1
|
Vilmane A, Kolesova O, Nora-Krukle Z, Kolesovs A, Pastare D, Jaunozolina L, Kande L, Egle J, Kromane D, Micule M, Liepina S, Zeltina E, Gravelsina S, Rasa-Dzelzkaleja S, Viksna L, Karelis G. Association of Baseline Lipopolysaccharide-Binding Protein with Expanded Disability Status Score Dynamics in Patients with Relapsing-Remitting Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2024; 26:298. [PMID: 39796152 PMCID: PMC11720422 DOI: 10.3390/ijms26010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated. The disability of the patients was evaluated using EDSS at baseline and follow-up; enzyme-linked immunosorbent assays (ELISAs) were also used to determine the level of blood-based inflammation markers in plasma at baseline. The main results demonstrated that the baseline level of LBP was correlated with an increase in EDSS in a short (8-10 months) follow-up period. Furthermore, the prognostic significance of LBP was only observed in patients who received disease-modifying treatment (DMT) before the study. Our results suggest that the baseline level of LBP may be among the predictors of disability progression in RRMS over short follow-up periods, particularly in those receiving treatment. It highlights the effect of endotoxins in the pathogenesis of RRMS.
Collapse
Affiliation(s)
- Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Oksana Kolesova
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | | | - Daina Pastare
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Liga Jaunozolina
- Center of Radiology, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Radiology, Rīga Stradiņš University, LV-1079 Riga, Latvia
| | - Linda Kande
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Jelena Egle
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Daniela Kromane
- Faculty of Medicine, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Madara Micule
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
- Department of Neurology and Neurosurgery, Rīga Stradiņš University, LV-1002 Riga, Latvia
| | - Sintija Liepina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Estere Zeltina
- Department of Residency, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Santa Rasa-Dzelzkaleja
- Institute of Microbiology and Virology, Rīga Stradiņš University Research Center, LV-1067 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Guntis Karelis
- Department of Infectology, Rīga Stradiņš University, LV-1007 Riga, Latvia
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|
2
|
Cobanovic S, Blaabjerg M, Illes Z, Nissen MS, Nielsen CH, Kondziella D, Buhelt S, Mahler MR, Sellebjerg F, Romme Christensen J. Cerebrospinal fluid soluble CD27 is a sensitive biomarker of inflammation in autoimmune encephalitis. J Neurol Sci 2024; 466:123226. [PMID: 39278170 DOI: 10.1016/j.jns.2024.123226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AE) comprises a group of rare, severe neuroinflammatory conditions. Current biomarkers of neuroinflammation are often normal in AE which therefore can be difficult to rule out in patients with seizures, cognitive and/or neuropsychiatric symptoms. Cerebrospinal fluid (CSF) soluble CD27 (sCD27) and soluble B-cell maturation antigen (sBCMA) have high sensitivity for neuroinflammation in other neuroinflammatory conditions. In this exploratory study we investigate the potential of sCD27 and sBCMA in CSF as biomarkers of neuroinflammation in AE. METHODS Concentrations of sCD27 and sBCMA were measured in CSF from 40 AE patients (20 patients were untreated (12 with anti-N-Methyl-d-Aspartate receptor antibodies (NMDA) and 8 with anti-Leucine-rich Glioma-Inactivated 1 antibodies (LGI1)), and 37 symptomatic controls (SCs). RESULTS CSF concentrations of sCD27 were increased in untreated NMDA AE patients (median 1571 pg/ml; p < 0.001) and untreated LGI1 AE patients (median 551 pg/ml; p < 0.05) compared to SCs (median 250 pg/ml). CSF sBCMA was increased in untreated NMDA AE patients (median 832 pg/ml) compared to SCs (median 429 pg/ml). CSF sCD27 and sBCMA correlated with the CSF cell count. Receiver operating characteristic curve analysis of untreated AE patients versus SCs showed an area under the curve of 0.97 for sCD27 and 0.76 for sBCMA. CONCLUSION CSF sCD27 is a suitable biomarker of neuroinflammation in AE with an ability to discriminate patients with NMDA AE and LGI1 AE from symptomatic controls. CSF sCD27 may be suited for ruling out AE and other neuroinflammatory conditions in the early phase of the diagnostic work-up.
