1
|
Sepers B, Ruuskanen S, van Mastrigt T, Mateman AC, van Oers K. DNA Methylation Associates With Sex-Specific Effects of Experimentally Increased Yolk Testosterone in Wild Nestlings. Mol Ecol 2025:e17647. [PMID: 39758026 DOI: 10.1111/mec.17647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Maternal hormones can profoundly impact offspring physiology and behaviour in sex-dependent ways. Yet little is known about the molecular mechanisms linking these maternal effects to offspring phenotypes. DNA methylation, an epigenetic mechanism, is suggested to facilitate maternal androgens' effects. To assess whether phenotypic changes induced by maternal androgens associate with DNA methylation changes, we experimentally manipulated yolk testosterone levels in wild great tit eggs (Parus major) and quantified phenotypic and DNA methylation changes in the hatched offspring. While we found no effect on the handing stress response, increased yolk testosterone levels decreased the begging probability, emphasised sex differences in fledging mass, and affected methylation at 763 CpG sites, but always in a sex-specific way. These sites are associated with genes involved in growth, oxidative stress, and reproduction, suggesting sex-specific trade-offs to balance the costs and benefits of exposure to high yolk testosterone levels. Future studies should assess if these effects extend beyond the nestling stage and impact fitness.
Collapse
Affiliation(s)
- Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
- Department of Evolutionary Population Genetics, Bielefeld University, Bielefeld, Germany
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Tjomme van Mastrigt
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - A Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
2
|
Opsasnick LA, Zhao W, Ratliff SM, Du J, Faul JD, Schmitz LL, Zhou X, Needham BL, Smith JA. Epigenome-wide mediation analysis of the relationship between psychosocial stress and cardiometabolic risk factors in the Health and Retirement Study (HRS). Clin Epigenetics 2024; 16:180. [PMID: 39695878 DOI: 10.1186/s13148-024-01799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Exposure to psychosocial stress is linked to a variety of negative health outcomes, including cardiovascular disease and its cardiometabolic risk factors. DNA methylation has been associated with both psychosocial stress and cardiometabolic disease; however, little is known about the mediating role of DNA methylation on the association between stress and cardiometabolic risk. Thus, using the high-dimensional mediation testing method, we conducted an epigenome-wide mediation analysis of the relationship between psychosocial stress and ten cardiometabolic risk factors in a multi-racial/ethnic population of older adults (n = 2668) from the Health and Retirement Study (mean age = 70.4 years). RESULTS A total of 50, 46, 7, and 12 CpG sites across the epigenome mediated the total effects of stress on body mass index, waist circumference, high-density lipoprotein cholesterol, and C-reactive protein, respectively. When reducing the dimensionality of the CpG mediators to their top 10 uncorrelated principal components (PC), the cumulative effect of the PCs explained between 35.8 and 46.3% of these associations. CONCLUSIONS A subset of the mediating CpG sites were associated with the expression of genes enriched in pathways related to cytokine binding and receptor activity, as well as neuron development. Findings from this study help to elucidate the underlying mechanisms through which DNA methylation partially mediates the relationship between psychosocial stress and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA. Epigenome-wide association study of long-term psychosocial stress in older adults. Epigenetics 2024; 19:2323907. [PMID: 38431869 PMCID: PMC10913704 DOI: 10.1080/15592294.2024.2323907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress (n = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all p < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.
