1
|
Liu Z, Lin X, Zhang D, Guo D, Tang W, Yu X, Zhang F, Zhang S, Xue R, Shen X, Dong L. Increased PRP19 in Hepatocyte Impedes B Cell Function to Promote Hepatocarcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407517. [PMID: 39422063 DOI: 10.1002/advs.202407517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Tumor immune microenvironment is strongly associated with the malignancy behavior of hepatocellular carcinoma (HCC). However, the immune function and regulatory mechanisms of B cells in HCC remain unclear. The expression differences between B cell high- and low-infiltration HCC samples are explored to identify the key regulator. Pre-mRNA processing factor 19 (PRP19) expression is increased in B cell low-infiltrated tissues and negatively correlated with the B cell marker, CD20. Inhibition of PRP19 expression promoted B cell infiltration in tumor tissue and impeded HCC growth. Mechanically, the co-immunoprecipitation (Co-IP) assay revealed that PRP19 interacts with DEAD-box helicase 5 (DDX5), leading to ubiquitination and degradation of the DDX5 protein. The attenuated DDX5 impairs CXCL12 mRNA stability to suppress B cell recruitment and plasma cell differentiation via CXCL12/CXCR4 axis. Moreover, the adoptive transfer of CXCR4+ B cells combined with CXCL12 treatment in mice models effectively inhibits HCC development by reshaping the immune response. The expression of PRP19, DDX5, and infiltrating B cells are recognized as clinical prognosis indicators for HCC patients. Overall, this study provides valuable insights into the clinical benefits of HCC immunotherapy by targeting PRP19 and modulating tumor-infiltrating B cell immune function.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Danying Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Dezhen Guo
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Xiangnan Yu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200030, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| |
Collapse
|
2
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
4
|
Tieck MP, Vasilenko N, Ruschil C, Kowarik MC. Peripheral memory B cells in multiple sclerosis vs. double negative B cells in neuromyelitis optica spectrum disorder: disease driving B cell subsets during CNS inflammation. Front Cell Neurosci 2024; 18:1337339. [PMID: 38385147 PMCID: PMC10879280 DOI: 10.3389/fncel.2024.1337339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
B cells are fundamental players in the pathophysiology of autoimmune diseases of the central nervous system, such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). A deeper understanding of disease-specific B cell functions has led to the differentiation of both diseases and the development of different treatment strategies. While NMOSD is strongly associated with pathogenic anti-AQP4 IgG antibodies and proinflammatory cytokine pathways, no valid autoantibodies have been identified in MS yet, apart from certain antigen targets that require further evaluation. Although both diseases can be effectively treated with B cell depleting therapies, there are distinct differences in the peripheral B cell subsets that influence CNS inflammation. An increased peripheral blood double negative B cells (DN B cells) and plasmablast populations has been demonstrated in NMOSD, but not consistently in MS patients. Furthermore, DN B cells are also elevated in rheumatic diseases and other autoimmune entities such as myasthenia gravis and Guillain-Barré syndrome, providing indirect evidence for a possible involvement of DN B cells in other autoantibody-mediated diseases. In MS, the peripheral memory B cell pool is affected by many treatments, providing indirect evidence for the involvement of memory B cells in MS pathophysiology. Moreover, it must be considered that an important effector function of B cells in MS may be the presentation of antigens to peripheral immune cells, including T cells, since B cells have been shown to be able to recirculate in the periphery after encountering CNS antigens. In conclusion, there are clear differences in the composition of B cell populations in MS and NMOSD and treatment strategies differ, with the exception of broad B cell depletion. This review provides a detailed overview of the role of different B cell subsets in MS and NMOSD and their implications for treatment options. Specifically targeting DN B cells and plasmablasts in NMOSD as opposed to memory B cells in MS may result in more precise B cell therapies for both diseases.