Collapse
Affiliation(s)
- Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Mette Scheller Nissen
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Campusvej 55, 5220, Odense, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital, Ole Maaløes Vej 26, 2200 Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, 2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark.
| |
Collapse
|
3
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
4
|
Kavaka V, Mutschler L, de la Rosa Del Val C, Eglseer K, Gómez Martínez AM, Flierl-Hecht A, Ertl-Wagner B, Keeser D, Mortazavi M, Seelos K, Zimmermann H, Haas J, Wildemann B, Kümpfel T, Dornmair K, Korn T, Hohlfeld R, Kerschensteiner M, Gerdes LA, Beltrán E. Twin study identifies early immunological and metabolic dysregulation of CD8 + T cells in multiple sclerosis. Sci Immunol 2024; 9:eadj8094. [PMID: 39331727 DOI: 10.1126/sciimmunol.adj8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.
Collapse
Affiliation(s)
- Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Luisa Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Clara de la Rosa Del Val
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Ana M Gómez Martínez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Mortazavi
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanna Zimmermann
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Tigchelaar C, Cunningham JL, Rasmusson AJ, Thulin M, Burman J, Kema IP, Larsson A, Absalom AR. Cerebrospinal fluid and plasma concentrations of the inflammatory marker soluble CD27 in a large surgical population. iScience 2024; 27:110036. [PMID: 38883839 PMCID: PMC11179565 DOI: 10.1016/j.isci.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Soluble CD27 (sCD27) is a potential biomarker for diseases involving immune dysfunction. As there is currently little data on cerebrospinal fluid (CSF) sCD27 concentrations in the general population we measured CSF and plasma concentrations in 486 patients (age range 18-92 years, 57% male) undergoing spinal anesthesia for elective surgery. Across the complete cohort the median [range] sCD27 concentrations were 163 [<50 to 7474] pg/mL in CSF and 4624 [1830 to >400,000] pg/mL in plasma. Plasma sCD27, age and Qalb were the factors most strongly associated with CSF sCD27 levels. Reference sCD27 concentration intervals (central 95% of values) in a sub-group without the indication of neuropsychiatric, inflammatory or systemic disease (158 patients) were <50 pg/mL - 419 pg/mL for CSF and 2344-36422 pg/mL for plasma. These data provide preliminary reference ranges that could inform future studies of the validity of sCD27 as a biomarker for neuro- and systemic inflammatory disorders.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Måns Thulin
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Hinsinger G, Du Trieu De Terdonck L, Urbach S, Salvetat N, Rival M, Galoppin M, Ripoll C, Cezar R, Laurent-Chabalier S, Demattei C, Agherbi H, Castelnovo G, Lehmann S, Rigau V, Marin P, Thouvenot E. CD138 as a Specific CSF Biomarker of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200230. [PMID: 38669615 PMCID: PMC11057439 DOI: 10.1212/nxi.0000000000200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).
Collapse
Affiliation(s)
- Geoffrey Hinsinger
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Lucile Du Trieu De Terdonck
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Serge Urbach
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Nicolas Salvetat
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Rival
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Galoppin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Chantal Ripoll
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Renaud Cezar
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sabine Laurent-Chabalier
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Christophe Demattei
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Hanane Agherbi
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Giovanni Castelnovo
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sylvain Lehmann
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Valérie Rigau
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Philippe Marin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Eric Thouvenot
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| |
Collapse
|
7
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
8
|
Ulutekin C, Galli E, Schreiner B, Khademi M, Callegari I, Piehl F, Sanderson N, Kirschenbaum D, Mundt S, Filippi M, Furlan R, Olsson T, Derfuss T, Ingelfinger F, Becher B. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep Med 2024; 5:101351. [PMID: 38134930 PMCID: PMC10829729 DOI: 10.1016/j.xcrm.2023.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Whereas T cells are likely the main drivers of disease development, the striking efficacy of B cell-depleting therapies (BCDTs) underscore B cells' involvement in disease progression. How B cells contribute to multiple sclerosis (MS) pathogenesis-and consequently the precise mechanism of action of BCDTs-remains elusive. Here, we analyze the impact of BCDTs on the immune landscape in patients with MS using high-dimensional single-cell immunophenotyping. Algorithm-guided analysis reveals a decrease in circulating T follicular helper-like (Tfh-like) cells alongside increases in CD27 expression in memory T helper cells and Tfh-like cells. Elevated CD27 indicates disrupted CD27/CD70 signaling, as sustained CD27 activation in T cells leads to its cleavage. Immunohistological analysis shows CD70-expressing B cells at MS lesion sites. These results suggest that the efficacy of BCDTs may partly hinge upon the disruption of Th cell and B cell interactions.
