in mRNA expression of the ERN1 and TRAF2 genes was observed. During the cell death process, an increase in mRNA expression of the BBC3 gene was noted, indicating participation of this antibiotic in oncotic (ischemic) cell death. Data thus demonstrated for the first time that fluopsin C interferes with the volume of tumor spheroids, in order to attenuate their growth. Our findings show that fluopsin C modulates essential molecular processes in response to stress and cell death.
Collapse
Affiliation(s)
- Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Ane Stéfano Simionato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Galdino Andrade Filho
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| |
Collapse
|
17
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
18
|
Mahdi Seyedzadeh Sani S, Sahranavard M, Jannati Yazdanabad M, Seddigh Shamsi M, Elyasi S, Hooshang Mohammadpour A, Sathyapalan T, Arasteh O, Ghavami V, Sahebkar A. The effect of concomitant use of Colony-Stimulating factors on bleomycin pulmonary toxicity - A systematic review and meta-analysis. Int Immunopharmacol 2022; 112:109227. [PMID: 36099787 DOI: 10.1016/j.intimp.2022.109227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Changes in the incidence of bleomycin pulmonary toxicity (BPT) as a result of adding colony-stimulating factors (CSF) to bleomycin regimens has been investigated in numerous studies. We performed a systematic review and meta-analysis to assess the outcomes of these studies. METHODS A systematic search was performed using Pubmed, Scopus, Web of Science, and Embase on April 2021. Studies evaluating the incidence of BPT in patients receiving bleomycin with and without CSF were included. In addition, meta-analysis was performed by pooling odds ratios using R. RESULTS Out of 340 obtained records, our qualitative and quantitative analysis included 3234 and 1956 patients from 22 and 14 studies, respectively. The quantitative synthesis showed that addition of CSF significantly increased the risk of BPT incidence (OR = 1.82, 95 % CI: 1.37-2.40, p < 0.0001; I2 = 10.7 %). Subgroup analysis did not show any association between continent, bleomycin dose, cancer type, type of study, and pulmonary function test with BPT incidence. CONCLUSION This systematic review and meta-analysis showed that co-administration of CSF with bleomycin increases the incidence of BPT. The physicians need to consider this finding while deciding the best strategy for this cohort of patients.
Collapse
Affiliation(s)
| | - Mehrdad Sahranavard
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahdi Jannati Yazdanabad
- Department of Biostatistics and Epidemiology, School of Health, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohsen Seddigh Shamsi
- Department of Hematology Oncology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran.
| | - Vahid Ghavami
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Kucukbagriacik Y, Dastouri M, Ozgur-Buyukatalay E, Akarca Dizakar O, Yegin K. Investigation of oxidative damage, antioxidant balance, DNA repair genes, and apoptosis due to radiofrequency-induced adaptive response in mice. Electromagn Biol Med 2022; 41:389-401. [PMID: 36062506 DOI: 10.1080/15368378.2022.2117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aims to determine whether exposure to non-ionizing radiofrequency fields could induce an adaptive response (AR) in adult mice and to reveal potential molecular mechanisms triggered by RF-induced AR. The study was performed on 24 adult male Swiss-Albino mice. The average mass of the mice was 37 g. Four groups of adult mice, each consisting of 6, were formed. The radiofrequency group (R) and the adaptive response group (RB) were exposed to 900 MHz of global system for mobile communications (GSM) signal at 0.339 W/kg (1 g average specific absorption rate) 4 h/day for 7 days, while the control group (C) and the bleomycin group (B) were not exposed. 20 minutes after the last radiofrequency field (RF) exposure, the mice in the B and RB groups were injected intraperitoneal (ip) bleomycin (BLM), 37.5 mg/kg. All the animals were sacrificed 30 minutes after the BLM injection. Oxidative damage and antioxidant mechanism were subsequently investigated in the blood samples. Changes in the expression of the genes involved in DNA repair were detected in the liver tissue. TUNEL method was used to determine the apoptosis developed by DNA fragmentation in the liver tissue. The RB group, which produced an adaptive response, was compared with the control group. According to the results, the increase of reactive oxygen species (ROS) in the RB group may have played an important role in triggering the adaptive response and producing the required minimum stress level. Furthermore, tumor suppressor 53(p53), oxo guanine DNA glycosylase (OGG-1) levels responsible for DNA repair mechanism genes expression were increased in conjunction with the increase in ROS. The change in the poly (ADP-ribose) polymerase 1 (PARP-1) and glutathione peroxidase 1 (GPx-1) gene expression were not statistically significant. The antioxidant enzyme levels of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were decreased in the group with adaptive response. According to the data obtained from terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, apoptosis was decreased in the RB group due to the decrease in cell death, which might have resulted from an increase in gene expression responsible for DNA repair mechanisms. The results of our study show that exposure to RF radiation may create a protective reaction against the bleomycin. The minimal oxidative stress due to the RF exposure leads to an adaptive response in the genes that play a role in the DNA repair mechanism and enzymes, enabling the survival of the cell.