Collapse
Affiliation(s)
- Lauren A. Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Petroff RL, Dolinoy DC, Padmanabhan V, Goodrich JM. Characterizing DNA Methylation and Hydroxymethylation in Cord Blood and Identifying Sex-Specific Differences using the Illumina EPIC Array. EPIGENETICS REPORTS 2024; 2:1-7. [PMID: 39610770 PMCID: PMC11600988 DOI: 10.1080/28361512.2024.2427955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
DNA methylation, an epigenetic mark, has become a common outcome in epidemiological studies with the aid of affordable and reliable technologies. Yet the most widespread technique used to assess methylation, bisulfite conversion, does not allow for the differentiation of regular DNA methylation (5-mC) and other cytosine modifications, like that of hydroxymethylation (5-hmC). As both 5-mC and 5-hmC have distinct biological roles, sometimes with opposing effects, it is crucial to understand the difference between these marks. To characterize 5-mC and 5-hmC in cord blood and expand on previously published results in smaller cohorts, 73 samples from infants in the Michigan Mother Infant Pairs cohort were paired bisulfite and oxidative bisulfite converted. 5-mC and 5-hmC were assessed on the Illumina Infinium EPIC array, using maximum likelihood methods, and sex-specific differences of these marks were analyzed. 5-mC and 5-hmC were both broadly distributed across the genome, and 5-hmC was prevalent, with proportions of 0.01-0.55. Sex-specific analysis revealed total methylation was different on 17,000 sites (q<0.05), but only different at 1,866 and 5 sites of 5-mC and 5-hmC specifically. These results add additional support to the literature and demonstrate the importance of differentiating between 5-mC and 5-hmC in epidemiological studies going forward.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Kristjansson D, Lee Y, Page CM, Gjessing H, Magnus MC, Jugessur A, Lyle R, Håberg SE. Sex differences in DNA methylation variations according to ART conception-evidence from the Norwegian mother, father, and child cohort study. Sci Rep 2024; 14:22904. [PMID: 39358554 PMCID: PMC11447267 DOI: 10.1038/s41598-024-73845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Previous studies have shown cord-blood DNA methylation differences in newborns conceived using assisted reproductive technologies (ART) compared to those conceived naturally. However, whether these ART-related DNA methylation differences vary with children's sex is unknown. We hypothesize that the DNA methylation differences in cord blood between ART-conceived and naturally conceived newborns also varies by the sex of the child, with distinct patterns of differential methylation present in males and females. We investigated sex differences in cord-blood DNA methylation variation according to conception by ART using the Illumina MethylationEPIC platform, comparing 456 ART-conceived versus 507 naturally-conceived girls, and 503 ART-conceived and 473 naturally-conceived boys. We identified 37 differentially methylated CpGs according to ART-conception among girls, and 70 differentially methylated CpGs according to ART-conception among boys, when we used a 1% false discovery rate to account for multiple testing. Ten CpGs were differentially methylated according to conception by ART in both sexes. Among the genes that were associated with these CpGs, we found the BRCA1; NBR2 gene (two CpGs) was hypermethylated in girls while the APC2 (two CpGs) and NECAB3;ACTL10, (four CpGs) related to cellular signaling were hypomethylated in boys. These findings confirm the presence of sex-specific epigenetic differences, illustrating the nuanced impact of ART on the fetal epigenome. There is a need for further explorations into the implications for sex-specific developmental trajectories and health outcomes in ART-conceived children.
Collapse
Affiliation(s)
- Dana Kristjansson
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway.
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Yunsung Lee
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Christian M Page
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Gjessing
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Maria C Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
| | - Astanand Jugessur
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Robert Lyle
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Siri E Håberg
- Center for Fertility and Health, Norwegian Institute of Public Health, Skøyen, Postboks 222, 0213, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Hu J, Yaskolka Meir A, Hong X, Wang G, Hu FB, Wang X, Liang L. Epigenetic Clock at Birth and Childhood Blood Pressure Trajectory: A Prospective Birth Cohort Study. Hypertension 2024; 81:e113-e124. [PMID: 39087326 PMCID: PMC11410530 DOI: 10.1161/hypertensionaha.124.22695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The impact of methylation gestational age (GAmAge; a biomarker of fetal maturity) at birth on childhood blood pressure (BP) trajectories is unknown. METHODS This cohort study included 500 boys and 440 girls with data on cord blood DNA methylation and BP at 3 to 15 years of age. Systolic BP (SBP) and diastolic BP percentiles were calculated based on clinical guidelines. Time-series K-means clustering identified 4 distinct SBP and diastolic BP percentile trajectories: high-steady, high-decrease, normal-increase, and normal-steady. GAmAge was estimated using an existing pediatric epigenetic clock. Extrinsic age acceleration was calculated as residuals of associations between GAmAge and chronological gestational age. Intrinsic age acceleration was calculated using the same method adjusting for cord blood cell compositions. RESULTS Extrinsic age acceleration and intrinsic age acceleration were inversely associated with repeated measures of BP percentiles. Significant inverse associations were observed between extrinsic age acceleration and SBP percentiles in boys (β=-2.02; P=0.02) but not in girls (β=-0.49; P=0.58). Both extrinsic age acceleration and intrinsic age acceleration were inversely associated with SBP percentiles in girls born preterm (<37 weeks; βEAA=-2.95; βIAA=-3.00; P<0.05). Compared with the normal-steady SBP trajectory, significant inverse associations were observed between intrinsic age acceleration and high-steady, high-decrease, and normal-increase SBP trajectories in boys (odds ratio, 0.73-0.81; P<0.03), and significant positive associations were observed for high-decrease and normal-increase SBP trajectories in girls (odds ratio, 1.26-1.38; P<0.01). Significant sex differences were observed (Psex-interaction<2×10-16). CONCLUSIONS GAmAge acceleration at birth was inversely associated with child BP, and such association was more pronounced in boys than in girls. Our findings may shed new light on the developmental origins of high BP and sex differences in cardiovascular risk.