Collapse
Affiliation(s)
- Can Ulutekin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Edoardo Galli
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Ilaria Callegari
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Nicholas Sanderson
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, Neurophysiology Service, and Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Via Olgettina n. 60 - 20132, Italy; Vita-Salute San Raffaele University, Milan, Via Olgettina n. 60 - 20132, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina n. 60 - 20132, Milan, Italy
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18A, 171 76 Stockholm, Sweden
| | - Tobias Derfuss
- Multiple Sclerosis Center, Neurologic Clinic and Policlinic, Department of Biomedicine and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
9
|
El Mahdaoui S, Husted SR, Hansen MB, Cobanovic S, Mahler MR, Buhelt S, von Essen MR, Sellebjerg F, Romme Christensen J. Cerebrospinal fluid soluble CD27 is associated with CD8 + T cells, B cells and biomarkers of B cell activity in relapsing-remitting multiple sclerosis. J Neuroimmunol 2023; 381:578128. [PMID: 37321014 DOI: 10.1016/j.jneuroim.2023.578128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Cerebrospinal fluid (CSF) soluble CD27 (sCD27) is a sensitive biomarker of intrathecal inflammation. Although generally considered a biomarker of T cell activation, CSF sCD27 has been shown to correlate with biomarkers of B cell activity in multiple sclerosis. We analyzed CSF from 40 patients with relapsing-remitting multiple sclerosis (RRMS) and nine symptomatic controls using flow cytometry and multiplex electrochemiluminescence immunoassays. CSF sCD27 levels were increased in RRMS and correlated with IgG index, soluble B cell maturation antigen, cell count, B cell frequency and CD8+ T cell frequency. We provide new data indicating that CSF sCD27 is associated with CD8+ T cells and B cells in RRMS.
Collapse
Affiliation(s)
- Sahla El Mahdaoui
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Signe Refstrup Husted
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Malene Bredahl Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
10
|
Magnusson R, Rundquist O, Kim MJ, Hellberg S, Na CH, Benson M, Gomez-Cabrero D, Kockum I, Tegnér JN, Piehl F, Jagodic M, Mellergård J, Altafini C, Ernerudh J, Jenmalm MC, Nestor CE, Kim MS, Gustafsson M. RNA-sequencing and mass-spectrometry proteomic time-series analysis of T-cell differentiation identified multiple splice variants models that predicted validated protein biomarkers in inflammatory diseases. Front Mol Biosci 2022; 9:916128. [PMID: 36106020 PMCID: PMC9465313 DOI: 10.3389/fmolb.2022.916128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/18/2022] Open
Abstract
Profiling of mRNA expression is an important method to identify biomarkers but complicated by limited correlations between mRNA expression and protein abundance. We hypothesised that these correlations could be improved by mathematical models based on measuring splice variants and time delay in protein translation. We characterised time-series of primary human naïve CD4+ T cells during early T helper type 1 differentiation with RNA-sequencing and mass-spectrometry proteomics. We performed computational time-series analysis in this system and in two other key human and murine immune cell types. Linear mathematical mixed time delayed splice variant models were used to predict protein abundances, and the models were validated using out-of-sample predictions. Lastly, we re-analysed RNA-seq datasets to evaluate biomarker discovery in five T-cell associated diseases, further validating the findings for multiple sclerosis (MS) and asthma. The new models significantly out-performing models not including the usage of multiple splice variants and time delays, as shown in cross-validation tests. Our mathematical models provided more differentially expressed proteins between patients and controls in all five diseases. Moreover, analysis of these proteins in asthma and MS supported their relevance. One marker, sCD27, was validated in MS using two independent cohorts for evaluating response to treatment and disease prognosis. In summary, our splice variant and time delay models substantially improved the prediction of protein abundance from mRNA expression in three different immune cell types. The models provided valuable biomarker candidates, which were further validated in MS and asthma.