Collapse
Affiliation(s)
| | | | | | - M. C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, and Hertie-Institute for Clinical Brain Research Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
6
|
Alemtuzumab-Related Lymphocyte Subset Dynamics and Disease Activity or Autoimmune Adverse Events: Real-World Evidence. J Clin Med 2023; 12:jcm12051768. [PMID: 36902555 PMCID: PMC10002781 DOI: 10.3390/jcm12051768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES alemtuzumab is a monoclonal anti-CD52 antibody acting on B and T cells in highly active multiple sclerosis (MS). We analyzed changes in lymphocyte subsets after alemtuzumab administration in relation to disease activity and autoimmune adverse events. METHODS lymphocyte subset counts were assessed longitudinally using linear mixed models. Subset counts at baseline and during follow-up were correlated with relapse rate, adverse events, or magnetic resonance (MRI) activity. RESULTS we recruited 150 patients followed for a median of 2.7 years (IQR: 1.9-3.7). Total lymphocytes, CD4, CD8, and CD20 significantly decreased in all patients over 2 years (p < 0.001). Previous treatment with fingolimod increased the risk of disease activity and adverse events (p = 0.029). We found a higher probability of disease reactivation in males and in patients with over three active lesions at baseline. Higher EDSS scores at baseline and longer disease duration predicted the switch to other treatments after alemtuzumab. DISCUSSION AND CONCLUSIONS Our real-world study supports data from clinical trials in which lymphocyte subsets were not useful for predicting disease activity or autoimmune disease during treatment. The early use of an induction therapy such as alemtuzumab in patients with a lower EDSS score and short history of disease could mitigate the risk of treatment failure.
Collapse
|
7
|
Sgarlata E, Chisari CG, Toscano S, Finocchiaro C, Lo Fermo S, Millefiorini E, Patti F. Changes in John Cunningham Virus Index in Multiple Sclerosis Patients Treated with Different Disease-Modifying Therapies. Curr Neuropharmacol 2022; 20:1978-1987. [PMID: 34766895 PMCID: PMC9886813 DOI: 10.2174/1570159x19666211111123202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Progressive Multifocal Leukoencephalopathy (PML) is an opportunistic infection caused by John Cunningham virus (JCV) reactivation, potentially associated with natalizumab (NTZ) treatment for Multiple Sclerosis (MS). The anti-JCV antibodies titre (JCV index) increases during NTZ treatment; however, the effects of other disease-modifying therapies (DMTs) on the JCV index have not been fully explored. OBJECTIVE The aim of the study was to evaluate changes in the JCV index during treatment with several DMTs. METHODS This longitudinal study evaluated the JCV index before starting DMT (T0) and during treatment with DMT (T1). RESULTS A total of 260 participants (65.4 % females, mean age 43 ± 11.3 ) were enrolled: 68 (26.2 %) treated with fingolimod (FTY), 65 (25 %) rituximab or ocrelizumab (RTX/OCR), 37 (14.2 %) dimethyl-fumarate (DMF), 29 (11.2 %) cladribine (CLD), 23 (8.8 %) teriflunomide (TFM), 20 (7.7 %) interferon or glatiramer acetate (IFN/GA), and 18 (6.9 %) alemtuzumab (ALM). At T1, the percentage of patients with JCV index <0.90 was found to be significantly increased in the ALM group (16.7 % versus 66.7 %, p = 0.05), while the percentage of patients with JCV index >1.51 was found to be significantly reduced in the RTX/OCR group (51.6 % versus 37.5 %, p = 0.04). In the FTY group, a significant reduction in the percentage of patients with JCV index <0.90 was also found (23.5 % versus 1.4 %, p = 0.0006). The mean JCV index was reduced in the RTX/OCR and ALM groups, while a significant increase was observed in the FTY group. CONCLUSION DMTs with a T and/or B depleting mechanism of action induced a significant reduction in the JCV index. These results may suggest new possible sequencing strategies potentially maximizing disease control while reducing the PML risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Patti
- Address correspondence to this author at the Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy; Tel: 0953782783; E-mail:
| |
Collapse
|
8
|
Chen C, Guo Q, Tang Y, Qu W, Zuo J, Ke X, Song Y. Screening and evaluation of the role of immune genes of brain metastasis in lung adenocarcinoma progression based on the TCGA and GEO databases. J Thorac Dis 2021; 13:5016-5034. [PMID: 34527340 PMCID: PMC8411151 DOI: 10.21037/jtd-21-935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
Background Brain metastasis was one of the factors leading to the poor long-term prognosis of patients with lung adenocarcinoma (LUAD). Methods The expression levels of immune genes in LUAD and LUAD brain metastases tissues were analyzed in GSE161116 dataset using the GEO2R, and the levels of differential immune genes in normal lung and LUAD tissues were verified. The biological functions and signaling mechanisms of the differential immune genes were explored via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Cox regression analysis was used to screen the prognostic factors of LUAD patients, and a risk model was constructed. The role of the model was checked in the development of LUAD via receiver operating characteristic analysis, gene set enrichment analysis, and Cox regression analysis. Results Differentially expressed genes (DEGs) in brain metastasis were involved in the adaptive immune response, B cell differentiation, leukocyte migration, NF-kB signaling