Collapse
Affiliation(s)
- Yusuf Kucukbagriacik
- Department of Biophysics, Yozgat Bozok University, Medical School, Yozgat, Turkey
| | - Mohammadreza Dastouri
- Department of Biotechnology, Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Ozen Akarca Dizakar
- Department of Histology and Embryology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
20
|
Pinarbasi-Degirmenci N, Sur-Erdem I, Akcay V, Bolukbasi Y, Selek U, Solaroglu I, Bagci-Onder T. Chronically Radiation-Exposed Survivor Glioblastoma Cells Display Poor Response to Chk1 Inhibition under Hypoxia. Int J Mol Sci 2022; 23:ijms23137051. [PMID: 35806055 PMCID: PMC9266388 DOI: 10.3390/ijms23137051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naïve glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naïve and IR-Surv cells. However, IR-Surv cells’ response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naïve and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.
Collapse
Affiliation(s)
- Nareg Pinarbasi-Degirmenci
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Ilknur Sur-Erdem
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| | - Vuslat Akcay
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ugur Selek
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ihsan Solaroglu
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Department of Neurosurgery, Koç University School of Medicine, Istanbul 34010, Turkey
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| |
Collapse
|
21
|
Construction of MicroRNA-mRNA Regulatory Network in the Molecular Mechanisms of Bleomycin-Induced Pulmonary Fibrosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7367328. [PMID: 35402615 PMCID: PMC8986370 DOI: 10.1155/2022/7367328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
Bleomycin is a common antitumor agent used to treat many different types of malignancies; however, its main side effect is pulmonary fibrosis. The mechanism of bleomycin-induced pulmonary fibrosis (BIPF) has not been fully elucidated. Therefore, to further explore the molecular mechanisms of BIPF, we screened for microRNA (miRNA) and mRNA expression obtained from BIPF samples from the Gene Expression Omnibus database. Subsequently, we identified the differentially expressed miRNAs and genes that overlapped with the differentially expressed miRNAs target genes, predicted by using the miRWalk database selected as a candidate. The candidate genes were visualized based on Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses. A protein-protein interaction network was constructed. Hub differentially expressed genes were selected and corresponding miRNAs to construct a miRNA-mRNA regulation network. Then, we chose three key miRNAs to study their regulatory relationship in bleomycin-induced pulmonary fibrosis. Finally, mouse lung epithelial cells TC-1 and MLE-12 were treated with bleomycin with qPCR to validate the results of three important hub genes and all key miRNAs. And dual-luciferase report experiment was carried out to verify the interaction of mmu-miR-1946a and serpina3n. The results revealed that the imbalance of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) plays a pivotal role in the occurrence and development of BIPF. In addition, Serpina3n and mmu-miR-1946a were proved interaction and may be involved in the regulation of the balance between MMP-9 and TIMP-1. The experimental results also verify the analysis. Our findings provide new insights into the key mediators and pathways related to the molecular mechanisms of BIPF.
Collapse
|
22
|
Disbennett WM, Hawk TM, Rollins PD, Nelakurti DD, Lucas BE, McPherson MT, Hylton HM, Petreaca RC. Genetic interaction of the histone chaperone hip1 + with double strand break repair genes in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000545. [PMID: 35622511 PMCID: PMC9005195 DOI: 10.17912/micropub.biology.000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Schizosaccharomyces pombe hip1 + (human HIRA) is a histone chaperone and transcription factor involved in establishment of the centromeric chromatin and chromosome segregation, regulation of histone transcription, and cellular response to stress. We carried out a double mutant genetic screen of Δhip1 and mutations in double strand break repair pathway. We find that hip1 + functions after the MRN complex which initiates resection of blunt double strand break ends but before recruitment of the DNA damage repair machinery. Further, deletion of hip1 + partially suppresses sensitivity to DNA damaging agents of mutations in genes involved in Break Induced Replication (BIR), one mechanism of rescue of stalled or collapses replication forks ( rad51 + , cdc27 + ). Δhip1 also suppresses mutations in two checkpoint genes ( cds1 + , rad3 + ) on hydroxyurea a drug that stalls replication forks. Our results show that hip1 + forms complex interactions with the DNA double strand break repair genes and may be involved in facilitating communication between damage sensors and downstream factors.