Collapse
Affiliation(s)
- Rasmus Magnusson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Min Jung Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in, South Korea
| | - Sandra Hellberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mikael Benson
- Centre for Personalised Medicine, Linköping University, Linköping, Sweden
| | - David Gomez-Cabrero
- Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, IdiSNA, Pamplona, Spain
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jesper N. Tegnér
- Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Mellergård
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claudio Altafini
- Department of Automatic Control, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Maria C. Jenmalm, ; Mika Gustafsson,
| | - Colm E. Nestor
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- *Correspondence: Maria C. Jenmalm, ; Mika Gustafsson,
| |
Collapse
|
11
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
12
|
Højsgaard Chow H, Talbot J, Lundell H, Gøbel Madsen C, Marstrand L, Lange T, Mahler MR, Buhelt S, Holm Hansen R, Blinkenberg M, Romme Christensen J, Soelberg Sørensen P, Rode von Essen M, Siebner HR, Sellebjerg F. Dimethyl Fumarate Treatment in Patients With Primary Progressive Multiple Sclerosis: A Randomized, Controlled Trial. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1037. [PMID: 34429340 PMCID: PMC8407149 DOI: 10.1212/nxi.0000000000001037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022]
Abstract
Background and Objective To study whether dimethyl fumarate is superior to placebo in decreasing CSF concentrations of neurofilament light chain (NFL) in patients with primary progressive MS (PPMS). Methods In the double-blind, placebo-controlled phase 2 study dimethyl FUMArate treatment in Progressive Multiple Sclerosis (FUMAPMS), patients with PPMS were randomly assigned to treatment with 240 mg dimethyl fumarate or placebo in a 1:1 ratio for 48 weeks. The primary endpoint was change in concentration of NFL in the CSF. Secondary endpoints included other CSF biomarkers and clinical and MRI measures. Efficacy was evaluated for the full data set by multiple imputations to account for missing data. Safety was assessed for the full data set. Results Fifty-four patients (mean age 54.9 years [SD 6.1], median Expanded Disability Status Scale 4.0 [nterquartile range 4.0–6.0], disease duration 14.1 [SD 9.4], and 21 [39%] female) were randomized to either placebo (n = 27) or dimethyl fumarate (n = 27) therapy. At screening CSF concentrations, adjusted for age and sex, of NFL, myelin basic protein (MBP), soluble CD27, chitinase 3-like 1, and B-cell maturation antigen were higher than in a group of symptomatic controls. Twenty-six patients (96%) in the dimethyl fumarate group and 24 patients (89%) in the placebo group completed the randomized phase. Mean change in CSF concentrations of NFL did not differ between groups (mean difference 99 ng/L; 95% CI −292 to 491 ng/L). MBP in CSF decreased in the treatment group (−182 ng/L, 95% CI −323 to −41 ng/L compared with placebo). The difference observed in the multiple imputation data set was not significant in a per protocol analysis. This was nominally significant in the multiple imputation data set but not in the per protocol analysis This was not found in the per protocol analysis Other secondary and tertiary outcomes were not affected. Various infections, lymphopenia, flushing, and gastrointestinal side effects were more frequent in the dimethyl fumarate group. Serious adverse events were similar between groups. Discussion Dimethyl fumarate treatment for 48 weeks had no effect on any of the investigated efficacy measures in patients with PPMS. We did not observe adverse events not anticipated for dimethyl fumarate treatment. Trial Registration Information Clinicaltrials.gov identifier NCT02959658. Classification of Evidence This study provides Class I evidence that for patients with PPMS, dimethyl fumarate treatment has no effect on CSF NFL levels compared with placebo treatment.
