1
|
Wang H, Lau S, Tan A, Tang FR. Chronic Low-Dose-Rate Radiation-Induced Persistent DNA Damage and miRNA/mRNA Expression Changes in Mouse Hippocampus and Blood. Cells 2024; 13:1705. [PMID: 39451223 PMCID: PMC11505968 DOI: 10.3390/cells13201705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Our previous study demonstrated that the acute high-dose-rate (3.3 Gy/min) γ-ray irradiation (γ-irradiation) of postnatal day-3 (P3) mice with 5 Gy induced depression and drastic neuropathological changes in the dentate gyrus of the hippocampus of adult mice. The present study investigated the effects of chronic low-dose-rate (1.2 mGy/h) γ-irradiation from P3 to P180 with a cumulative dose of 5 Gy on animal behaviour, hippocampal cellular change, and miRNA and mRNA expression in the hippocampus and blood in female mice. The radiation exposure did not significantly affect the animal's body weight, and neuropsychiatric changes such as anxiety and depression were examined by neurobehavioural tests, including open field, light-dark box, elevated plus maze, tail suspension, and forced swim tests. Immunohistochemical staining did not detect any obvious loss of mature and immature neurons (NeuN and DCX) or any inflammatory glial response (IBA1, GFAP, and PDGFRα). Nevertheless, γH2AX foci in the stratum granulosum of the dentate gyrus were significantly increased, suggesting the chronic low-dose-rate irradiation induced persistent DNA damage foci in mice. miRNA sequencing and qRT-PCR indicated an increased expression of miR-448-3p and miR-361-5p but decreased expression of miR-193a-3p in the mouse hippocampus. Meanwhile, mRNA sequencing and qRT-PCR showed the changed expression of some genes, including Fli1, Hs3st5, and Eif4ebp2. Database searching by miRDB and TargetScan predicted that Fli1 and Hs3st5 are the targets of miR-448-3p, and Eif4ebp2 is the target of miR-361-5p. miRNA/mRNA sequencing and qRT-PCR results in blood showed the increased expression of miR-6967-3p and the decreased expression of its target S1pr5. The interactions of these miRNAs and mRNAs may be related to the chronic low-dose-rate radiation-induced persistent DNA damage.
Collapse
Affiliation(s)
| | | | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore; (H.W.); (S.L.); (A.T.)
| |
Collapse
|
2
|
Pokharel D, Shaik A, Gali H, Ling C, Bellani MA, Seidman MM. A bifunctional antibody conjugate marks the location of DNA binding proteins on deproteinized DNA fibers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.609705. [PMID: 39257800 PMCID: PMC11383660 DOI: 10.1101/2024.08.29.609705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Immunofluorescent foci of DNA Damage Response (DDR) proteins serve as surrogates for DNA damage and are frequently interpreted as denoting specific lesions. For example, Double Strand Breaks (DSBs) are potent inducers of the DDR, whose best-known factor is the phosphorylated histone variant H2AX (γ-H2AX). The association with DSBs is so well established that the reverse interpretation that γ-H2AX invariably implies DSBs is routine. However, this conclusion is inferential and has been challenged. The resolution of this question has been hampered by the lack of methods for distinguishing the location of DDR proteins relative to DSBs caused by sequence indifferent agents. Here, we describe an approach for marking the location of DDR factors in relation to DSBs on DNA fibers. We synthesized a two-arm "Y" conjugate containing biotin and trimethylpsoralen (TMP) coupled to a secondary antibody. After exposure to a DNA breaker, permeabilized mammalian cells were incubated with a primary antibody against the DDR factor followed by binding of the secondary antibody in the conjugate to the primary antibody. Exposure to longwave UV light covalently linked the psoralen to the DNA. DNA fibers were spread, and the immunofluorescence of the biotin tag denoted the location of the target protein. Abstract Figure
Collapse
|
3
|
Kanagaraj K, Phillippi MA, Ober EH, Shuryak I, Kleiman NJ, Olson J, Schaaf G, Cline JM, Turner HC. BAX and DDB2 as biomarkers for acute radiation exposure in the human blood ex vivo and non-human primate models. Sci Rep 2024; 14:19345. [PMID: 39164366 PMCID: PMC11336173 DOI: 10.1038/s41598-024-69852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
There are currently no available FDA-cleared biodosimetry tools for rapid and accurate assessment of absorbed radiation dose following a radiation/nuclear incident. Previously we developed a protein biomarker-based FAST-DOSE bioassay system for biodosimetry. The aim of this study was to integrate an ELISA platform with two high-performing FAST-DOSE biomarkers, BAX and DDB2, and to construct machine learning models that employ a multiparametric biomarker strategy for enhancing the accuracy of exposure classification and radiation dose prediction. The bioassay showed 97.92% and 96% accuracy in classifying samples in human and non-human primate (NHP) blood samples exposed ex vivo to 0-5 Gy X-rays, respectively up to 48 h after exposure, and an adequate correlation between reconstructed and actual dose in the human samples (R2 = 0.79, RMSE = 0.80 Gy, and MAE = 0.63 Gy) and NHP (R2 = 0.80, RMSE = 0.78 Gy, and MAE = 0.61 Gy). Biomarker measurements in vivo from four NHPs exposed to a single 2.5 Gy total body dose showed a persistent upregulation in blood samples collected on days 2 and 5 after irradiation. The data indicates that using a combined approach of targeted proteins can increase bioassay sensitivity and provide a more accurate dose prediction.
Collapse
Affiliation(s)
- Karthik Kanagaraj
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Michelle A Phillippi
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth H Ober
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - John Olson
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - George Schaaf
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Helen C Turner
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Osipov A, Chigasova A, Yashkina E, Ignatov M, Vorobyeva N, Zyuzikov N, Osipov AN. Early and Late Effects of Low-Dose X-ray Exposure in Human Fibroblasts: DNA Repair Foci, Proliferation, Autophagy, and Senescence. Int J Mol Sci 2024; 25:8253. [PMID: 39125823 PMCID: PMC11311499 DOI: 10.3390/ijms25158253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of low-dose radiation exposure remain a controversial topic in radiation biology. This study compares early (0.5, 4, 24, 48, and 72 h) and late (5, 10, and 15 cell passages) post-irradiation changes in γH2AX, 53BP1, pATM, and p-p53 (Ser-15) foci, proliferation, autophagy, and senescence in primary fibroblasts exposed to 100 and 2000 mGy X-ray radiation. The results show that exposure to 100 mGy significantly increased γH2AX, 53BP1, and pATM foci only at 0.5 and 4 h post irradiation. There were no changes in p-p53 (Ser-15) foci, proliferation, autophagy, or senescence up to 15 passages post irradiation at the low dose.