Collapse
Affiliation(s)
| | - Tila M. Hawk
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - P. Daniel Rollins
- Molecular Genetics Undergraduate Program, The Ohio State University, Columbus, OH
| | - Devi D Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH
| | - Bailey E Lucas
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | | | - Hannah M Hylton
- Biology Undergraduate Program, The Ohio State University, Marion, OH
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH
| |
Collapse
|
23
|
Baughan SL, Darwiche F, Tainsky MA. Functional Analysis of ATM variants in a high risk cohort provides insight into missing heritability. Cancer Genet 2022; 264-265:40-49. [DOI: 10.1016/j.cancergen.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
24
|
Bagatska NV. REACTION OF PERIPHERAL BLOOD LYMPHOCYTES OF ADOLESCENTS WITH DEPRESSION TO CHEMICAL MUTAGEN IN VITRO. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-100-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. V. Bagatska
- SI “Institute for Children and Adolescents Health Care of the NAMS of Ukraine”
- V.N. Karazin Kharkiv National University
| |
Collapse
|
25
|
Uncovering bleomycin-induced genomic alterations and underlying mechanisms in yeast. Appl Environ Microbiol 2021; 88:e0170321. [PMID: 34731050 DOI: 10.1128/aem.01703-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae. Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent ZeocinTM (a BLM member) treatment. One-base deletion and T to G substitution at the 5'-GT-3' motif was the most striking signature of ZeocinTM-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. ZeocinTM treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the ZeocinTM-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. Importance Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of ZeocinTM (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of ZeocinTM-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to ZeocinTM, providing novel insights into how bleomycin resistance is developed in cells.
Collapse
|
26
|
Bhagwat M, Nagar S, Kaur P, Mehta R, Vancurova I, Vancura A. Replication stress inhibits synthesis of histone mRNAs in yeast by removing Spt10p and Spt21p from the histone promoters. J Biol Chem 2021; 297:101246. [PMID: 34582893 PMCID: PMC8551654 DOI: 10.1016/j.jbc.2021.101246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species. The aim of this study was to identify the histone mRNA decay pathway in the yeast Saccharomyces cerevisiae and determine the mechanism by which DNA replication stress represses histone mRNAs. Using reverse transcription-quantitative PCR and chromatin immunoprecipitation–quantitative PCR, we show here that histone mRNAs can be degraded by both 5′ → 3′ and 3′ → 5′ pathways; however, replication stress does not trigger decay of histone mRNA in yeast. Rather, replication stress inhibits transcription of histone genes by removing the histone gene–specific transcription factors Spt10p and Spt21p from histone promoters, leading to disassembly of the preinitiation complexes and eviction of RNA Pol II from histone genes by a mechanism facilitated by checkpoint kinase Rad53p and histone chaperone Asf1p. In contrast, replication stress does not remove SCB-binding factor transcription complex, another activator of histone genes, from the histone promoters, suggesting that Spt10p and Spt21p have unique roles in the transcriptional downregulation of histone genes during replication stress. Together, our data show that, unlike in mammalian cells, replication stress in yeast does not trigger decay of histone mRNAs but inhibits histone transcription.
Collapse
Affiliation(s)
- Madhura Bhagwat
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
27
|
Bryce SM, Dertinger SD, Bemis JC. Kinetics of γH2AX and phospho-histone H3 following pulse treatment of TK6 cells provides insights into clastogenic activity. Mutagenesis 2021; 36:255-264. [PMID: 33964157 DOI: 10.1093/mutage/geab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The desire for in vitro genotoxicity assays to provide higher information content, especially regarding chemicals' predominant genotoxic mode of action, has led to the development of a novel multiplexed assay available under the trade name MultiFlow®. We report here on an experimental design variation that provides further insight into clastogens' genotoxic activity. First, the standard MultiFlow DNA Damage Assay-p53, γ H2AX, phospho-histone H3 was used with human TK6 lymphoblastoid cells that were exposed for 24 continuous hours to each of 50 reference clastogens. This initial analysis correctly identified 48/50 compounds as clastogenic. These 48 compounds were then evaluated using a short-term, 'pulse' treatment protocol whereby cells were exposed to test chemical for 4 h, a centrifugation/washout step was performed, and cells were allowed to recover for 20 h. MultiFlow analyses were accomplished at 4 and 24 h. The γ H2AX and phospho-histone H3 biomarkers were found to exhibit distinct differences in terms of their persistence across chemical classes. Unsupervised hierarchical clustering analysis identified three groups. Examination of the compounds within these groups showed one cluster primarily consisting of alkylators that directly target DNA. The other two groups were dominated by non-DNA alkylators and included anti-metabolites, oxidative stress inducers and chemicals that inhibit DNA-processing enzymes. These results are encouraging, as they suggest that a simple follow-up test for in vitro clastogens provides mechanistic insights into their genotoxic activity. This type of information will contribute to improve decision-making and help guide further testing.