Collapse
Affiliation(s)
- Helene Højsgaard Chow
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Jacob Talbot
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Henrik Lundell
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Camilla Gøbel Madsen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Lisbet Marstrand
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Theis Lange
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Mie Reith Mahler
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Sophie Buhelt
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Rikke Holm Hansen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Morten Blinkenberg
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Jeppe Romme Christensen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Per Soelberg Sørensen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Marina Rode von Essen
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Hartwig Roman Siebner
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark
| | - Finn Sellebjerg
- From the Danish Multiple Sclerosis Center (H.H.C., J.T., L.M., M.M., S.B., R.H.H., M.B., J.R.C., P.S.S., M.E., F.S.), Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup; Danish Research Centre for Magnetic Resonance (H.L., C.G.M., H.R.S.), Copenhagen University Hospital Hvidovre, Hvidovre; Section of Biostatistics (T.L.), Department of Public Health, University of Copenhagen, Copenhagen K; Department of Neurology (H.R.S.), Copenhagen University Hospital Bispebjerg, Copenhagen; and Institute for Clinical Medicine (H.R.S.), University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
13
|
CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel) 2021; 11:diagnostics11091522. [PMID: 34573864 PMCID: PMC8470638 DOI: 10.3390/diagnostics11091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) diagnostics has emerged as a valid tool for a variety of neurological diseases. However, CSF diagnostics has been playing a subordinate role in the diagnosis of many neurological conditions. Thus, in the multitude of neuromuscular diseases in which motor neurons are affected, a CSF sample is rarely taken routinely. However, CSF diagnostics has the potential to specify the diagnosis and monitor the treatment of neuromuscular disorders. In this review, we therefore focused on a variety of neuromuscular diseases, among them amyotrophic lateral sclerosis (ALS), peripheral neuropathies, and spinal muscular atrophy (SMA), for which CSF diagnostics has emerged as a promising option for determining the disease itself and its progression. We focus on potentially valuable biomarkers among different disorders, such as neurofilaments, cytokines, other proteins, and lipids to determine their suitability, differentiating between different neurological disorders and their potential to determine early disease onset, disease progression, and treatment outcome. We further recommend novel approaches, e.g., the use of mass spectrometry as a promising alternative techniques to standard ELISA assays, potentially enhancing biomarker significance in clinical applications.
Collapse
|
14
|
Meinl E, Krumbholz M. Endogenous soluble receptors sBCMA and sTACI: biomarker, immunoregulator and hurdle for therapy in multiple myeloma. Curr Opin Immunol 2021; 71:117-123. [PMID: 34330018 DOI: 10.1016/j.coi.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
BAFF and APRIL regulate B cell homeostasis by binding to their three receptors BAFFR, BCMA and TACI. The complexity of this system is further increased by shedding of these three receptors; this reduces signaling due to the display of less surface receptors. Further, soluble forms, sBCMA and sTACI, were detected in body fluids and serve as biomarker in malignancies, autoimmune diseases and immunodeficiencies. sBCMA and sTACI function as decoys blocking BAFF and APRIL. BCMA is a promising therapeutic target in multiple myeloma, but sBCMA may reduce therapeutic activity of CAR T cells, bispecific antibodies, and antibody-drug conjugates. Insights into the biochemical mechanism of shedding of BCMA can be harnessed to improve BCMA-directed therapy by blocking its shedding with a γ-secretase inhibitor.
Collapse
Affiliation(s)
- Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| | - Markus Krumbholz
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
15
|
Tamam Y, Gunes B, Akbayir E, Kizilay T, Karaaslan Z, Koral G, Duzel B, Kucukali CI, Gunduz T, Kurtuncu M, Yilmaz V, Tuzun E, Turkoglu R. CSF levels of HoxB3 and YKL-40 may predict conversion from clinically isolated syndrome to relapsing remitting multiple sclerosis. Mult Scler Relat Disord 2020; 48:102697. [PMID: 33352356 DOI: 10.1016/j.msard.2020.102697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) often initiates with an acute episode of neurological disturbance, known as clinically isolated syndrome (CIS). There is an unmet need for biomarkers that differentiate patients who will convert to MS and who will remain as CIS after the first attack. METHODS First attack serum and cerebrospinal fluid (CSF) samples of 33 CIS patients were collected and these patients were divided as those who converted to MS (CIS-MS, n=17) and those who continued as CIS (CIS-CIS, n=16) in a 3-year follow-up period. Levels of homeobox protein Hox-B3 (HoxB3) and YKL-40 were measured by ELISA in samples of CIS-CIS, CIS-MS, relapsing remitting MS (RRMS) patients (n=15) and healthy controls (n=20). RESULTS CIS-CIS patients showed significantly reduced CSF levels of YKL-40 and increased serum/CSF levels of HoxB3 compared with CIS-MS and RRMS patients. CIS-MS and RRMS patients had comparable YKL-40 and HoxB3 level profiles. Receiver operating characteristic (ROC) curve analysis showed the highest sensitivity for CSF HoxB3 measurements in prediction of CIS-MS conversion. Kaplan-Meier analysis demonstrated that CIS patients with lower CSF HoxB3 (<3.678 ng/ml) and higher CSF YKL-40 (>654.9 ng/ml) displayed a significantly shorter time to clinically definite MS. CONCLUSION CSF levels of HoxB3 and YKL-40 appear to predict CIS to MS conversion, especially when applied in combination. HoxB3, which is a transcription factor involved in immune cell activity, stands out as a potential candidate molecule with biomarker capacity for MS.