pathway, among others. The expression levels of TNFRSF11A, MS4A2, IL11, CAMP, MS4A1, and F2RL1 were independent factors affecting the poor prognosis of LUAD patients via Cox regression analysis and Akaike information criterion. In the constructed risk model, the overall survival of LUAD patients in the high-risk group was poor. The risk model was significantly related to the gender, clinical stage, T stage, lymph node metastasis, and survival status of LUAD patients. In addition, the risk model score was an independent risk factor that affected the poor prognosis of LUAD patients. TNFRSF11A, CAMP, F2RL1, IL11, MS4A1, and MS4A2 of the risk factors had diagnostic significance in LUAD brain metastasis and LUAD. The risk model participated in cytokinetic process, cell cycle, citrate cycle TCA cycle, etc. The risk model score was correlated with the levels of B cells memory, mast cells resting, macrophages M0, mast cells activated, neutrophils, eosinophils, T cells gamma delta, and immune cell markers. Conclusions The risk model based on the LUAD brain metastasis immune factors TNFRSF11A, MS4A2, IL11, CAMP, MS4A1, and F2RL1 was related to the diagnosis, poor prognosis, and immune infiltrating cells of LUAD patients, and is expected to provide a reference for the development of treatment strategies for LUAD patients.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wendong Qu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiebin Zuo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Rosenstein I, Rasch S, Axelsson M, Novakova L, Blennow K, Zetterberg H, Lycke J. Kappa free light chain index as a diagnostic biomarker in multiple sclerosis: A real-world investigation. J Neurochem 2021; 159:618-628. [PMID: 34478561 DOI: 10.1111/jnc.15500] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
Kappa free light chain (KFLC) index, a measure for intrathecal production of free kappa chains, has been increasingly recognized for its diagnostic potential in multiple sclerosis (MS) as a quantitative alternative to IgG oligoclonal bands (OCBs). Our objective was to investigate the sensitivity, specificity, and overall diagnostic accuracy of KFLC index in MS. KFLC index was prospectively determined as part of the diagnostic workup in patients with suspected MS (n = 327) between May 2013 and February 2020. Patients with clinically isolated syndrome (CIS), radiologically isolated syndrome (RIS), and MS had markedly higher KFLC index (44.6, IQR 16-128) compared with subjects with other neuro-inflammatory disorders (ONID) and symptomatic controls (SC) (2.19, IQR 1.68-2.98, p < 0.001). KFLC index had a sensitivity of 0.93 (95% CI 0.88-0.95) and specificity of 0.87 (95% CI 0.8-0.92) to discriminate CIS/RIS/MS from ONID and SC (AUC 0.94, 95% CI 0.91-0.97, p < 0.001). KFLC index and intrathecal fraction (IF) KFLC had similar accuracies to detect MS. Treatment with disease-modifying therapy (DMT) did not influence the level of KFLC index and it was not affected by demographic factors or associated with degenerative or inflammatory biomarkers in cerebrospinal fluid (CSF). KFLC index in MS diagnostics has methodological advantages compared to OCB and is independent to subjective interpretation. Moreover, it is an attractive diagnostic tool since the diagnostic specificity and sensitivity of KFLC index are similar with that of OCBs and KFLCIF and better than for IgG index. We show that KFLC index was influenced neither by DMT nor by demographic factors or other inflammatory or degenerative processes in MS as determined by biomarkers in CSF.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
11
|
Pfeuffer S, Ruck T, Pul R, Rolfes L, Korsukewitz C, Pawlitzki M, Wildemann B, Klotz L, Kleinschnitz C, Scalfari A, Wiendl H, Meuth SG. Impact of previous disease-modifying treatment on effectiveness and safety outcomes, among patients with multiple sclerosis treated with alemtuzumab. J Neurol Neurosurg Psychiatry 2021; 92:1007-1013. [PMID: 33712515 PMCID: PMC8372391 DOI: 10.1136/jnnp-2020-325304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Alemtuzumab is effective in patients with active multiple sclerosis but has a complex safety profile, including the development of secondary autoimmunity. Most of patients enrolled in randomised clinical trials with alemtuzumab were either treatment naïve or pretreated with injectable substances. Other previous disease-modifying treatments (DMTs) were not used in the study cohorts, and therefore, associated risks might yet remain unidentified. METHODS We retrospectively evaluated a prospective dual-centre alemtuzumab cohort of 170 patients. We examined the baseline characteristics as well as safety and effectiveness outcomes, including the time to first relapse, the time to 3 months confirmed disability worsening and the time to secondary autoimmunity. RESULTS The regression analysis showed that, among all previously used DMTs, the pretreatment with fingolimod (n=33 HRs for the time to first relapse (HR 5.420, 95% CI 2.520 to 11.660; p<0.001)) and for the time to worsening of disability (HR 7.676, 95% CI 2.870 to 20.534; p<0.001). Additionally, patients pretreated with fingolimod were more likely to experience spinal relapses (55% vs 10% among previously naïve patients; p<0.001) and had an increased risk of secondary autoimmunity (HR 5.875, 95% CI 2.126 to 16.27; p<0.001). CONCLUSION In the real-world setting, we demonstrated suboptimal disease control and increased risk of secondary autoimmunity following alemtuzumab, among patients previously treated with fingolimod. These data can provide guidance for improving MS therapeutic management.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Refik Pul