Collapse
Affiliation(s)
- Steven M Bryce
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| | | | - Jeffrey C Bemis
- Litron Laboratories, 3500 Winton Place, Suite 1B, Rochester, NY 14623, USA
| |
Collapse
|
28
|
CRL4A DTL degrades DNA-PKcs to modulate NHEJ repair and induce genomic instability and subsequent malignant transformation. Oncogene 2021; 40:2096-2111. [PMID: 33627782 PMCID: PMC7979543 DOI: 10.1038/s41388-021-01690-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Genomic instability induced by DNA damage and improper DNA damage repair is one of the main causes of malignant transformation and tumorigenesis. DNA double strand breaks (DSBs) are the most detrimental form of DNA damage, and nonhomologous end-joining (NHEJ) mechanisms play dominant and priority roles in initiating DSB repair. A well-studied oncogene, the ubiquitin ligase Cullin 4A (CUL4A), is reported to be recruited to DSB sites in genomic DNA, but whether it regulates NHEJ mechanisms of DSB repair is unclear. Here, we discovered that the CUL4A-DTL ligase complex targeted the DNA-PKcs protein in the NHEJ repair pathway for nuclear degradation. Overexpression of either CUL4A or DTL reduced NHEJ repair efficiency and subsequently increased the accumulation of DSBs. Moreover, we demonstrated that overexpression of either CUL4A or DTL in normal cells led to genomic instability and malignant proliferation. Consistent with the in vitro findings, in human precancerous lesions, CUL4A expression gradually increased with increasing malignant tendency and was negatively correlated with DNA-PKcs and positively correlated with γ-H2AX expression. Collectively, this study provided strong evidence that the CUL4A-DTL axis increases genomic instability and enhances the subsequent malignant transformation of normal cells by inhibiting NHEJ repair. These results also suggested that CUL4A may be a prognostic marker of precancerous lesions and a potential therapeutic target in cancer.
Collapse
|
29
|
Kirke J, Jin XL, Zhang XH. Expression of a Tardigrade Dsup Gene Enhances Genome Protection in Plants. Mol Biotechnol 2020; 62:563-571. [PMID: 32955680 DOI: 10.1007/s12033-020-00273-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
DNA damage is one of the most impactful events in living organisms, leading to DNA sequence changes (mutation) and disruption of biological processes. A study has identified a protein called Damage Suppressor Protein (Dsup) in the tardigrade Ramazzotius varieornatus that has shown to reduce the effects of radiation damage in human cell cultures (Hashimoto in Nature Communications 7:12808, 2016). We have generated tobacco plants that express the codon-optimized tardigrade Dsup gene and examined their responses when treated with mutagenic chemicals, ultraviolet (UV) and ionizing radiations. Our studies showed that compared to the control plants, the Dsup-expressing plants grew better in the medium containing mutagenic ethylmethane sulfonate (EMS). RT-qPCR detected distinct expression patterns of endogenous genes involved in DNA damage response and repair in the Dsup plants in response to EMS, bleomycin, UV-C and X-ray radiations. Comet assays revealed that the nuclei from the Dsup plants appeared more protected from UV and X-ray damages than the control plants. Overall, our studies demonstrated that Dsup gene expression enhanced tolerance of plants to genomutagenic stress. We suggest the feasibility of exploring genetic resources from extremotolerant species such as tardigrades to impart plants with tolerance to stressful environments for future climate changes and human space endeavors.
Collapse
Affiliation(s)
- Justin Kirke
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Xiao-Lu Jin
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Xing-Hai Zhang
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
30
|
An RNA Repair Operon Regulated by Damaged tRNAs. Cell Rep 2020; 33:108527. [PMID: 33357439 PMCID: PMC7790460 DOI: 10.1016/j.celrep.2020.108527] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2′, 3′-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5′ tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair. Hughes et al. demonstrate that a bacterial RNA repair operon, containing the RtcB RNA ligase and the RtcA RNA cyclase, is regulated by binding of 5′ tRNA halves ending in 2′, 3′-cyclic phosphate to the RtcR transcriptional activator. These studies show how tRNA fragments can regulate bacterial gene expression.
Collapse
|
31
|
Wang S, Gilbreath C, Kollipara RK, Sonavane R, Huo X, Yenerall P, Das A, Ma S, Raj GV, Kittler R. Mithramycin suppresses DNA damage repair via targeting androgen receptor in prostate cancer. Cancer Lett 2020; 488:40-49. [PMID: 32485222 DOI: 10.1016/j.canlet.2020.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023]
Abstract
The dependency of prostate cancer (PCa) growth on androgen receptor (AR) signaling has been harnessed to develop first-line therapies for high-risk localized and metastatic PCa treatment. However, the occurrence of aberrant expression, mutated or splice variants of AR confers resistance to androgen ablation therapy (ADT), radiotherapy or chemotherapy in AR-positive PCa. Therapeutic strategies that effectively inhibit the expression and/or transcriptional activity of full-length AR, mutated AR and AR splice variants have remained elusive. In this study, we report that mithramycin (MTM), an antineoplastic antibiotic, suppresses cell proliferation and exhibits dual inhibitory effects on expression and transcriptional activity of AR and AR splice variants. MTM blocks AR recruitment to its genomic targets by occupying AR enhancers and causes downregulation of AR target genes, which includes key DNA repair factors in DNA damage repair (DDR). We show that MTM significantly impairs DDR and enhances the effectiveness of ionizing radiation or the radiomimetic agent Bleomycin in PCa. Thus, the combination of MTM treatment with RT or radiomimetic agents, such as bleomycin, may present a novel effective therapeutic strategy for patients with high-risk, clinically localized PCa.