Collapse
Affiliation(s)
- Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta Yashkina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Maxim Ignatov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
| | - Nikolay Zyuzikov
- Department of Physics, Faculty of Science and Technology, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Andreyan N. Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.O.); (A.C.); (E.Y.); (M.I.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| |
Collapse
|
5
|
Okunieff P, Swarts SG, Fenton B, Zhang SB, Zhang Z, Rice L, Zhou D, Carrier F, Zhang L. Radiation Biological Toximetry Using Circulating Cell-Free DNA (cfDNA) for Rapid Radiation/Nuclear Triage. Radiat Res 2024; 202:70-79. [PMID: 38661544 PMCID: PMC11346512 DOI: 10.1667/rade-23-00159.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Optimal triage biodosimetry would include risk stratification within minutes, and it would provide useful triage despite heterogeneous dosimetry, cytokine therapy, mixed radiation quality, race, and age. For regulatory approval, the U.S. Food and Drug Administration (FDA) Biodosimetry Guidance requires suitability for purpose and a validated species-independent mechanism. Circulating cell-free DNA (cfDNA) concentration assays may provide such triage information. To test this hypothesis, cfDNA concentrations were measured in unprocessed monkey plasma using a branched DNA (bDNA) technique with a laboratory developed test. The cfDNA levels, along with hematopoietic parameters, were measured over a 7-day period in Rhesus macaques receiving total body radiation doses ranging from 1 to 6.5 Gy. Low-dose irradiation (0-2 Gy) was easily distinguished from high-dose whole-body exposures (5.5 and 6.5 Gy). Fold changes in cfDNA in the monkey model were comparable to those measured in a bone marrow transplant patient receiving a supralethal radiation dose, suggesting that the lethal threshold of cfDNA concentrations may be similar across species. Average cfDNA levels were 50 ± 40 ng/mL [±1 standard deviation (SD)] pre-irradiation, 120 ± 13 ng/mL at 1 Gy; 242 ± 71 ng/mL at 2 Gy; 607 ± 54 at 5.5 Gy; and 1585 ± 351 at 6.5 Gy (±1 SD). There was an exponential increase in cfDNA concentration with radiation dose. Comparison of the monkey model with the mouse model and the Guskova model, developed using Chernobyl responder data, further demonstrated correlation across species, supporting a similar mechanism of action. The test is available commercially in a Clinical Laboratory Improvement Amendments (CLIA) ready form in the U.S. and the European Union. The remaining challenges include developing methods for further simplification of specimen processing and assay evaluation, as well as more accurate calibration of the triage category with cfDNA concentration cutoffs.
Collapse
Affiliation(s)
- Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Steven G. Swarts
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Bruce Fenton
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York
| | - Steven B. Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Lori Rice
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, Center for Innovative Drug Discovery (CIDD), University of Texas Health San Antonio, Texas
| | - France Carrier
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
- First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
6
|
Schumann S, Scherthan H, Hartrampf PE, Göring L, Buck AK, Port M, Lassmann M, Eberlein U. Modelling the In Vivo and Ex Vivo DNA Damage Response after Internal Irradiation of Blood from Patients with Thyroid Cancer. Int J Mol Sci 2024; 25:5493. [PMID: 38791531 PMCID: PMC11122196 DOI: 10.3390/ijms25105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: c characterizes DSB damage induction; k1 and k2 are rate constants describing fast and slow repair). The rate constants were compared to ex vivo repair rates. A total of 14 patient datasets could be analyzed; c ranged from 0.012 to 0.109 mGy-1, k2 from 0 to 0.04 h-1. On average, 96% of the damage is repaired quickly with k1 (range: 0.19-3.03 h-1). Two patient subgroups were distinguished by k1-values (n = 6, k1 > 1.1 h-1; n = 8, k1 < 0.6 h-1). A weak correlation with patient age was observed. While induction of RIF was similar among ex vivo and in vivo, the respective repair rates failed to correlate. The lack of correlation between in vivo and ex vivo repair rates and the applicability of the model to other therapies will be addressed in further studies.
Collapse
Affiliation(s)
- Sarah Schumann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Philipp E. Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Lukas Göring
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
Wang L, Zhou H, Chen Q, Lin Z, Jiang C, Chen X, Chen M, Liu L, Shao L, Liu X, Pan J, Wu J, Song J, Wu J, Zhang D. STING Agonist-Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon-Dependent Radioimmunotherapy in Rectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307858. [PMID: 38063844 PMCID: PMC10870073 DOI: 10.1002/advs.202307858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Indexed: 02/17/2024]
Abstract
Hypoxia-associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X-ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon-dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD-1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
- Department of Oncologythe Second Affiliated Hospital of Nanchang UniversityNanchang360000P. R. China
| | - Han Zhou
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Chenwei Jiang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xingte Chen
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Mingdong Chen
- Department of Radiation OncologyMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Libin Liu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Lingdong Shao
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Jianji Pan
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Jingcheng Wu
- Department of Health ScienceTechnology and EducationNational Health Commission of the People's Republic of ChinaBeijing100088China
| | - Jibin Song
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Junxin Wu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| |
Collapse
|
8
|
Chen Y, Gong Y, Qin H, Wei S, Wei Y, Yu Y, Lin X, Shuai P, Wang T, Guo C, Wang Q, Li G, Meng L, Yi L. MDM2-p53 mediate a miR-181c-3p/LIF axis to regulate low dose-rate radiation-induced DNA damage in human B lymphocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115848. [PMID: 38134636 DOI: 10.1016/j.ecoenv.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS In this study, we irradiated C57BL/6J mice with 12.5μGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5μGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.
Collapse
Affiliation(s)
- Yonglin Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lijuan Meng
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Chen YN, Chan YH, Shiau JP, Farooqi AA, Tang JY, Chen KL, Yen CY, Chang HW. The neddylation inhibitor MLN4924 inhibits proliferation and triggers apoptosis of oral cancer cells but not for normal cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:299-313. [PMID: 37705323 DOI: 10.1002/tox.23951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Increased neddylation benefits the survival of several types of cancer cells. The inhibition of neddylation has the potential to exert anticancer effects but is rarely assessed in oral cancer cells. This study aimed to investigate the antiproliferation potential of a neddylation inhibitor MLN4924 (pevonedistat) for oral cancer cells. MLN4924 inhibited the cell viability of oral cancer cells more than that of normal oral cells (HGF-1) with 100% viability, that is, IC50 values of oral cancer cells (CAL 27, OC-2, and Ca9-22) are 1.8, 1.4, and 1.9 μM. MLN4924 caused apoptotic changes such as the subG1 accumulation, activation of annexin V, pancaspase, and caspases 3/8/9 of oral cancer cells at a greater rate than in normal oral cells. MLN4924 induced greater oxidative stress in oral cancer cells compared to normal cells by upregulating reactive oxygen species and mitochondrial superoxide and depleting the mitochondrial membrane potential and glutathione. In oral cancer cells, preferential inductions also occurred for DNA damage (γH2AX and 8-oxo-2'-deoxyguanosine). Therefore, this investigation demonstrates that MLN4924 is a potential anti-oral-cancer agent showing preferential inhibition of apoptosis and promotion of DNA damage with fewer cytotoxic effects on normal cells.