Collapse
Affiliation(s)
- Jie Hu
- Department of Epidemiology (J.H., A.Y.M., F.B.H., L.L.), Harvard T.H. Chan School of Public Health, Boston, MA
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (J.H.)
| | - Anat Yaskolka Meir
- Department of Epidemiology (J.H., A.Y.M., F.B.H., L.L.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (X.H., G.W., X.W.)
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (X.H., G.W., X.W.)
| | - Frank B Hu
- Department of Epidemiology (J.H., A.Y.M., F.B.H., L.L.), Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition (F.B.H.), Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (F.B.H.)
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (X.H., G.W., X.W.)
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD (X.W.)
| | - Liming Liang
- Department of Epidemiology (J.H., A.Y.M., F.B.H., L.L.), Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics (L.L.), Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
7
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Zhu L, Zhang S, Sha Q. Meta-analysis of set-based multiple phenotype association test based on GWAS summary statistics from different cohorts. Front Genet 2024; 15:1359591. [PMID: 39301532 PMCID: PMC11410627 DOI: 10.3389/fgene.2024.1359591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as popular tools for identifying genetic variants that are associated with complex diseases. Standard analysis of a GWAS involves assessing the association between each variant and a disease. However, this approach suffers from limited reproducibility and difficulties in detecting multi-variant and pleiotropic effects. Although joint analysis of multiple phenotypes for GWAS can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits, most of the multiple phenotype association tests are designed for a single variant, resulting in much lower power, especially when their effect sizes are small and only their cumulative effect is associated with multiple phenotypes. To overcome these limitations, set-based multiple phenotype association tests have been developed to enhance statistical power and facilitate the identification and interpretation of pleiotropic regions. In this research, we propose a new method, named Meta-TOW-S, which conducts joint association tests between multiple phenotypes and a set of variants (such as variants in a gene) utilizing GWAS summary statistics from different cohorts. Our approach applies the set-based method that Tests for the effect of an Optimal Weighted combination of variants in a gene (TOW) and accounts for sample size differences across GWAS cohorts by employing the Cauchy combination method. Meta-TOW-S combines the advantages of set-based tests and multi-phenotype association tests, exhibiting computational efficiency and enabling analysis across multiple phenotypes while accommodating overlapping samples from different GWAS cohorts. To assess the performance of Meta-TOW-S, we develop a phenotype simulator package that encompasses a comprehensive simulation scheme capable of modeling multiple phenotypes and multiple variants, including noise structures and diverse correlation patterns among phenotypes. Simulation studies validate that Meta-TOW-S maintains a desirable Type I error rate. Further simulation under different scenarios shows that Meta-TOW-S can improve power compared with other existing meta-analysis methods. When applied to four psychiatric disorders summary data, Meta-TOW-S detects a greater number of significant genes.
Collapse
Affiliation(s)
- Lirong Zhu
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
9
|
Petroff RL, Jester J, Riggs J, Alfafara E, Springer K, Kerr N, Issa M, Hall A, Rosenblum K, Goodrich JM, Muzik M. Longitudinal DNA methylation in parent-infant pairs impacted by intergenerational social adversity: An RCT of the Michigan Model of Infant Mental Health Home Visiting. Brain Behav 2024; 14:e70035. [PMID: 39295112 PMCID: PMC11410872 DOI: 10.1002/brb3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Early childhood development is a strong predictor of long-term health outcomes, potentially mediated via epigenetics (DNA methylation). The aim of the current study was to examine how childhood experiences, punitive parenting, and an intergenerational psychotherapeutic intervention may impact DNA methylation in young children and their mothers. METHODS Mothers and their infants/toddlers between 0 and 24 months were recruited at baseline (n = 146, 73 pairs) to participate in a randomized control trial evaluating the effectiveness of The Michigan Model of Infant Mental Health Home Visiting (IMH-HV) parent-infant psychotherapy compared to treatment as usual. Baseline and 12-month post-enrollment data were collected in the family's home and included self-report questionnaires, biological saliva samples, home environment observation, video-taped parent-child interaction, and audio-recorded interviews. Saliva DNA methylation was measured at the genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), solute carrier family 6 member 4 (SLC6A4), brain-derived neurotrophic factor (BDNF), and the genetic element, long interspersed nuclear element-1 (LINE1). RESULTS For mothers, baseline methylation of BDNF, SLC6A4, NR3C1, or LINE1 was largely not associated with baseline measures of their childhood adversity, adverse life experiences, demographic characteristics related to structurally driven inequities, or to IMH-HV treatment effect. In infants, there were suggestions that methylation in SLC6A4 and LINE1 was associated with parenting attitudes. Infant BDNF methylation suggested an overall decrease in response to IMH-HV psychotherapy over 12 months. CONCLUSIONS Overall, our findings suggest that the epigenome in infants and young children may be sensitive to both early life experiences and parent-infant psychotherapy.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer Jester