Collapse
Affiliation(s)
- Shan Wang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | - Collin Gilbreath
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajni Sonavane
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Xiaofang Huo
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul Yenerall
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Amit Das
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Shihong Ma
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
32
|
Cooper I, Atrakchi D, Walker MD, Horovitz A, Fridkin M, Shechter Y. Converting bleomycin into a prodrug that undergoes spontaneous reactivation under physiological conditions. Toxicol Appl Pharmacol 2019; 384:114782. [PMID: 31655077 DOI: 10.1016/j.taap.2019.114782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/24/2022]
Abstract
Bleomycin is an anticancer antibiotic effective against a range of human malignancies. Yet its usefulness is limited by serious side effects. In this study, we converted bleomycin into a prodrug by covalently linking 2-sulfo, 9 fluorenylmethoxycarbonyl (FMS) to the primary amino side chain of bleomycin. FMS-bleomycin lost its efficacy to bind transition metal ions and therefore was converted into an inactive derivative. Upon incubation in vitro under physiological conditions, the FMS-moiety undergoes spontaneous hydrolysis, generating native bleomycin possessing full anti-bacterial potency. FMS hydrolysis and reactivation takes place with a t1/2 value of 17 ± 1 h. In silico simulation predicts a narrow therapeutic window in human patients of seven hours, starting 40 min after administration. In mice, close agreement was obtained between the experimental and the simulated pharmacokinetic profiles for FMS-bleomycin. FMS-bleomycin is thus shown to be a classical prodrug: it is inactive at the time of administration and the non-modified (active) bleomycin is released with a desirable pharmacokinetic profile following administration, suggesting it may have therapeutic value in the clinic.
Collapse
Affiliation(s)
- Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel.
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel
| | - Michael D Walker
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoram Shechter
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
33
|
Galleze A, Kocyigit A, Cherif N, Attal N, Touil-Boukoffa C, Raache R. Assessment of oxidative/anti-oxidative markers and DNA damage profile induced by chemotherapy in algerian children with lymphoma. Drug Chem Toxicol 2019; 43:169-173. [PMID: 31464142 DOI: 10.1080/01480545.2019.1659309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to assess the oxidative stress and the genotoxicity induced by chemotherapy by the determination of plasma malondialdehyde (MDA) level, protein carbonyl (PC) content, superoxide dismutase (SOD) activity and lymphocyte DNA damage in Algerian children with lymphoma. The study population included thirty patients with lymphoma and fifty healthy controls. Patients were treated with 2 courses of OEPA (oncovin 1,5 mg/m2, etoposide 125 mg/m2, prednisone 60 mg/m2 and doxorubicin 40 mg/m2) followed by 2 to 4 courses of COPDAC (cyclophosphamide 500 mg/m2, oncovin 1,5 mg/m2, dacarbazine 250 mg/m2 and prednisone 40 mg/m2). Plasma levels of MDA, PC and SOD were spectrophotometrically measured. DNA damage was assessed by alkaline comet assay in peripheral blood leukocytes. Plasma MDA, PC levels and lymphocyte DNA damage, were found to be significantly higher in lymphoma patients than in controls (p < 0.001). Whereas, SOD activity in lymphoma patients was significantly lower than in healthy controls (p < 0.001). There were significant positive correlations between DNA damage, MDA and PC in patients (r = 0.96, p < 0.001, r = 0.97, p < 0.001, respectively), and negative correlation with SOD (r = -0.87, p < 0.01). Our results indicated that, leukocytes DNA damage and oxidative stress were significantly higher in lymphoma patients, suggesting that the direct effect of chemotherapy and the alteration of the redox balance may influence oxidative/antioxidative status.
Collapse
Affiliation(s)
- Assia Galleze
- Department of Cellular and Molecular Biology, Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria
| | - Abdurrahim Kocyigit
- Faculty of Medicine, Department of Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Nacira Cherif
- Hematology Department, Beni Messous Hospital, Algiers, Algeria
| | - Nabila Attal
- Department of Immunology, Institute Pasteur of Algeria, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Department of Cellular and Molecular Biology, Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria
| | - Rachida Raache
- Department of Cellular and Molecular Biology, Cytokines and Nitric Oxide Synthases, Faculty of Biology, University Houari Boumediene USTHB, Algiers, Algeria
| |
Collapse
|
34
|
Ren X, Boriero D, Chaiswing L, Bondada S, St Clair DK, Butterfield DA. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment ("chemobrain"), a condition that significantly impairs the quality of life of many cancer survivors. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1088-1097. [PMID: 30759363 PMCID: PMC6502692 DOI: 10.1016/j.bbadis.2019.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called "chemobrain" or "chemofog" by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.