Collapse
Affiliation(s)
- Yan-Ning Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Chan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Jen-Yang Tang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Liang Chen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Jin Z, Dong Z, Zhao X, Hang X, Lu Y, Zhang Q, Chen H, Huang Z, Wang Y, Zhou G, Chang L. Sensitive, rapid detection of NCOA4-m6A towards precisely quantifying radiation dosage on a Cas13a-Microdroplet platform. Biosens Bioelectron 2023; 242:115753. [PMID: 37839351 DOI: 10.1016/j.bios.2023.115753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Precise quantification of low-dose ionizing radiation is of great significance in protecting people from damage caused by clinical radiotherapy or environmental radiation. Traditional techniques for detecting radiation, however, remain extreme challenges to achieve high sensitivity and speed in quantifying radiation dosage. In this work, we report a Cas13a-Microdroplet platform that enables sensitive detection of ultra-low doses of radiation (0.5 Gy vs. 1 Gy traditional) within 1 h. The micro-platform adopts an ideal, specific radiation-sensitive marker, m6A on NCOA4 gene (NCOA4-m6A) that was first reported in our recent work. Microfluidics of the platform generate uniform microdroplets that encapsulate a CRISPR/Cas13a detection system and NCOA4-m6A target from the whole RNA extraction, achieving 10-fold enhancement in sensitivity and significantly reduced limit of detection (LOD). Systematic mouse models and clinical patient samples demonstrated its superior sensitivity and LOD (0.5 Gy) than traditional qPCR, which show wide potentials in radiation tracking and damage protection.
Collapse
Affiliation(s)
- Zhiyuan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Xi Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinxin Hang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yiming Lu
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Life Science, University of Hebei, Baoding, 071002, China
| | - Qi Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Medicine, University of South China, Hengyang, 421001, China
| | - Hongxia Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yusen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Life Science, University of Hebei, Baoding, 071002, China; School of Medicine, University of South China, Hengyang, 421001, China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Ramadhani D, Tetriana D, Purnami S, Suvifan VA, Kurnia Hasan Basri I, Kisnanto T, Oktariyani TA, Syafira D, Yunus MY, Miura T, Syaifudin M, Widowati R. γ-H2AX and phospho-ATM enzyme-linked immunosorbent assays as biodosimetry methods for radiation exposure assessment: a pilot study. RADIATION PROTECTION DOSIMETRY 2023; 199:2383-2390. [PMID: 37712393 DOI: 10.1093/rpd/ncad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
In the event of a radiological incident, a fast and accurate biological dosimetry (biodosimetry) method for evaluating people who have been potentially exposed to ionising radiation is crucial. Among the many biodosimetry methods available, the immunodetection of phosphorylated H2AX (γ-H2AX) stands as a promising method to be used in the triage of patients exposed to radiation. Currently, the most common way to measure γ-H2AX levels is through fluorescence microscopy. In this pilot study, we assessed the feasibility of using an enzyme-linked immunosorbent assay (ELISA) for quantifying γ-H2AX for biodosimetry purposes. Moreover, the usefulness of measuring phosphorylated ATM (pATM) levels through ELISA for biodosimetry was also evaluated. Blood samples were obtained from three male donors (38 y) and were irradiated with 60Co (0, 1, 2 and 6 Gy). Peripheral blood mononuclear cells (PBMCs) were isolated and lysed before measuring γ-H2AX, total H2AX protein and pATM using ELISA kits. The dicentric chromosome assay (DCA) using whole blood was also performed for comparison. Data from all donors at each dose were pooled before statistical analysis. The ratio of γ-H2AX/total H2AX and pATM levels increased in a radiation-dose-dependent manner. The average γ-H2AX/total H2AX ratios were 0.816 ± 0.219, 0.830 ± 0.685, 1.276 ± 1.151 and 1.606 ± 1.098, whereas the average levels of pATM were 59.359 ± 3.740, 63.366 ± 0.840, 66.273 ± 2.603 and 69.936 ± 4.439, in PBMCs exposed to 0, 1, 2 and 6 Gy, respectively. The linear-quadratic dose-response calibration curve for DCA was Y = 0.0017 (±0.0010) + 0.0251 (±0.0142) × D + 0.0342 (±0.0039) × D2 $\boldsymbol{Y}=\mathbf{0.0017}\left(\pm \mathbf{0.0010}\right)+\mathbf{0.0208}\left(\pm \mathbf{0.0218}\right)\times \boldsymbol{D}+\mathbf{0.0350}\left(\pm \mathbf{0.0050}\right)\times{\boldsymbol{D}}^{\mathbf{2}}$. Overall, despite a large variability in the ratio of γ-H2AX/total H2AX among donors, the present study revealed the suitability of using the ratio of γ-H2AX/total H2AX and pATM for biodosimetry. Still, more research with a larger group of subjects is necessary to construct a reliable calibration curve for the ratio of γ-H2AX/total H2AX and pATM levels for biodosimetry.
Collapse
Affiliation(s)
- Dwi Ramadhani
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Devita Tetriana
- Research Center for Safety, Metrology and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Sofiati Purnami
- Research Center for Safety, Metrology and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Viria Agesti Suvifan
- Directorate of Strengthening and Partnership of Research and Innovation Infrastructure, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, Jl. M.H.Thamrin No.8, Jakarta Pusat 10340, Indonesia
| | - Iin Kurnia Hasan Basri
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Teja Kisnanto
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Tiara Andalya Oktariyani
- Department of Biology, Faculty of Science and Technology, Al-Azhar University of Indonesia, Komplek Masjid Agung Al Azhar Jl. Sisingamangaraja, Jakarta Selatan, Kebayoran Baru 12110, Indonesia
| | - Dira Syafira
- Department of Biology, Faculty of Science and Technology, Al-Azhar University of Indonesia, Komplek Masjid Agung Al Azhar Jl. Sisingamangaraja, Jakarta Selatan, Kebayoran Baru 12110, Indonesia
| | - Muhamad Yasin Yunus
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Gedung 720 KST. BJ. Habibie, Jl. Raya Puspiptek 60, Tangerang Selatan, Banten 15310, Indonesia
| | - Retno Widowati
- Department of Biology, Universitas Nasional, Jl. Sawo Manila, Pejaten Ps. Minggu, Jakarta Selatan 12520, Indonesia
| |
Collapse
|
12
|
Wilkins RC, Beaton-Green LA. Development of high-throughput systems for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1477-1484. [PMID: 37721060 PMCID: PMC10720693 DOI: 10.1093/rpd/ncad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 09/19/2023]
Abstract
Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
13
|
Belov O, Chigasova A, Pustovalova M, Osipov A, Eremin P, Vorobyeva N, Osipov AN. Dose-Dependent Shift in Relative Contribution of Homologous Recombination to DNA Repair after Low-LET Ionizing Radiation Exposure: Empirical Evidence and Numerical Simulation. Curr Issues Mol Biol 2023; 45:7352-7373. [PMID: 37754249 PMCID: PMC10528584 DOI: 10.3390/cimb45090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the relative contributions of different repair pathways to radiation-induced DNA damage responses remains a challenging issue in terms of studying the radiation injury endpoints. The comparative manifestation of homologous recombination (HR) after irradiation with different doses greatly determines the overall effectiveness of recovery in a dividing cell after irradiation, since HR is an error-free mechanism intended to perform the repair of DNA double-strand breaks (DSB) during S/G2 phases of the cell cycle. In this article, we present experimentally observed evidence of dose-dependent shifts in the relative contributions of HR in human fibroblasts after X-ray exposure at doses in the range 20-1000 mGy, which is also supported by quantitative modeling of DNA DSB repair. Our findings indicate that the increase in the radiation dose leads to a dose-dependent decrease in the relative contribution of HR in the entire repair process.