Collapse
Affiliation(s)
- Yusuf Tamam
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Betul Gunes
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tugce Kizilay
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Koral
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Berna Duzel
- Department of Neurology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gunduz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kurtuncu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
16
|
Robinson T, Abdelhak A, Bose T, Meinl E, Otto M, Zettl UK, Dersch R, Tumani H, Rauer S, Huss A. Cerebrospinal Fluid Biomarkers in Relation to MRZ Reaction Status in Primary Progressive Multiple Sclerosis. Cells 2020; 9:cells9122543. [PMID: 33255854 PMCID: PMC7761295 DOI: 10.3390/cells9122543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
The MRZ reaction (MRZR) comprises the three antibody indices (AIs) against measles, rubella, and varicella zoster virus, reflecting an intrathecal polyspecific B cell response highly specific for multiple sclerosis (MS). Thus, MRZR can be used to confirm a diagnosis of primary progressive MS (PPMS) but its pathophysiological and wider clinical relevance is unclear. This study aimed to investigate whether PPMS patients with a positive MRZR (MRZR+) differ from those with a negative MRZR (MRZR-) according to cerebrospinal fluid (CSF) biomarkers of B cell activity, neuroaxonal damage or glial activity, and clinical features. (1) Methods: In a multicenter PPMS cohort (n = 81) with known MRZR status, we measured B cell-activating factor (BAFF), chemokine CXC ligand 13 (CXCL-13), soluble B cell maturation antigen (sBCMA), soluble transmembrane activator and CAML interactor (sTACI), and chitinase-3-like protein 1 (CHI3L1) in the CSF with enzyme-linked immunosorbent assays (ELISAs). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were detected in serum and CSF using single molecule array (SIMOA) technology. (2) Results: MRZR+ patients (45.7% of all PPMS patients) revealed higher levels of NfL in CSF compared to MRZR- patients (54.3%). There were positive correlations between each of sBCMA, sTACI, and intrathecal immunoglobin G (IgG) synthesis. Additionally, NfL concentrations in serum positively correlated with those in CSF and those of GFAP in serum. However, MRZR+ and MRZR- patients did not differ concerning clinical features (e.g., age, disease duration, Expanded Disability Status Scale (EDSS) at diagnosis and follow-up); CSF routine parameters; CSF concentrations of BAFF, CXCL-13, sBCMA, sTACI, CHI3L1, and GFAP; or serum concentrations of GFAP and NfL. (3) Conclusions: In PPMS patients, MRZR positivity might indicate a more pronounced axonal damage. Higher levels of the soluble B cell receptors BCMA and transmembrane activator and CAML interactor (TACI) in CSF are associated with a stronger intrathecal IgG synthesis in PPMS.
Collapse
Affiliation(s)
- Tilman Robinson
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - Ahmed Abdelhak
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| | - Tanima Bose
- Biomedical Center and Klinikum Grosshadern, Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377 Munich, Germany; (T.B.); (E.M.)
| | - Edgar Meinl
- Biomedical Center and Klinikum Grosshadern, Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377 Munich, Germany; (T.B.); (E.M.)
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| | - Uwe K. Zettl
- Neuroimmunological Section, Department of Neurology, Medical Center of the University of Rostock, 18051 Rostock, Germany;
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
- Specialty Hospital Dietenbronn, 88477 Schwendi, Germany
- Correspondence:
| | - Sebastian Rauer
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| |
Collapse
|