Collapse
Affiliation(s)
- Xiaojia Ren
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Diana Boriero
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Department of Neurosciences, Biomedicine, and Movement Disorders, Section on Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Luksana Chaiswing
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Subbarao Bondada
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
35
|
Melo-Hanchuk TD, Slepicka PF, Pelegrini AL, Menck CFM, Kobarg J. NEK5 interacts with topoisomerase IIβ and is involved in the DNA damage response induced by etoposide. J Cell Biochem 2019; 120:16853-16866. [PMID: 31090963 DOI: 10.1002/jcb.28943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Cells are daily submitted to high levels of DNA lesions that trigger complex pathways and cellular responses by cell cycle arrest, apoptosis, alterations in transcriptional response, and the onset of DNA repair. Members of the NIMA-related kinase (NEK) family have been related to DNA damage response and repair and the first insight about NEK5 in this context is related to its role in centrosome separation resulting in defects in chromosome integrity. Here we investigate the potential correlation between NEK5 and the DNA damage repair index. The effect of NEK5 in double-strand breaks caused by etoposide was accessed by alkaline comet assay and revealed that NEK5-silenced cells are more sensitive to etoposide treatment. Topoisomerase IIβ (TOPIIβ) is a target of etoposide that leads to the production of DNA breaks. We demonstrate that NEK5 interacts with TOPIIβ, and the dynamics of this interaction is evaluated by proximity ligation assay. The complex NEK5/TOPIIβ is formed immediately after etoposide treatment. Taken together, the results of our study reveal that NEK5 depletion increases DNA damage and impairs proper DNA damage response, pointing out NEK5 as a potential kinase contributor to genomic stability.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Priscila Ferreira Slepicka
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Alessandra Luiza Pelegrini
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jörg Kobarg
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
37
|
Mapping chromosomal instability induced by small-molecular therapeutics in a yeast model. Appl Microbiol Biotechnol 2019; 103:4869-4880. [PMID: 31053912 DOI: 10.1007/s00253-019-09845-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
The yeast Saccharomyces cerevisiae has been widely used as a model system for studying the physiological and pharmacological action of small-molecular drugs. Here, a heterozygous diploid S. cerevisiae strain QSS4 was generated to determine whether drugs could induce chromosomal instability by determining the frequency of mitotic recombination. Using the combination of a custom SNP microarray and yeast screening system, the patterns of chromosomal instability induced by drugs were explored at the whole genome level in QSS4. We found that Zeocin (a member of the bleomycin family) treatment increased the rate of genomic alterations, including aneuploidy, loss of heterozygosity (LOH), and chromosomal rearrangement over a hundred-fold. Most recombination events are likely to be initiated by DNA double-stand breaks directly generated by Zeocin. Another remarkable finding is that G4-motifs and low GC regions were significantly underrepresented within the gene conversion tracts of Zeocin-induced LOH events, indicating that certain DNA regions are less preferred Zeocin-binding sites in vivo. This study provides a novel paradigm for evaluating genetic toxicity of small-molecular drugs using yeast models.
Collapse
|
38
|
Xu J, Li W, Xu S, Gao W, Yu Z. Effect of dermatan sulphate on a C57-mouse model of pulmonary fibrosis. J Int Med Res 2019; 47:2655-2665. [PMID: 31006321 PMCID: PMC6567691 DOI: 10.1177/0300060519842048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To test the antifibrotic effect of dermatan sulphate in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS C57 mice were randomly divided into four experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group and dermatan sulphate group. Lungs were assessed using the lung index, and the extent of interstitial fibrosis was graded using histopathological observation of haematoxylin & eosin-stained lung tissue. Lung tissue hydroxyproline levels and blood fibrinogen levels were measured using a hydroxyproline colorimetric kit and the Clauss fibrinogen assay, respectively. Tissue-type plasminogen activator (tPA) was measured using a chromogenic tPA assay kit. RESULTS Lung index values were significantly lower in the dermatan sulphate group versus the fibrosis group. Histopathological analyses revealed that dermatan sulphate treatment ameliorated the increased inflammatory cell infiltration, and attenuated the reduction in interstitial thickening, associated with bleomycin-induced fibrosis. Hydroxyproline and fibrinogen levels were decreased in the dermatan sulphate group versus the fibrosis model group. Dermatan sulphate treatment was associated with increased tPA levels versus controls and the fibrosis group. CONCLUSIONS Damage associated with bleomycin-induced pulmonary fibrosis was alleviated by dermatan sulphate.