- Department of Neurology, Universitat Duisburg-Essen, Duisburg, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | - Antonio Scalfari
- Centre for Neuroscience, Division of Experimental Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Colombo E, Farina C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol Ther 2021; 230:107971. [PMID: 34450231 DOI: 10.1016/j.pharmthera.2021.107971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive sphingolipid binding to specific G protein-coupled receptors expressed in several organs. The relevance of S1P-S1P receptor axis in the pathophysiology of immune and nervous systems has encouraged the development of S1P receptor modulators for the treatment of neurological, autoimmune and/or inflammatory disorders. Currently, four S1P receptor modulators are approved drugs for multiple sclerosis (MS), an inflammatory disorder of the central nervous system. As main pharmacologic effect, these treatments induce lymphopenia due to the loss of responsiveness to S1P gradients guiding lymphocyte egress from lymphoid organs into the bloodstream. Recent data point to immunological effects of the S1P modulators beyond the inhibition of lymphocyte trafficking. Further, these drugs may cross the blood-brain barrier and directly target CNS resident cells expressing S1P receptors. Here we review the role of S1P signalling in neuroimmunology at the light of the evidences generated from the study of the mechanism of action of S1P receptor modulators in MS and integrate this information with findings derived from neuroinflammatory animal models and in vitro observations. These insights can direct the application of therapeutic approaches targeting S1P receptors in other disease areas.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Hospital, 20132 Milan, Italy.
| |
Collapse
|
13
|
B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells 2021; 10:cells10071605. [PMID: 34206848 PMCID: PMC8305155 DOI: 10.3390/cells10071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the role of B cells in neurological disorders has substantially expanded our perspectives on mechanisms of neuroinflammation. The success of B cell-depleting therapies in patients with CNS diseases such as neuromyelitis optica and multiple sclerosis has highlighted the importance of neuroimmune crosstalk in inflammatory processes. While B cells are essential for the adaptive immune system and antibody production, they are also major contributors of pro- and anti-inflammatory cytokine responses in a number of inflammatory diseases. B cells can contribute to neurological diseases through peripheral immune mechanisms, including production of cytokines and antibodies, or through CNS mechanisms following compartmentalization. Emerging evidence suggests that aberrant pro- or anti-inflammatory B cell populations contribute to neurological processes, including glial activation, which has been implicated in the pathogenesis of several neurodegenerative diseases. In this review, we summarize recent findings on B cell involvement in neuroinflammatory diseases and discuss evidence to support pathogenic immunomodulatory functions of B cells in neurological disorders, highlighting the importance of B cell-directed therapies.
Collapse
|
14
|
Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021; 12:592914. [PMID: 33936028 PMCID: PMC8082147 DOI: 10.3389/fimmu.2021.592914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
With the ability to induce T cell activation and elicit humoral responses, B cells are generally considered as effectors of the immune system. However, the emergence of regulatory B cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs exhibit immunosuppressive functions via diverse mechanisms, including the secretion of anti-inflammatory cytokines and direct cell contact. The balance between Bregs and effector B cells is important for the immune tolerance. In this review, we focus on recent advances in the characteristics of Bregs and their functional roles in autoimmunity.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Huai G, Markmann JF, Deng S, Rickert CG. TGF-β-secreting regulatory B cells: unsung players in immune regulation. Clin Transl Immunology 2021; 10:e1270. [PMID: 33815797 PMCID: PMC8017464 DOI: 10.1002/cti2.1270] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/25/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory B cells contribute to the regulation of immune responses in cancer, autoimmune disorders, allergic conditions and inflammatory diseases. Although most studies focus on regulatory B lymphocytes expressing interleukin-10, there is growing evidence that B cells producing transforming growth factor β (TGF-β) can also regulate T-cell immunity in inflammatory diseases and promote the emergence of regulatory T cells that contribute to the induction and maintenance of natural and induced immune tolerance. Most research on TGF-β+ regulatory B cells has been conducted in models of allergy, cancer and autoimmune diseases, but there has, as yet, been limited scrutiny of their role in the transplant setting. Herein, we review recent investigations seeking to understand how TGF-β-producing B cells direct the immune response in various inflammatory diseases and whether these regulatory cells may have a role in fostering tolerance in transplantation.