Collapse
Affiliation(s)
- Oleg Belov
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia;
- Institute of Biomedical Problems, Russian Academy of Sciences, 76A Khoroshevskoye Shosse, 123007 Moscow, Russia
- Institute of System Analysis and Management, Dubna State University, 19 Universitetskaya St., 141980 Dubna, Russia
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Margarita Pustovalova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
| | - Petr Eremin
- FSBI “National Medical Research Center for Rehabilitation and Balneology”, Ministry of Health of Russia, 121099 Moscow, Russia;
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
| | - Andreyan N. Osipov
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia;
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.C.); (A.O.); (N.V.)
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC—FMBC), 123098 Moscow, Russia;
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
14
|
Jain V, Saini D, Soren DC, Kumar VA, Vivek Kumar PR, Koya PKM, Jaikrishan G, Das B. Non-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coast. Genes Environ 2023; 45:16. [PMID: 37127760 PMCID: PMC10150514 DOI: 10.1186/s41021-023-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The human population living in high level natural radiation areas (HLNRAs) of Kerala coast provide unique opportunities to study the biological effects of low dose and low dose rate ionizing radiation below 100 mGy. The level of radiation in this area varies from < 1.0 to 45 mGy/year. The areas with ≤ 1.50 mGy/year are considered as normal level natural radiation areas (NLNRA) and > 1.50 mGy/year, as high level natural radiation areas (HLNRA). The present study evaluated dose response relationship between DNA double strand breaks (DSBs) and background radiation dose in individuals residing in Kerala coast. Venous blood samples were collected from 200 individuals belonging to NLNRA (n = 50) and four dose groups of HLNRA; 1.51-5.0 mGy/year (n = 50), 5.01-10.0 mGy/year (n = 30), 10.01-15.0 mGy/year (n = 33), > 15.0 mGy/year (n = 37) with written informed consent. The mean dose of NLNRA and four HLNRA dose groups studied are 1.21 ± 0.21 (range: 0.57-1.49), 3.02 ± 0.95 (range: 1.57-4.93), 7.43 ± 1.48 (range: 5.01-9.75), 12.22 ± 1.47 (range: 10.21-14.99), 21.64 ± 6.28 (range: 15.26-39.88) mGy/year, respectively. DNA DSBs were quantified using γH2AX as a marker, where foci were counted per cell using fluorescence microscopy. RESULTS Our results revealed that the frequency of γH2AX foci per cell was 0.090 ± 0.051 and 0.096 ± 0.051, respectively in NLNRA and HLNRA individuals, which were not significantly different (t198 = 0.33; P = 0.739). The frequency of γH2AX foci was observed to be 0.090 ± 0.051, 0.096 ± 0.051, 0.076 ± 0.036, 0.087 ± 0.042, 0.108 ± 0.046 per cell, respectively in different dose groups of ≤ 1.50, 1.51-5.0, 5.01-10.0, 10.01-15.0, > 15.0mGy/year (ANOVA, F4,195 = 2.18, P = 0.072) and suggested non-linearity in dose response. The frequency of γH2AX foci was observed to be 0.098 ± 0.042, 0.078 ± 0.037, 0.084 ± 0.042, 0.099 ± 0.058, 0.097 ± 0.06 and 0.114 ± 0.033 per cell in the age groups of ≤ 29, 30-34, 35-39, 40-44, 45-49 and ≥ 50 years, respectively (ANOVA, F5,194 = 2.17, P = 0.059), which suggested marginal influence of age on the baseline of DSBs. Personal habits such as smoking (No v/s Yes: 0.092 ± 0.047 v/s 0.093 ± 0.048, t198 = 0.13; P = 0.895) and drinking alcohol (No v/s Yes: 0.096 ± 0.052 v/s 0.091 ± 0.045, t198 = 0.62; P = 0.538) did not show any influence on DSBs in the population. CONCLUSION The present study did not show any increase in DSBs in different dose groups of HLNRA compared to NLNRA, however, it suggested a non-linear dose response between DNA DSBs and chronic low dose radiation.
Collapse
Affiliation(s)
- Vinay Jain
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Divyalakshmi Saini
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - D C Soren
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - V Anil Kumar
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India
| | - P R Vivek Kumar
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - P K M Koya
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
| | - G Jaikrishan
- Low Level Radiation Research Laboratory, LLRRS, RB&HSD, BSG, BARC, IRE Campus, Beach Road, Kollam, Kerala, 691 001, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section (LLRRS), Radiation Biology & Health Sciences Division (RB&HSD), Bio-Sciences Group (BSG), Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400 085, India.
- Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
15
|
Ran L, Gao Z, Chen Q, Ran Y, Duan N, Hu G, Lu X, Xia R, Li Q, Cui F, Liu X, Xue B. Improving effects of telmisartan on spermatogenic disorder induced by fractionated low-dose irradiation in mice. Int Urol Nephrol 2023; 55:1427-1439. [PMID: 37093439 DOI: 10.1007/s11255-023-03601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Male infertility is a hot problem worldwide, but there are few treatments, especially male infertility caused by irradiation is difficult to treat. The aim of this study was to investigate and evaluate novel drugs for the treatment of male infertility caused by irradiation. METHODS we randomly divided 18 male BALB/c mice into 3 groups: control, irradiated, and telmisartan. Both irradiated and telmisartan group completed whole-body 0.5 Gy five times irradiation, and the telmisartan group received intraperitoneal injection of telmisartan (1.2 mg/kg) daily on the next day after irradiation, and all groups were sampled on day 25 after irradiation. RESULTS Sperm motility results show that total sperm motility of irradiated group was significantly lower compared with control group, and testicular HE results showed that testis in irradiated group were severely damaged. Compared with irradiated group, the total sperm motility, sperm concentration, testicular index, Johnsen score, and the seminiferous tubule layer numbers were higher in telmisartan group (P < 0.05). The immunohistochemical staining showed γ-H2AX expression is higher in telmisartan group compared with irradiated group. And the relative mRNA expression of PLZF, GFRA1, STRA8, DMRT1, SPO11, SYCP2, OVOL2, CCNA1, TJP3, RUNX2, TXNDC2 TNP1, and PRM3 in telmisartan group was all significantly higher than irradiated group (P < 0.05). CONCLUSION In conclusion, in vivo experiments confirmed that telmisartan ameliorated the spermatogenic disorder in mice caused by fractionated low-dose irradiation via promoting spermatogenesis.