Collapse
Affiliation(s)
- Jianfeng Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wei Li
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shufen Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Weiyang Gao
- 2 Treasury Department, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Zhenyu Yu
- 3 Department of Anaesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
39
|
Guijarro T, Magro-Lopez E, Manso J, Garcia-Martinez R, Fernandez-Aceñero MJ, Liste I, Zambrano A. Detrimental pro-senescence effects of vitamin D on lung fibrosis. Mol Med 2018; 24:64. [PMID: 30567504 PMCID: PMC6299997 DOI: 10.1186/s10020-018-0064-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background The multiple biological effects of vitamin D and its novel activities on inflammation and redox homeostasis have raised high expectations on its use as a therapeutic agent for multiple fibrogenic conditions. We have assessed the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of lung fibrosis. Methods We have used representative cellular models for alveolar type II cells and human myofibroblasts. The extension of DNA damage and cellular senescence have been assessed by immunofluorescence, western-blot and senescence-associated β-galactosidase activity. We have also set up a murine model for lung fibrosis by intraperitoneal injections of bleomycin. Results Vitamin D induces cellular senescence in bleomycin-treated alveolar epithelial type II cells and aggravates the lung pathology induced by bleomycin. These effects are probably due to an alteration of the cellular DNA double-strand breaks repair in bleomycin-treated cells. Conclusions The detrimental effects of vitamin D in the presence of a DNA damaging agent might preclude its use as an antifibrogenic agent for pulmonary fibrosis characterized by DNA damage occurrence and cellular senescence.
Collapse
Affiliation(s)
- Trinidad Guijarro
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Esmeralda Magro-Lopez
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Joana Manso
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | | | | | - Isabel Liste
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Alberto Zambrano
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain.
| |
Collapse
|
40
|
Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol 2018; 9:1300. [PMID: 30483135 PMCID: PMC6243123 DOI: 10.3389/fphar.2018.01300] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the '80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| |
Collapse
|
41
|
Lal AS, Begum SK, Bharadwaj SS, V L, J V, Paul SFD, Maddaly R. Bleomycin-induced genotoxicity in vitro in human peripheral blood lymphocytes evidenced as complex chromosome- and chromatid-type aberrations. Toxicol In Vitro 2018; 54:367-374. [PMID: 30416090 DOI: 10.1016/j.tiv.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/26/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Bleomycin is a chemotherapeutic and a radiomimetic drug which induces single and double-strand breaks in DNA by forming free radicals. We demonstrate in this study the capacity of bleomycin in inducing complex chromosome- and chromatid-type aberrations. Human peripheral blood was exposed to different concentrations of bleomycin (0, 10, 20, 30 and 40 μg/mL) and the aberrations induced were studied. The chromosomal-type aberrations studied were dicentrics, tricentrics, tetracentrics, centric rings and acentric fragments. The chromatid-type aberrations studied were double minutes, terminal lesions and terminal deletions. Though the overall trends that we obtained in the dose-dependent mitotic index and the chromosome- and chromatid-type aberrations conform to the reported literature, we could observe enhanced numbers and the types of such damages in this study. We could notice that chromosome-type aberrations were more than the chromatid-type aberrations. The enhanced numbers and the types of aberrations induced pave way for enhancing the sensitivity of genotoxic assays. Also, with more numbers and type of aberrations available, it would be useful to study the mechanisms of genotoxicity of drugs and in understanding phenomena such as "tolerance induction" to chronic exposure to such mutagens.
Collapse
Affiliation(s)
- Aswathy S Lal
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - S Kauser Begum
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - Sraddha S Bharadwaj
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - Lalitha V
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - Vijayalakshmi J
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - Solomon F D Paul
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600116, India.
| |
Collapse
|
42
|
Zhou N, Yang L, Hu B, Song Y, He L, Chen W, Zhang Z, Liu Z, Lu S. Core–Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments. Anal Chem 2018; 90:13624-13631. [DOI: 10.1021/acs.analchem.8b03850] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University,No. 1, Jianshe East Road, Zhengzhou 450052, People’s Republic of China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Weizhe Chen
- The Center of Quality Supervision and Inspection of Xuchang, Xuchang 461000, People’s Republic of China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
43
|
Barbayianni I, Ninou I, Tzouvelekis A, Aidinis V. Bleomycin Revisited: A Direct Comparison of the Intratracheal Micro-Spraying and the Oropharyngeal Aspiration Routes of Bleomycin Administration in Mice. Front Med (Lausanne) 2018; 5:269. [PMID: 30320115 PMCID: PMC6165886 DOI: 10.3389/fmed.2018.00269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/03/2018] [Indexed: 12/04/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a fatal disease characterized by exuberant deposition of extracellular matrix components, deterioration of lung architecture and impairment of lung functions. Its etiopathogenesis remains incompletely understood, as reflected in the lack of an appropriate therapy. Modeling the human disease in mice via the administration of bleomycin (BLM), despite the inherent limitations, has provided valuable insights into the underlying pathogenetic mechanisms, and has been instrumental for the development and validation of new pharmacologic interventions. Here we have directly compared the, most widely used, intratracheal (IT) route of administration with oropharyngeal aspiration (OA). Our results suggest that the OA route of BLM-administration can be used as a safe and effective alternative, minimizing peri-operative and experimental mortality, while preserving a solid fibrotic profile, as assessed with a plethora of standardized readout assays.