Collapse
Affiliation(s)
- Guoli Huai
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China.,Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - James F Markmann
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Shaoping Deng
- Organ Transplantation Center Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Charles Gerard Rickert
- Center for Transplantation Sciences Massachusetts General Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
16
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
17
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
18
|
Changes in Anti-JCV Antibody Status in a Large Population of Multiple Sclerosis Patients Treated with Natalizumab. CNS Drugs 2020; 34:535-543. [PMID: 32221861 DOI: 10.1007/s40263-020-00716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Natalizumab (NTZ) can be associated with an opportunistic infection, progressive multifocal leukoencephalopathy (PML), caused by John Cunningham virus (JCV). High titer of anti-JCV antibody (JCV index) in patients treated with NTZ for over 2 years limit it use, leading to treatment discontinuation. OBJECTIVE Aim of the study was to investigate the JCV index changes pre, during and post NTZ treatment and describe the trend after a long period of NTZ discontinuation. METHODS Patients with relapsing-remitting multiple sclerosis (RR-MS) treated with NTZ between 2010 and 2018 were enrolled in this retrospective-prospective observational study. Inclusion criteria were: (1) diagnosis of RR-MS according to the McDonald criteria 2010, (2) at least six NTZ administrations, (3) at least two determinations of JCV Index during the follow-up period, (4) NTZ discontinuation period for more than 6 months. JCV index was determined by STRATIFY II. There were three different timepoints: NTZ initiation (T0), NTZ discontinuation (T1) and time after NTZ suspension (T2). Seroconversion was defined as changing status of serum JCV antibody. Main outcomes were the JCV index changes and the rate of seroconversion. RESULTS At baseline we enrolled 285 patients (208 JCV negative, 67 JCV positive, and 10 not available). There was a statistically significant increase of JCV index during NTZ treatment period (T0 vs T1, p =0.0009) and during NTZ discontinuation period (T1 vs T2, p =0.04). Patients seroconverted to a positive status more frequently during NTZ treatment than after discontinuation (p =0.008). Moreover, patients who shifted to fingolimod (FTY) as exit strategy after NTZ discontinuation, showed a statistically significant increase of JCV index. CONCLUSION Our data confirmed that a high percentage of patients shift to or remain in a positive JCV status during NTZ treatment and after discontinuation. NTZ suspension seems not to be able to interfere on JCV status modification over an extended period. The choice of alternative treatment as exit strategy after NTZ discontinuation should be carefully considered because it could negatively influence the PML risk stratification of patients.
Collapse
|
19
|
Najjar E, Staun-Ram E, Volkowich A, Miller A. Dimethyl fumarate promotes B cell-mediated anti-inflammatory cytokine profile in B and T cells, and inhibits immune cell migration in patients with MS. J Neuroimmunol 2020; 343:577230. [PMID: 32247228 DOI: 10.1016/j.jneuroim.2020.577230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 01/08/2023]
Abstract
Dimethyl Fumarate (DMF), known for its mechanism of action targeting Nrf2 and related redox homeostasis, is an approved immunotherapy for patients with Multiple Sclerosis (PwMS) in the relapsing form. We assessed how DMF modulates immune cell functions, namely the cytokine profile of co-cultured B and T cells, and the chemokine-mediated migration of immune cells. Following DMF therapy, LTα+, TNFα+ and IFNγ+ B cells were reduced while TGFβ and IL10 expression elevated. B cells from DMF-treated patients increased TGFβ and LTα expression on T cells, while DMF directly reduced TNFα+ and IFNγ+ T cells. CXCL12/CXCL13-mediated migration of B cells, Monocytes, CD4 and CD8 T cells was reduced, with altered CXCR5 and CXCR4 expression. Induction of regulatory B and T cells and reduced migration of immune cells may be part of the beneficial mechanism of DMF in PwMS.
Collapse
Affiliation(s)
- Eiman Najjar
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel
| | - Anat Volkowich
- Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Department of Neurology, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|