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Jessica Riggs
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Emily Alfafara
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Springer
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Natalie Kerr
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Meriam Issa
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Alanah Hall
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Rosenblum
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
- Department of PediatricsMichigan MedicineAnn ArborMichiganUSA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Maria Muzik
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
| | | |
Collapse
|
10
|
Yaskolka Meir A, Gutierrez MJ, Hong X, Wang G, Wang X, Liang L. Gestational DNA methylation age as a marker for fetal development and birth outcomes: findings from the Boston Birth Cohort. Clin Epigenetics 2024; 16:110. [PMID: 39164769 PMCID: PMC11334360 DOI: 10.1186/s13148-024-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gestational DNA methylation age (GAmAge) has been developed and validated in European ancestry samples. Its applicability to other ethnicities and associations with fetal stress and newborn phenotypes such as inflammation markers are still to be determined. This study aims to examine the applicability of GAmAge developed from cord blood samples of European decedents to a racially diverse birth cohort, and associations with newborn phenotypes. METHODS GAmAge based on 176 CpGs (Haftorn GAmAge) was calculated for 940 children from a US predominantly urban, low-income, multiethnic birth cohort. Cord blood DNA methylation was profiled by Illumina EPIC array. Newborn phenotypes included anthropometric measurements and, for a subset of newborns (N = 194), twenty-seven cord blood inflammatory markers (sandwich immunoassays). RESULTS GAmAge had a stronger correlation with GEAA in boys (r = 0.89, 95% confidence interval (CI) [0.87,0.91]) compared with girls (r = 0.83, 95% CI [0.80,0.86]), and was stronger among extremely preterm to very preterm babies (r = 0.91, 95% CI [0.81,0.96]), compared with moderate (r = 0.48, 95% CI [0.34,0.60]) and term babies (r = 0.58, 95% CI [0.53,0.63]). Among White newborns (N = 51), the correlation between GAmAge vs. GEAA was slightly stronger (r = 0.89, 95% CI [0.82,0.94]) compared with Black/African American newborns (N = 668; r = 0.87, 95% CI [0.85,0.89]) or Hispanic (N = 221; r = 0.79, 95% CI [0.74,0.84]). Adjusting for GEAA and sex, GAmAge was associated with anthropometric measurements, cord blood brain-derived neurotrophic factor (BDNF), and monocyte chemoattractant protein-1 (MCP-1) (p < 0.05 for all). CONCLUSIONS GAmAge estimation is robust across different populations and racial/ethnic subgroups. GAmAge may be utilized as a proxy for GEAA and for assessing fetus development, indicated by inflammatory state and birth outcomes.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Maria Jimena Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Tesfaye M, Spindola LM, Stavrum AK, Shadrin A, Melle I, Andreassen OA, Le Hellard S. Sex effects on DNA methylation affect discovery in epigenome-wide association study of schizophrenia. Mol Psychiatry 2024; 29:2467-2477. [PMID: 38503926 PMCID: PMC11412896 DOI: 10.1038/s41380-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Sex differences in the epidemiology and clinical characteristics of schizophrenia are well-known; however, the molecular mechanisms underlying these differences remain unclear. Further, the potential advantages of sex-stratified meta-analyses of epigenome-wide association studies (EWAS) of schizophrenia have not been investigated. Here, we performed sex-stratified EWAS meta-analyses to investigate whether sex stratification improves discovery, and to identify differentially methylated regions (DMRs) in schizophrenia. Peripheral blood-derived DNA methylation data from 1519 cases of schizophrenia (male n = 989, female n = 530) and 1723 controls (male n = 997, female n = 726) from three publicly available datasets, and the TOP cohort were meta-analyzed to compare sex-specific, sex-stratified, and sex-adjusted EWAS. The predictive power of each model was assessed by polymethylation score (PMS). The number of schizophrenia-associated differentially methylated positions identified was higher for the sex-stratified model than for the sex-adjusted one. We identified 20 schizophrenia-associated DMRs in the sex-stratified analysis. PMS from sex-stratified analysis outperformed that from sex-adjusted analysis in predicting schizophrenia. Notably, PMSs from the sex-stratified and female-only analyses, but not those from sex-adjusted or the male-only analyses, significantly predicted schizophrenia in males. The findings suggest that sex-stratified EWAS meta-analyses improve the identification of schizophrenia-associated epigenetic changes and highlight an interaction between sex and schizophrenia status on DNA methylation. Sex-specific DNA methylation may have potential implications for precision psychiatry and the development of stratified treatments for schizophrenia.