Collapse
Affiliation(s)
- Ilianna Barbayianni
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Ioanna Ninou
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyrios Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| |
Collapse
|
44
|
Bergeron ME, Stefanov A, Haston CK. Fine mapping of the major bleomycin-induced pulmonary fibrosis susceptibility locus in mice. Mamm Genome 2018; 29:670-679. [PMID: 30173367 PMCID: PMC6182746 DOI: 10.1007/s00335-018-9774-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Susceptibility to fibrotic lung disease differs among people and among inbred strains of mice exposed to bleomycin where C57BL/6J mice are susceptible and C3H/HeJ mice are spared fibrotic disease. Genetic mapping studies completed in offspring derived from these inbred strains revealed the inheritance of C57BL/6J alleles at loci, including the major locus on chromosome 17, called Blmpf1 bleomycin-induced pulmonary fibrosis 1, to be linked to pulmonary fibrosis in treated mice. In the present study, to reduce the interval of Blmpf1, we bred and phenotyped a panel of subcongenic mice with C3H/HeJ alleles in a C57BL/6J background. Subcongenic mice received bleomycin via osmotic minipump and the fibrosis phenotype was measured histologically. Inheritance of C3H/HeJ alleles from 34.31 to 35.02 Mb was revealed to spare bleomycin-induced pulmonary fibrosis of C57BL/6J mice. From database analysis, 40 protein coding genes have been mapped to this reduced Blmpf1 interval, 18 of which contain C57BL/6J:C3H/HeJ sequence polymorphisms predicted to affect protein structure or to confer allele-dependent expression, and by RT-PCR analysis of lung tissue, we show 6 of these genes to differ in expression between C57BL/6J and C3H/HeJ mice. Genes known to regulate T cell numbers and activation (Btnl family, Notch4) are among the limited list of potential causal variants leading to lung disease in this model and the bronchoalveolar lavage of protected subcongenic mice had fewer lymphocytes, post bleomycin, than did C57BL/6J mice. We conclude that Blmpf1genes contributing to the susceptibility to bleomycin-induced pulmonary fibrosis could alter the adaptive immune response of C57BL/6J mice.
Collapse
Affiliation(s)
| | - Anguel Stefanov
- Meakins-Christie Laboratories McGill University, Montreal, PQ, Canada
| | - Christina K Haston
- Meakins-Christie Laboratories McGill University, Montreal, PQ, Canada. .,2Department of Mathematics, Statistics, Physics, and Computer Science, I.K. Barber School of Arts and Sciences, The University of British Columbia
- Okanagan, ASC 347 - 3187 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
45
|
Bleomycin inhibits proliferation and induces apoptosis in TPC-1 cells through reversing M2-macrophages polarization. Oncol Lett 2018; 16:3858-3866. [PMID: 30127999 PMCID: PMC6096247 DOI: 10.3892/ol.2018.9103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common types of thyroid malignancy. Previous studies have demonstrated that the density of tumor-associated macrophages (TAMs) within the tumor microenvironment affects the progression of PTC due to the imbalance in M1/M2 macrophage subtypes. M2 macrophages induce anti-inflammatory effects and promote tumor progression, whereas M1 macrophages destroy tumor cells. Therefore, reversing TAM polarization to M1 may be a novel strategy for the treatment of cancer. Although bleomycin (BLM) is a commonly used anti-cancer drug, which regulates the secretion of relevant cytokines, high dose and long-term treatment with BLM may lead to pulmonary fibrosis. In the present study, flow cytometry data revealed that low dose treatment with BLM (5 or 10 mU/ml) facilitated the expression of the M1 phenotype markers cluster of differentiation (CD)80 and C-C chemokine receptor 7, and concurrently suppressed the M2 marker CD206 on M2-macrophages. Reverse transcription-quantitative polymerase chain reaction data revealed that the expression levels of tumor necrosis factor-α and interleukin-1β markedly increased, whereas the expression of IL-10 decreased in M2 macrophages treated with BLM. A fluorescein isothiocyanate-dextran uptake experiment revealed that BLM increased the phagocytic capacity of M2, however not M1 or M0 macrophages. In addition, to verify the effect of BLM-treated M2 macrophages on thyroid carcinoma cells, a co-culture system of macrophages and the human PTC cell line TPC-1, was established. BLM-treated M2 macrophages increased the number of cells in early and late apoptosis and inhibited the migration, proliferation and invasion of TPC-1 cells. These results suggest that a low dose and indirect effect of BLM may induce suppressive effects on PTC by selectively reversing M2 macrophage polarization to M1, which may provide a novel strategy for cancer treatment.
Collapse
|
46
|
Murray V, Chen JK, Chung LH. The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci 2018; 19:E1372. [PMID: 29734689 PMCID: PMC5983701 DOI: 10.3390/ijms19051372] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|