Collapse
Affiliation(s)
- Lingxiang Ran
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Zhixiang Gao
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuanshuai Ran
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Nengliang Duan
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Guangmo Hu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Xingyu Lu
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Renlan Xia
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Qiaoqiao Li
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Fengmei Cui
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaolong Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
16
|
Lee MY, Shiau JP, Tang JY, Hou MF, Primus PS, Kao CL, Choo YM, Chang HW. Boesenbergia stenophylla-Derived Stenophyllol B Exerts Antiproliferative and Oxidative Stress Responses in Triple-Negative Breast Cancer Cells with Few Side Effects in Normal Cells. Int J Mol Sci 2023; 24:ijms24097751. [PMID: 37175458 PMCID: PMC10178828 DOI: 10.3390/ijms24097751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.
Collapse
Affiliation(s)
- Min-Yu Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Phoebe Sussana Primus
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeun-Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Osipov A, Chigasova A, Yashkina E, Ignatov M, Fedotov Y, Molodtsova D, Vorobyeva N, Osipov AN. Residual Foci of DNA Damage Response Proteins in Relation to Cellular Senescence and Autophagy in X-Ray Irradiated Fibroblasts. Cells 2023; 12:cells12081209. [PMID: 37190118 DOI: 10.3390/cells12081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
DNA repair (DNA damage) foci observed 24 h and later after irradiation are called "residual" in the literature. They are believed to be the repair sites for complex, potentially lethal DNA double strand breaks. However, the features of their post-radiation dose-dependent quantitative changes and their role in the processes of cell death and senescence are still insufficiently studied. For the first time in one work, a simultaneous study of the association of changes in the number of residual foci of key DNA damage response (DDR) proteins (γH2AX, pATM, 53BP1, p-p53), the proportion of caspase-3 positive, LC-3 II autophagic and SA-β-gal senescent cells was carried out 24-72 h after fibroblast irradiation with X-rays at doses of 1-10 Gy. It was shown that with an increase in time after irradiation from 24 h to 72 h, the number of residual foci and the proportion of caspase-3 positive cells decrease, while the proportion of senescent cells, on the contrary, increases. The highest number of autophagic cells was noted 48 h after irradiation. In general, the results obtained provide important information for understanding the dynamics of the development of a dose-dependent cellular response in populations of irradiated fibroblasts.
Collapse
Affiliation(s)
- Andrey Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Chigasova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta Yashkina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Maxim Ignatov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Yuriy Fedotov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Daria Molodtsova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Natalia Vorobyeva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| |
Collapse
|
18
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
19
|
Park C, Lee H, Kim SO, Lee EW, Lee HT, Kwon HJ, Kim BW, Kim GY, Kim MR, Choi YH. The preventive effect of Mori Ramulus on oxidative stress-induced cellular damage in skeletal L6 myoblasts through Nrf2-mediated activation of HO-1. Toxicol Res 2023; 39:25-36. [PMID: 36726826 PMCID: PMC9839907 DOI: 10.1007/s43188-022-00141-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study is to investigate the preventive effect of water extract of Mori Ramulus (MRWE) on oxidative stress-mediated cellular damages in rat skeletal L6 myoblasts. Our results demonstrated that MRWE pretreatment markedly improved cell survival and suppressed cell cycle arrest at the G2/M phase and apoptosis in hydrogen peroxide (H2O2)-treated L6 cells. H2O2-triggered DNA damage was also notably reduced by MRWE, which since it was correlated with protection of reactive oxygen species (ROS) production. Additionally, H2O2 stimulated cytosolic release of cytochrome c and up-regulation of Bax/Bcl-2 ratio, whereas MRWE suppressed these changes following by H2O2. Moreover, MRWE inhibited the cleavage of poly(ADP-ribose) polymerase as well as the activity of caspase-3 by H2O2. Furthermore, MRWE enhanced H2O2-mediated expression of nuclear factor erythroid 2-associated factor 2 (Nrf2) and its representative downstream enzyme, heme oxygenase-1 (HO-1). However, the protective effects of MRWE on H2O2-induced ROS production, cell cycle arrest and apoptosis were significantly attenuated by HO-1 inhibitor. In conclusion, our present results suggests that MRWE could protect L6 myoblasts from H2O2-induced cellular injury by inhibiting ROS generation along with Nrf2-mediated activation of HO-1, indicating this finding may expand the scope of application of Mori Ramulus in medicine.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, 47340 Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, 47340 Republic of Korea
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, 50612 Republic of Korea
| | - Sung Ok Kim
- Department of Food and Nutrition, College of Life and Health, Kyungsung University, Busan, 48434 Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, 47340 Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, 47340 Republic of Korea
| | - Hyun-Tai Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, 47340 Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, 47340 Republic of Korea
| | - Hyun Ju Kwon
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, 47340 Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, 47340 Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, 47340 Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, 47340 Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
| | - Mi Ryeo Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu, 42158 Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340 Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, 47340 Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47227 Republic of Korea
| |
Collapse
|
20
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
21
|