Collapse
Affiliation(s)
- Markos Tesfaye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Leticia M Spindola
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
12
|
Han R, Zhu D, Sha J, Zhao B, Jin P, Meng C. Decoding the role of DNA methylation in allergic diseases: from pathogenesis to therapy. Cell Biosci 2024; 14:89. [PMID: 38965641 PMCID: PMC11225420 DOI: 10.1186/s13578-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.
Collapse
Affiliation(s)
- Ruiming Han
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China
| | - Boning Zhao
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael ST NE, Atlanta, GA, 30322, USA.
| | - Cuida Meng
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Precise Diagnosis and Treatment of Upper Airway Allergic Diseases, Changchun, China.
| |
Collapse
|
13
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. J Dev Orig Health Dis 2024; 15:e7. [PMID: 38660759 PMCID: PMC11268442 DOI: 10.1017/s2040174424000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
- Nutrition Department, Penn State University, University Park, PA, USA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
| |
Collapse
|
14
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Mauvais-Jarvis F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 2024; 20:56-69. [PMID: 37923858 DOI: 10.1038/s41581-023-00781-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine and Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA.
- Endocrine service, Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA.
| |
Collapse
|
16
|
Reiner A, Bakulski KM, Fisher JD, Dou JF, Schneper L, Mitchell C, Notterman DA, Zawistowski M, Ware EB. Sex-specific DNA methylation in saliva from the multi-ethnic Future of Families and Child Wellbeing Study. Epigenetics 2023; 18:2222244. [PMID: 37300819 PMCID: PMC10259311 DOI: 10.1080/15592294.2023.2222244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence and severity of many diseases differs by sex, potentially due to sex-specific patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been observed in cord blood and placental tissue but are not well studied in saliva or in diverse populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated autosomal DNA methylation sites (P < 2.4 × 10-7), of which 76.2% had higher DNA methylation in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10-300). Treating the age 15 samples as an internal replication set, we observed highly consistent results between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. Further, we directly compared our results to previously published DNA methylation sex differences in both cord blood and saliva and again found strong consistency. Our findings support widespread and robust sex-differential DNA methylation across age, human tissues, and populations. These findings help inform our understanding of potential biological processes contributing to sex differences in human physiology and disease.
Collapse
Affiliation(s)
- Allison Reiner
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonah D. Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Collender P, Bozack AK, Veazie S, Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, Riddell C, Eskenazi B, Holland N, Deardorff J, Cardenas A. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin Epigenetics 2023; 15:162. [PMID: 37845746 PMCID: PMC10577922 DOI: 10.1186/s13148-023-01581-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Šidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.
Collapse
Affiliation(s)
- Phillip Collender
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA
| | - Stephanie Veazie
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lars Van Der Laan
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Kogut
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Corinne Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Fransquet PD, Macdonald JA, Ryan J, Greenwood CJ, Olsson CA. Exploring perinatal biopsychosocial factors and epigenetic age in 1-year-old offspring. Epigenomics 2023; 15:927-939. [PMID: 37905426 DOI: 10.2217/epi-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background: Little is known about the determinants of epigenetic aging in pediatric populations. Methods: Epigenetic age was estimated from 258 1-year-olds, using pediatric buccal epigenetic and Horvath clocks. We explored associations between epigenetic age and maternal indicators of mental and relational health, substance use and general physical health assessed during trimester three. Results: Higher anxiety and stress, BMI and higher parent-parent relationship quality were associated with pediatric buccal epigenetic clock differences. High blood pressure during pregnancy was associated with Horvath age acceleration. Third-trimester smoking and pre-pregnancy weight were associated with acceleration and deceleration respectively, and concordant across clocks. Conclusion: A broad range of maternal factors may shape epigenetic age in infancy; further research is needed to explore the possible effects on health and development.