Zhao H, Qu M, Li Y, Wen K, Xu H, Song M, Xie D, Ao X, Gong Y, Sui L, Guan H, Zhou P, Xie J. An estimate assay for low-level exposure to ionizing radiation based on mass spectrometry quantification of γ-H2AX in human peripheral blood lymphocytes. Front Public Health 2022; 10:1031743. [PMID: 36388350 PMCID: PMC9651621 DOI: 10.3389/fpubh.2022.1031743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental ionizing radiation (IR) is ubiquitous, and large-dose exposure to IR is known to cause DNA damage and genotoxicity which is associated with an increased risk of cancer. Whether such detrimental effects are caused by exposure to low-dose IR is still debated. Therefore, rapid and early estimation of absorbed doses of IR in individuals, especially at low levels, using radiation response markers is a pivotal step for early triage during radiological incidents to provide adequate and timely clinical interventions. However, there is currently a crucial shortage of methods capable of determining the extent of low-dose IR exposure to human beings. The phosphorylation of histone H2AX on serine 139 (designated γ-H2AX), a classic biological dosimeter, can be used to evaluate the DNA damage response. We have developed an estimation assay for low-level exposure to IR based on the mass spectrometry quantification of γ-H2AX in blood. Human peripheral blood lymphocytes sensitive to low-dose IR, maintaining low temperature (4°C) and adding enzyme inhibitor are proven to be key steps, possibly insuring that a stable and marked γ-H2AX signal in blood cells exposed to low-dose IR could be detected. For the first time, DNA damage at low dose exposures to IR as low as 0.01 Gy were observed using the sensitive variation of γ-H2AX with high throughput mass spectrometry quantification in human peripheral blood, which is more accurate than the previously reported methods by virtue of isotope-dilution mass spectrometry, and can observe the time effect of DNA damage. These in vitro cellular dynamic monitoring experiments show that DNA damage occurred rapidly and then was repaired slowly over the passage of post-irradiation time even after exposure to very low IR doses. This assay was also used to assess different radiation exposures at the in vitro cellular level. These results demonstrate the potential utility of this assay in radiation biodosimetry and environmental risk assessment.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Minmin Qu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuchen Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ke Wen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China
| | - Man Song
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xingkun Ao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yihao Gong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China,*Correspondence: Hua Guan
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China,Pingkun Zhou
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing, China,Jianwei Xie
| |
Collapse
|
22
|
Zhou S, Li Y, He L, Chen M, Li W, Xiao T, Guan J, Qi Z, Wang Q, Li S, Zhou P, Wang Z. Haptoglobin is an early indicator of survival after radiation-induced severe injury and bone marrow transplantation in mice. Stem Cell Res Ther 2022; 13:461. [PMID: 36068556 PMCID: PMC9450283 DOI: 10.1186/s13287-022-03162-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Hematopoietic stem cell transplantation (HSCT) is the main treatment for acute radiation sickness, especially after fatal radiation. The determination of HSCT for radiation patients is mainly based on radiation dose, hemogram and bone marrow injury severity. This study aims to explore a better biomarker of acute radiation injury from the perspective of systemic immune response.
Methods C57BL/6J female mice were exposed to total body irradiation (TBI) and partial body irradiation (PBI). Changes in haptoglobin (Hp) level in plasma were shown at different doses and time points after the exposure and treatment with amifostine or bone marrow transplantation. Student’s t-test/two tailed test were used in two groups. To decide the Hp levels as a predictor of the radiation dose in TBI and PBI, multiple linear regression analysis were performed. The ability of biomarkers to identify two groups of different samples was determined by the receiver operating characteristic (ROC) curve. The results were expressed as mean ± standard deviation (SD). Significance was set at P value < 0.05, and P value < 0.01 was set as highly significant. Survival distribution was determined by log-rank test. Results In this study, we found that Hp was elevated dose-dependently in plasma in the early post-irradiation period and decreased on the second day, which can be used as a molecular indicator for early dose assessment. Moreover, we detected the second increase of Hp on the 3rd and 5th days after the lethal irradiation at 10 Gy, which was eliminated by amifostine, a radiation protection drug, while protected mice from death. Most importantly, bone marrow transplantation (BMT) on the 3rd and 5th day after 10 Gy radiation improved the 30-days survival rate, and effectively accelerated the regression of secondary increased Hp level. Conclusions Our study suggests that Hp can be used not only as an early molecule marker of radiation injury, but also as an important indicator of bone marrow transplantation therapy for radiation injury, bringing new scientific discoveries in the diagnosis and treatment of acute radiation injury from the perspective of systemic immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03162-x.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lexin He
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Min Chen
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Weihong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ting Xiao
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Jian Guan
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Siyuan Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pingkun Zhou
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
23
|
Chaurasia RK, Shirsath KB, Desai UN, Bhat NN, Sapra BK. Establishment of in vitro Calibration Curve for 60Co-γ-rays Induced Phospho-53BP1 Foci, Rapid Biodosimetry and Initial Triage, and Comparative Evaluations With γH2AX and Cytogenetic Assays. Front Public Health 2022; 10:845200. [PMID: 36003625 PMCID: PMC9393360 DOI: 10.3389/fpubh.2022.845200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
A rapid and reliable method for biodosimetry of populations exposed to ionizing radiation in the event of an incident or accident is crucial for initial triage and medical attention. DNA-double strand breaks (DSBs) are indicative of radiation exposure, and DSB-repair proteins (53BP1, γH2AX, ATM, etc.) are considered sensitive markers of DSB quantification. Phospho-53BP1 and γH2AX immunofluorescence technique serves as a sensitive, reliable, and reproducible tool for the detection and quantification of DSB-repair proteins, which can be used for biological dose estimations. In this study, dose-response curves were generated for 60Co-γ-rays induced phospho-53 Binding Protein 1 (phospho-53BP1) foci at 1, 2, 4, 8, 16, and 24 h, post-irradiation for a dose range of 0.05–4 Gy using fluorescence microscopy. Following ISO recommendations, minimum detection limits (MDLs) were estimated to be 16, 18, 25, 40, 50, and 75 mGy for dose-response curves generated at 1, 2, 4, 8, 16, and 24 h post-irradiation. Colocalization and correlation of phospho-53BP1 and γH2AX were also measured in irradiated peripheral blood lymphocytes (PBLs) to gain dual confirmation. Comparative evaluation of the established curve was made by γH2AX-immunofluorescence, dicentric chromosome assay (DCA), and reciprocal translocation (RT) assays by reconstructing the dose of 6 dose-blinded samples. Coefficients of respective in-house established dose-response curves were employed to reconstruct the blind doses. Estimated doses were within the variation of 4.124%. For lower doses (0.052 Gy), phospho-53BP1 and γH2AX assays gave closer estimates with the variation of −4.1 to + 9% in comparison to cytogenetic assays, where variations were −8.5 to 24%. For higher doses (3 and 4 Gy), both the cytogenetic and immunofluorescence (phospho-53BP1 and γH2AX), assays gave comparable close estimates, with −11.3 to + 14.3% and −10.3 to −13.7%, variations, respectively.
Collapse
Affiliation(s)
- Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
- *Correspondence: Rajesh Kumar Chaurasia
| | - Kapil B. Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Utkarsha N. Desai
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Nagesh N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
- Nagesh N. Bhat
| | - B. K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
24
|
Park C, Lee H, Jin S, Park JH, Han MH, Jeong JW, Kwon HJ, Kim BW, Park SH, Hong SH, Kim GY, Choi YH. The preventive effect of loganin on oxidative stress-induced cellular damage in human keratinocyte HaCaT cells. Biosci Trends 2022; 16:291-300. [PMID: 35691912 DOI: 10.5582/bst.2022.01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Loganin is a type of iridoid glycosides isolated from Corni fructus and is known to have various pharmacological properties, but studies on its antioxidant activity are still lacking. Therefore, in this study, the preventive effect of loganin on oxidative stress-mediated cellular damage in human keratinocyte HaCaT cells was investigated. Our results show that loganin pretreatment in a non-toxic concentration range significantly improved cell survival in hydrogen peroxide (H2O2)-treated HaCaT cells, which was associated with inhibition of cell cycle arrest at the G2/M phase and induction of apoptosis. H2O2-induced DNA damage and reactive oxygen species (ROS) generation were also greatly reduced in the presence of loganin. Moreover, H2O2 treatment enhanced the cytoplasmic release of cytochrome c, upregulation of the Bax/Bcl-2 ratio and degradation of cleavage of poly (ADP-ribose) polymerase, whereas loganin remarkably suppressed these changes. In addition, loganin obviously attenuated H2O2-induced autophagy while inhibiting the increased accumulation of autophagosome proteins, including as microtubule-associated protein 1 light chain 3-II and Beclin-1, and p62, an autophagy substrate protein, in H2O2-treated cells. In conclusion, our current results suggests that loganin could protect HaCaT keratinocytes from H2O2-induced cellular injury by inhibiting mitochondrial dysfunction, autophagy and apoptosis. This finding indicates the applicability of loganin in the prevention and treatment of skin diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea
| | - Jung-Ha Park
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju, Korea
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Byung Woo Kim
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan, Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju, Korea
| | - Yung Hyun Choi
- Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan, Korea.,Anti-Aging Research Center, Dong-eui University, Busan, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, Korea
| |
Collapse
|
25
|
Kim SO, Choi YH, Lee EH. Aqueous extracts of Corni Fructus protect C2C12 myoblasts from DNA damage and apoptosis caused by oxidative stress. Mol Biol Rep 2022; 49:4819-4828. [PMID: 35471621 DOI: 10.1007/s11033-022-07332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although the various pharmacological effects of Corni Fructus are highly correlated with its antioxidant activity, the blocking effect against oxidative stress in muscle cells is not clear. The purpose of this study was to investigate the effect of aqueous extracts of Corni Fructus (CFE) against oxidative stress caused by hydrogen peroxide (H2O2) in murine skeletal C2C12 myoblasts. METHODS AND RESULTS MTT assay for cell viability, DCF-DA staining for reactive oxygen species (ROS) production, Comet assay for DNA damage, annexin V-FITC and PI double staining for apoptosis, JC-1 staining and caspase assay for monitor mitochondrial integrity, and western blotting for related protein levels were conducted in H2O2 oxidative stressed C2C12 cells. Our results showed that CFE pretreatment significantly ameliorated the loss of cell viability and inhibited apoptosis in H2O2-treated C2C12 cells in a concentration-dependent manner. DNA damage induced by H2O2 was also markedly attenuated in the presence of CFE, which was associated with suppression of ROS generation. In addition, H2O2 reduced mitochondrial membrane potential and caused downregulation of Bcl-2 and upregulation of Bax expression, although these were abrogated by CFE pretreatment. Moreover, CFE blocked H2O2-induced cytosolic release of cytochrome c, activation of caspase-9 and caspase-3, and degradation of poly (ADP-ribose) polymerase. CONCLUSION Taken together, the present results demonstrate that CFE could protect C2C12 cells from H2O2-induced damage by eliminating ROS generation, thereby blocking mitochondria-mediated apoptosis pathway. These results indicate that CFE has therapeutic potential for the prevention and treatment of oxidative stress-mediated myoblast injury.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Food and Nutrition, Kyungsung University, Busan, 48434, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 17104, Korea
| | - Eunjoo Hwang Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
26
|
Protection of Oxidative Stress-induced DNA Damage and Apoptosis by Rosmarinic Acid in Murine Myoblast C2C12 Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0248-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation. Sci Rep 2022; 12:5527. [PMID: 35365702 PMCID: PMC8975967 DOI: 10.1038/s41598-022-09180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time consumed for manual scoring and possible variability between scorers. This study proposed a novel automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images were captured using confocal microscopy. Then, dose-response calibration curves were established and implemented with unseen dataset. The results of the FociRad model were comparable with manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the range of 0-4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first automated foci scoring method to use a YOLO algorithm with high detection performance and fast evaluation time, which opens the door for large-scale applications in radiation triage.
Collapse
|
28
|
Wanotayan R, Wongsanit S, Boonsirichai K, Sukapirom K, Buppaungkul S, Charoenphun P, Songprakhon P, Jangpatarapongsa K, Uttayarat P. Quantification of histone H2AX phosphorylation in white blood cells induced by ex vivo gamma irradiation of whole blood by both flow cytometry and foci counting as a dose estimation in rapid triage. PLoS One 2022; 17:e0265643. [PMID: 35320288 PMCID: PMC8942256 DOI: 10.1371/journal.pone.0265643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
A quick, reliable, and reproducible biological assay to distinguish individuals with possible life-threatening risk following radiological or nuclear incidents remains a quest in biodosimetry. In this paper, we examined the use of a γ-H2AX assay as an early dose estimation for rapid triage based on both flow cytometry and image analyses. In the experiment, whole blood from 11 donors was irradiated ex vivo inside a water phantom by gamma rays from Co-60 at 0.51 Gy/min. After the lysis of red blood cells, the white blood cells were collected for immunofluorescence labeling of γ-H2AX, CD45, and nuclear stained for signal collection and visualization. Analysis by flow cytometry showed that the relative γ-H2AX intensities of lymphocytes and granulocytes increased linearly with absorbed doses from 0 to 6 Gy with a large variation among individuals observed above 2 Gy. The relative γ-H2AX intensities of lymphocytes assessed by two different laboratories were highly correlated (ICC = 0.979). Using confocal microscopic images, γ-H2AX foci were observed to be discretely distributed inside the nuclei and to increase proportionally with doses from 0 to 2 Gy, whereas large plagues of merged foci appeared at 4 and 6 Gy, resulting in the saturation of foci counts above 4 Gy. The number of total foci per cell as well as the number of foci per plane were significantly different at 0 vs 1 and 2 vs 4 Gy doses (p < 0.01). Blind tests at 0.5 Gy and 1 Gy doses showed that dose estimation by flow cytometry had a mean absolute difference of less than 0.5 Gy from the actual value. In conclusion, while flow cytometry can provide a dose estimation with an uncertainty of 0.5 Gy at doses ≤ 1 Gy, foci counting can identify merged foci that are prominent at doses ≥ 4 Gy.