Collapse
Affiliation(s)
- Peter D Fransquet
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
| | - Jacqui A Macdonald
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Joanne Ryan
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Christopher J Greenwood
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Craig A Olsson
- Deakin University, Centre for Social & Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Victoria, Australia
- Murdoch Children's Research Institute, Population Studies of Adolescents, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- The University of Melbourne, Department of Paediatrics, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Santos HP, Enggasser AE, Clark J, Roell K, Zhabotynsky V, Gower WA, Yanni D, Yang NG, Washburn L, Gogcu S, Marsit CJ, Kuban K, O'Shea TM, Fry RC. Sexually dimorphic methylation patterns characterize the placenta and blood from extremely preterm newborns. BMC Biol 2023; 21:173. [PMID: 37608375 PMCID: PMC10464100 DOI: 10.1186/s12915-023-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Health outcomes among children born prematurely are known to be sexually dimorphic, with male infants often more affected, yet the mechanism behind this observation is not clear. CpG methylation levels in the placenta and blood also differ by sex and are associated with adverse health outcomes. We contrasted CpG methylation levels in the placenta and neonatal blood (n = 358) from the Extremely Low Gestational Age Newborn (ELGAN) cohort based on the EPIC array, which assays over 850,000 CpG sites across the epigenome. Sex-specific epigenome-wide association analyses were conducted for the placenta and neonatal blood samples independently, and the results were compared to determine tissue-specific differences between the methylation patterns in males and females. All models were adjusted for cell type heterogeneity. Enrichment pathway analysis was performed to identify the biological functions of genes related to the sexually dimorphic CpG sites. RESULTS Approximately 11,500 CpG sites were differentially methylated in relation to sex. Of these, 5949 were placenta-specific and 5361 were blood-specific, with only 233 CpG sites overlapping in both tissues. For placenta-specific CpG sites, 90% were hypermethylated in males. For blood-specific CpG sites, 95% were hypermethylated in females. In the placenta, keratinocyte differentiation biological pathways were enriched among the differentially methylated genes. No enrichment pathways were observed for blood. CONCLUSIONS Distinct methylation patterns were observed between male and female children born extremely premature, and keratinocyte differentiation pathways were enriched in the placenta. These findings provide new insights into the epigenetic mechanisms underlying sexually dimorphic health outcomes among extremely premature infants.
Collapse
Affiliation(s)
- Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA.
| | - Adam E Enggasser
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeliyah Clark
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle Roell
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vasyl Zhabotynsky
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Adam Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nou Gao Yang
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Washburn
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karl Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston. University, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
van Oers K, van den Heuvel K, Sepers B. The Epigenetics of Animal Personality. Neurosci Biobehav Rev 2023; 150:105194. [PMID: 37094740 DOI: 10.1016/j.neubiorev.2023.105194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands.
| | - Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
22
|
Legaki E, Taka S, Papadopoulos NG. The complexity in DNA methylation analysis of allergic diseases. Curr Opin Allergy Clin Immunol 2023; 23:172-178. [PMID: 36752374 DOI: 10.1097/aci.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW This review aims to report all the recent studies that are implicated in DNA methylation analysis in the field of allergy and to underline the complexity of the study methodologies and results. RECENT FINDINGS Although the growing number of DNA methylation studies have yet to point to a specific mechanism, herein we provide an overview of the majority of pathways considered to be implicated and highlight particular genes, like KNH2 , ATPAF2 and ZNF385A , for their potential as biomarkers. SUMMARY The epigenetic profile of respiratory allergic diseases, and particularly DNA methylation, has been investigated in various populations, so as to gain a better understanding of its role in pathogenesis. Through our analysis, multiple links are presented between differential DNA methylation loci and IgE sensitization, lung functionality and severity of the disease. Additionally, associations of this epigenetic change with maternal asthma, age, sex and environmental factors are described, thus uncovering specific gene families that, after further examination could be used as methylation biomarkers in cases of allergic disease.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
23
|
Hu J, Xu X, Li J, Jiang Y, Hong X, Rexrode KM, Wang G, Hu FB, Zhang H, Karmaus WJ, Wang X, Liang L. Sex differences in the intergenerational link between maternal and neonatal whole blood DNA methylation: a genome-wide analysis in 2 birth cohorts. Clin Epigenetics 2023; 15:51. [PMID: 36966332 PMCID: PMC10040137 DOI: 10.1186/s13148-023-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/06/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND The mother-child inheritance of DNA methylation (DNAm) variations could contribute to the inheritance of disease susceptibility across generations. However, no study has investigated patterns of mother-child associations in DNAm at the genome-wide scale. It remains unknown whether there are sex differences in mother-child DNAm associations. RESULTS Using genome-wide DNAm profiling data (721,331 DNAm sites, including 704,552 on autosomes and 16,779 on the X chromosome) of 396 mother-newborn pairs (54.5% male) from the Boston Birth Cohort, we found significant sex differences in mother-newborn correlations in genome-wide DNAm patterns (Spearman's rho = 0.91-0.98; p = 4.0 × 10-8), with female newborns having stronger correlations. Sex differences in correlations were attenuated but remained significant after excluding X-chromosomal DNAm sites (Spearman's rho = 0.91-0.98; p = 0.035). Moreover, 89,267 DNAm sites (12.4% of all analyzed, including 88,051 [12.5% of analyzed] autosomal and 1,216 [7.2% of analyzed] X-chromosomal sites) showed significant mother-newborn associations in methylation levels, and the top autosomal DNAm sites had high heritability than the genome-wide background (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.92). Additionally, significant interactions between newborn sex and methylation levels were observed for 11 X-chromosomal and 4 autosomal DNAm sites that were mapped to genes that have been associated with sex-specific disease/traits or early development (e.g., EFHC2, NXY, ADCYAP1R1, and BMP4). Finally, 18,769 DNAm sites (14,482 [77.2%] on the X chromosome) showed mother-newborn differences in methylation levels that were significantly associated with newborn sex, and the top autosomal DNAm sites had relatively small heritability (e.g., the top 100 autosomal DNAm sites had a medium h2 of 0.23). These DNAm sites were mapped to 2,532 autosomal genes and 978 X-chromosomal genes with significant enrichment in pathways involved in neurodegenerative and psychological diseases, development, neurophysiological process, immune response, and sex-specific cancers. Replication analysis in the Isle of Wight birth cohort yielded consistent results. CONCLUSION In two independent birth cohorts, we demonstrated strong mother-newborn correlations in whole blood DNAm on both autosomes and ChrX, and such correlations vary substantially by sex. Future studies are needed to examine to what extent our findings contribute to developmental origins of pediatric and adult diseases with well-observed sex differences.