Collapse
Affiliation(s)
- Rujira Wanotayan
- Faculty of Medical Technology, Department of Radiological Technology, Mahidol University, Nakhon Pathom, Thailand
- * E-mail: , (PU); , (RW)
| | - Sarinya Wongsanit
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kanokporn Boonsirichai
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kasama Sukapirom
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Microparticle and Exosome in Diseases, Research Department, Bangkok, Thailand
| | - Sakchai Buppaungkul
- Secondary Standard Dosimetry Laboratory (SSDL), Bureau of Radiation and Medical Devices, Ministry of Public Health, Bangkok, Thailand
| | - Putthiporn Charoenphun
- Faculty of Medicine Ramathibodi Hospital, Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Mahidol University, Nakhon Pathom, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Faculty of Medicine Siriraj Hospital, Research Department, Mahidol University, Bangkok, Thailand
| | - Kulachart Jangpatarapongsa
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakhon Pathom, Thailand
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
- * E-mail: , (PU); , (RW)
| |
Collapse
|
29
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
30
|
Kim SY, Cha HJ, Hwangbo H, Park C, Lee H, Song KS, Shim JH, Noh JS, Kim HS, Lee BJ, Kim S, Kim GY, Jeon YJ, Choi YH. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle ( Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway. Foods 2021; 10:foods10112807. [PMID: 34829088 PMCID: PMC8623046 DOI: 10.3390/foods10112807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of the present study was to explore the efficacy of fermented extract of sea tangle (Laminaria japonica Aresch, FST) with Lactobacillus brevis on DNA damage and apoptosis in hydrogen peroxide (H2O2)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in H2O2-stimulated cells. In addition, H2O2 triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, H2O2-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome c, were reduced in the presence of FST. FST also diminished H2O2-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of H2O2 with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against H2O2-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from H2O2-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea;
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Kyoung Seob Song
- Department of Medical Life Science, College of Medicine, Kosin University, Busan 49104, Korea;
| | - Jung-Hyun Shim
- Department of Pharmacy, Mokpo National University, Jeonnam 58554, Korea;
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea;
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea;
| | - Suhkmann Kim
- Center for Proteome Biophysics and Chemistry, Department of Chemistry, College of Natural Sciences, Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
31
|
Park C, Ji SY, Lee H, Choi SH, Kwon CY, Kim SY, Lee ET, Choo ST, Kim GY, Choi YH, Kim MR. Mori Ramulus Suppresses Hydrogen Peroxide-Induced Oxidative Damage in Murine Myoblast C2C12 Cells through Activation of AMPK. Int J Mol Sci 2021; 22:ijms222111729. [PMID: 34769159 PMCID: PMC8583786 DOI: 10.3390/ijms222111729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Korea;
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Dong-Eui University, Busan 47340, Korea;
| | - So Young Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
| | - Eun Tag Lee
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Sung Tae Choo
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Gi-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| | - Mi Ryeo Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| |
Collapse
|
32
|
Visweswaran S, Raavi V, Abdul Syed Basheerudeen S, Kanagaraj K, Prasad A, Selvan Gnana Sekaran T, Pattan S, Shanmugam P, Ozimuthu A, Joseph S, Perumal V. Comparative analysis of physical doses and biomarker changes in subjects underwent Computed Tomography, Positron Emission Tomography-Computed Tomography, and interventional procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503404. [PMID: 34583824 DOI: 10.1016/j.mrgentox.2021.503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (Li2B4O7: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53ser15 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19). The DLP and effective doses obtained from PET/CT procedures were significantly higher (p < 0.05) when compared to CT. Fluoroscopic time and DAP were significantly higher (p < 0.05) in therapeutic compared to diagnostic interventional procedures. All the anatomical locations registered a significant amount of ESD, the ESD obtained from CT and interventional procedures were significantly (p < 0.05) higher when compared to PET/CT. Fluoroscopic time did not correlate with the ESD (eye, head, thyroid, and shoulder; R2 = 0.03). CA frequency after PET/CT was significantly higher (p < 0.001) when compared to CT and interventional procedures. MN frequency was significantly higher in 24-hs (p < 0.001) post-interventional procedure compared to 2-hs. The mean ± SD of mean fluorescence intensity of γ-H2AX and p53ser15 obtained from all subjects underwent PET/CT and interventional procedures did not show a significant difference (p > 0.05) between pre- and post-procedure. However, the relative fluorescence intensity of γ-H2AX and p53ser15 was >1 in 58.5 % and 65.8 % of subjects respectively. Large inter-individual variation and lack of correlation between physical dose and biomarkers suggest the need for robust dosimetry with a large sample size to understand the health effects of low dose radiation.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Tamaka, Kolar, Karnataka, 563 103, India
| | - Safa Abdul Syed Basheerudeen
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Akshaya Prasad
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Tamizh Selvan Gnana Sekaran
- Central Research Lab, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575 018, India
| | - Sudha Pattan
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Panneerselvam Shanmugam
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Annalakshmi Ozimuthu
- Safety, Quality & Resource Management Group, Health Safety and Environment Group, Homi Bhabha National Institute, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
33
|
Habibi M, Karyofyllis PK, Nikolakopoulou A, Papagiannis P, Karaiskos P, Georgakilas AG, Hatzi VI, Malakos I, Kollaros N, Mastorakou I, Voudris V, Terzoudi GI. The Use of Genotoxicity Endpoints as Biomarkers of Low Dose Radiation Exposure in Interventional Cardiology. Front Public Health 2021; 9:701878. [PMID: 34368064 PMCID: PMC8342993 DOI: 10.3389/fpubh.2021.701878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of the reportedly low ionizing radiation doses, such as those very often delivered to patients in interventional cardiology, remains ambiguous. As interventional cardiac procedures may have a significant impact on total collective effective dose, there are radiation protection concerns for patients and physicians regarding potential late health effects. Given that very low doses (<100 mSv) are expected to be delivered during these procedures, the purpose of this study was to assess the potency and suitability of current genotoxicity biomarkers to detect and quantitate biological effects essential for risk estimation in interventional cardiology. Specifically, the biomarkers γ-H2AX foci, dicentric chromosomes, and micronuclei, which underpin radiation-induced DNA damage, were studied in blood lymphocytes of 25 adult patients before and after interventional cardiac procedures. Even though the mean values of all patients as a group for all three endpoints tested show increased yields relative to baseline following medical exposure, our results demonstrate that only the γ-H2AX biomarker enables detection of statistically significant differences at the individual level (p < 0.001) for almost all patients (91%). Furthermore, 24 h after exposure, residual γ-H2AX foci were still detectable in irradiated lymphocytes. Their decline was found to vary significantly among the individuals and the repair kinetics of γ-H2AX foci was found to range from 25 to 95.6% of their maximum values obtained.
Collapse
Affiliation(s)
- Martha Habibi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aggeliki Nikolakopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece.,Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Vasiliki I Hatzi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis Malakos
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | | | - Irene Mastorakou
- Imaging Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Division of Interventional Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Georgia I Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety (INRASTES), National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
34
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|