Collapse
Affiliation(s)
- Jie Hu
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Xin Xu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
| | - Jun Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiumei Hong
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Bigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoying Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried J Karmaus
- Division of Epidemiology, Biostatistics, & Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Xiaobin Wang
- Center On the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 207, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Martin EM, Grimm SA, Xu Z, Taylor JA, Wade PA. Beadchip technology to detect DNA methylation in mouse faithfully recapitulates whole-genome bisulfite sequencing. Epigenomics 2023; 15:115-129. [PMID: 37020391 PMCID: PMC10131490 DOI: 10.2217/epi-2023-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Aim: To facilitate wide-scale implementation of Illumina Mouse Methylation BeadChip (MMB) technology, array-based measurement of cytosine methylation was compared with the gold-standard assessment of DNA methylation by whole-genome bisulfite sequencing (WGBS). Methods: DNA methylation across two mouse strains (C57B6 and C3H) and both sexes was assessed using the MMB and compared with previously existing deep-coverage WGBS of mice of the same strain and sex. Results & conclusion: The findings demonstrated that 93.3-99.2% of sites had similar measurements of methylation across technologies and that differentially methylated cytosines and regions identified by each technology overlap and enrich for similar biological functions, suggesting that the MMB faithfully recapitulates the findings of WGBS.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Sara A Grimm
- Integrative Bioinformatics, Biostatistics & Computational Biology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Jack A Taylor
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| | - Paul A Wade
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, NC 27713, USA
| |
Collapse
|
25
|
Goobie GC, Li X, Ryerson CJ, Carlsten C, Johannson KA, Fabisiak JP, Lindell KO, Chen X, Gibson KF, Kass DJ, Nouraie SM, Zhang Y. PM 2.5 and constituent component impacts on global DNA methylation in patients with idiopathic pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120942. [PMID: 36574806 DOI: 10.1016/j.envpol.2022.120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) whose outcomes are worsened with air pollution exposures. DNA methylation (DNAm) patterns are altered in lungs and blood from patients with IPF, but the relationship between air pollution exposures and DNAm patterns in IPF remains unexplored. This study aimed to evaluate the association of PM2.5 and constituent components with global DNAm in patients with IPF. Patients enrolled in either the University of Pittsburgh Simmons Center for ILD Registry (Simmons) or the U.S.-wide Pulmonary Fibrosis Foundation (PFF) Patient Registry with peripheral blood DNA samples were included. The averages of monthly exposures to PM2.5 and constituents over 1-year and 3-months pre-blood collection were matched to patient residential coordinates using satellite-derived hybrid models. Global DNAm percentage (%5 mC) was determined using the ELISA-based MethylFlash assay. Associations of pollutants with %5 mC were assessed using beta-regression, Cox models for mortality, and linear regression for baseline lung function. Mediation proportion was determined for models where pollutant-mortality and pollutant-%5 mC associations were significant. Inclusion criteria were met by 313 Simmons and 746 PFF patients with IPF. Higher PM2.5 3-month exposures prior to blood collection were associated with higher %5 mC in Simmons (β = 0.02, 95%CI 0.0003-0.05, p = 0.047), with trends in the same direction in the 1-year period in both cohorts. Higher exposures to sulfate, nitrate, ammonium, and black carbon constituents were associated with higher %5 mC in multiple models. Percent 5 mC was not associated with IPF mortality or lung function, but was found to mediate between 2 and 5% of the associations of PM2.5, sulfate, and ammonium with mortality. In conclusion, we found that higher global DNAm is a novel biomarker for increased PM2.5 and anthropogenic constituent exposure in patients with IPF. Mechanistic research is needed to determine if DNAm has pathogenic relevance in mediating associations between pollutants and mortality in IPF.
Collapse
Affiliation(s)
- Gillian C Goobie
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Christopher J Ryerson
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Kerri A Johannson
- Division of Respiratory Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada.
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kathleen O Lindell
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; College of Nursing, Medical University of South Carolina, Charleston, SC, USA.
| | - Xiaoping Chen
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kevin F Gibson
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel J Kass
- Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yingze Zhang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP. Who's afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 2023; 16:1. [PMID: 36609459 PMCID: PMC9825011 DOI: 10.1186/s13072-022-00477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inactivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex chromosome data may be included in analyses of DNA methylation (DNAme) array data. RESULTS With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investigated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromosomes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify whether including both sexes impacted processing results. We found that identification of probes that have a high detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no difference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two analytical methods suitable for XY chromosome data, the choice between which should be guided by the research question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed region, and cancer-testis gene promoters. CONCLUSION While there may be no single "best" approach for analyzing DNAme array data from the X and Y chromosome, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada.
| | - Martin T Wong
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| |
Collapse
|
27
|
Euclydes V, Gomes C, Gouveia G, Gastaldi VD, Feltrin AS, Camilo C, Vieira RP, Felipe-Silva A, Grisi S, Fink G, Brentani A, Brentani H. Gestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposure. Clin Epigenetics 2022; 14:152. [PMID: 36443840 PMCID: PMC9703828 DOI: 10.1186/s13148-022-01374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. RESULTS Using the Western Region Birth Cohort (ROC-São Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R2 = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R2 = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. CONCLUSION Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition.
Collapse
Affiliation(s)
- Verônica Euclydes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Catarina Gomes
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gisele Gouveia
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Daguano Gastaldi
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Arthur Sant’Anna Feltrin
- grid.412368.a0000 0004 0643 8839Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Caroline Camilo
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rossana Pulcineli Vieira
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Aloísio Felipe-Silva
- grid.11899.380000 0004 1937 0722Departamento de Patologia, Hospital Universitário, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Sandra Grisi
- grid.11899.380000 0004 1937 0722Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Günther Fink
- grid.416786.a0000 0004 0587 0574Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Alexandra Brentani
- grid.11899.380000 0004 1937 0722Departamento de Pediatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department and Institute of Psychiatry, University of São Paulo Medical School, Rua Dr. Ovídio Pires de Campos, 785, LIM23 (Térreo), São Paulo, 05403-010 Brazil ,grid.11899.380000 0004 1937 0722Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Elliott HR, Burrows K, Min JL, Tillin T, Mason D, Wright J, Santorelli G, Davey Smith G, Lawlor DA, Hughes AD, Chaturvedi N, Relton CL. Characterisation of ethnic differences in DNA methylation between UK-resident South Asians and Europeans. Clin Epigenetics 2022; 14:130. [PMID: 36243740 PMCID: PMC9571473 DOI: 10.1186/s13148-022-01351-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were widespread throughout the genome (n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work highlights the need to consider ethnic diversity in epigenetic research.
Collapse
Affiliation(s)
- Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Therese Tillin
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford, UK
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alun D. Hughes
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Nishi Chaturvedi
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
Truncated Tau caused by intron retention is enriched in Alzheimer's disease cortex and exhibits altered biochemical properties. Proc Natl Acad Sci U S A 2022; 119:e2204179119. [PMID: 36067305 PMCID: PMC9477417 DOI: 10.1073/pnas.2204179119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β plaques and Tau tangles in brain tissues. Recent studies indicate that aberrant splicing and increased level of intron retention is linked to AD pathogenesis. Bioinformatic analysis revealed increased retention of intron 11 at the Tau gene in AD female dorsal lateral prefrontal cortex as compared to healthy controls, an observation validated by quantitative polymerase chain reaction using different brain tissues. Retention of intron 11 introduces a premature stop codon, resulting in the production of truncated Tau11i protein. Probing with customized antibodies designed against amino acids encoded by intron 11 showed that Tau11i protein is more enriched in AD hippocampus, amygdala, parietal, temporal, and frontal lobe than in healthy controls. This indicates that Tau messenger RNA with the retained intron is translated in vivo instead of being subjected to nonsense-mediated decay. Compared to full-length Tau441 isoform, ectopically expressed Tau11i forms higher molecular weight species, is enriched in Sarkosyl-insoluble fraction, and exhibits greater protein stability in cycloheximide assay. Stably expressed Tau11i also shows weaker colocalization with α-tubulin of microtubule network in human mature cortical neurons as compared to Tau441. Endogenous Tau11i is enriched in Sarkosyl-insoluble fraction in AD hippocampus and forms aggregates that colocalize weakly with Tau4R fibril-like structure in AD temporal lobe. The elevated level of Tau11i protein in AD brain tissues tested, coupled with biochemical properties resembling pathological Tau species suggest that retention of intron 11 of Tau gene might be an early biomarker of AD pathology.
Collapse
|