1
|
Li L, Liu H, Zhao Y, Liu X, Dong Y, Luo J, Jiang X, Zhang Y, Zhu Q, Yuan X, Pei X, Zhang L, Li B, Yang S, Gou M. 3D Printing of Maturable Tissue Constructs Using a Cell‐Adaptable Nanocolloidal Hydrogel. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Indexed: 01/06/2025]
Abstract
Abstract3D‐printed cell‐laden hydrogels as tissue constructs show great promise in generating living tissues for medicine. Currently, the maturation of 3D‐printed constructs into living tissues remains challenge, since commonly used hydrogels struggle to provide an ideal microenvironment for the seeded cells. In this study, a cell‐adaptable nanocolloidal hydrogel is created for 3D printing of maturable tissue constructs. The nanocolloidal hydrogel is composed of interconnected nanoparticles, which is prepared by the self‐assembly and subsequent photocrosslinking of the gelatin methacryloyl solutions. Cells can get enough space to grow and migrate within the hydrogel through squeezing the flexible nanocolloidal networks. Meanwhile, the nanostructure can promote the seeded cells to proliferate and produce matrix proteins through mechanotransduction. Using digital light process‐based 3D printing technology, it can rapidly customize cartilage tissue constructs. After implantation, these tissue constructs efficiently matured into cartilage tissues for the articular cartilage defect repair and ear cartilage reconstruction in vivo. The 3D printing of maturable tissue constructs using the nanocolloidal hydrogel shows potential for future clinical applications.
Collapse
Affiliation(s)
- Li Li
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Haofan Liu
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yongchao Zhao
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces College of Pharmacy Hunan University of Chinese Medicine Changsha 410208 P. R. China
| | - Yinchu Dong
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Jing Luo
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuebing Jiang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Yi Zhang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Qi Zhu
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xin Yuan
- Department of Plastic and Burn Surgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Xuan Pei
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Li Zhang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Boya Li
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Shuai Yang
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Maling Gou
- Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
2
|
Hu X, Ke C, Zhong J, Chen Y, Dong J, Hao M, Chen Q, Ni J, Peng Z. Nano selenium-doped TiO 2 nanotube arrays on orthopedic implants for suppressing osteosarcoma growth. Front Bioeng Biotechnol 2023; 11:1252816. [PMID: 37731757 PMCID: PMC10508061 DOI: 10.3389/fbioe.2023.1252816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Osteosarcoma, the most common primary malignant bone tumor, is characterized by malignant cells producing osteoid or immature bone tissue. Most osteosarcoma patients require reconstructive surgery to restore the functional and structural integrity of the injured bone. Metal orthopedic implants are commonly used to restore the limb integrity in postoperative patients. However, conventional metal implants with a bioinert surface cannot inhibit the growth of any remaining cancer cells, resulting in a higher risk of cancer recurrence. Herein, we fabricate a selenium-doped TiO2 nanotube array (Se-doped TNA) film to modify the surface of medical pure titanium substrate, and evaluate the anti-tumor effect and biocompatibility of Se-doped TNA film. Moreover, we further explore the anti-tumor potential mechanism of Se-doped TNA film by studying the behaviors of human osteosarcoma cells in vitro. We provide a new pathway for achieving the anti-tumor function of orthopedic implants while keeping the biocompatibility, aiming to suppress the recurrence of osteosarcoma.
Collapse
Affiliation(s)
- Xiaodong Hu
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Chunhai Ke
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Jiaqi Zhong
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Yujiong Chen
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Jieyang Dong
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Mingming Hao
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qi Chen
- Ningbo Regen Biotech, Co, Ltd, Ningbo, Zhejiang, China
| | - Jiahua Ni
- Ningbo Regen Biotech, Co, Ltd, Ningbo, Zhejiang, China
| | - Zhaoxiang Peng
- Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Liu L, Li X, Bu W, Jin N, Meng Y, Wang Y, Wang D, Xu X, Zhou D, Sun H. Carbon dots enhance extracellular matrix secretion for dentin-pulp complex regeneration through PI3K/Akt/mTOR pathway-mediated activation of autophagy. Mater Today Bio 2022; 16:100344. [PMID: 35833197 PMCID: PMC9272035 DOI: 10.1016/j.mtbio.2022.100344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Pulp injury is one of the most common clinical diseases, and severe cases are usually associated with the functional loss of the tooth, while the current clinical treatment modality is only a cavity filling procedure without the regeneration of the dentin-pulp complex, thus leading to a devitalized and brittle tooth. In this study, carbon dots (CDots) with excellent biocompatibility are prepared from ascorbic acid and polyethyleneimine via a hydrothermal method. The as-prepared CDots can enhance extracellular matrix (ECM) secretion of human dental pulp stem cells (DPSCs), giving rise to increased cell adhesion on ECM and a stronger osteogenic/odontogenic differentiation capacity of DPSCs. Further, the mechanism underlying CDots-enhanced ECM secretion is revealed by the transcriptome analysis, Western blot assay and molecular dynamics simulation, identifying that the pharmacological activities of CDots are originated from a reasonable activation of the autophagy, which is mediated by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Based on the abundant CDots-induced ECM and thereby the reinforcement of the cell-ECM adhesion, an intact dental pulp stem cell sheet can be achieved, which in return promote in vivo the efficient regeneration of dentin-pulp complex as well as blood vessels.
Collapse
Affiliation(s)
- Lili Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Xianjing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Wenhuan Bu
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Nianqiang Jin
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Yuan Meng
- School and Hospital of Stomatology, China Medical University, Shenyang, 110122, PR China
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Duan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, PR China
| | - Xiaowei Xu
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ding Zhou
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
4
|
Qadir M, Lin J, Biesiekierski A, Li Y, Wen C. Effect of Anodized TiO 2-Nb 2O 5-ZrO 2 Nanotubes with Different Nanoscale Dimensions on the Biocompatibility of a Ti35Zr28Nb Alloy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6776-6787. [PMID: 31917541 DOI: 10.1021/acsami.9b21878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some important factors in the design of biomaterials are surface characteristics such as surface chemistry and topography, which significantly influence the relationship between the biomaterial and host cells. Therefore, nanotubular oxide layers have received substantial attention for biomedical applications due to their potential benefits in the improvement of the biocompatibility of the substrate. In this study, a nanotubular layer of titania-niobium pentoxide-zirconia (TiO2-Nb2O5-ZrO2) was developed via anodization on a β-type Ti35Zr28Nb alloy surface with enhanced biocompatibility. Scanning electron microscopy (SEM) and surface profilometry analysis of the anodized nanotubes indicated that the inner diameter (Di) and wall thicknesses (Wt) increased with an increase in the water content of electrolyte and the applied voltage during anodization, while the nanotube length (Ln) increased with increasing the anodization time. TiO2-Nb2O5-ZrO2 nanotubes with different Di, Wt, and Ln showed different surface roughnesses (Ra) and surface energies (γ), which affected the biocompatibility of the base alloy. MTS assay results showed that the TiO2-Nb2O5-ZrO2 nanotubes with the largest inner diameter (Di) of 75.9 nm exhibited the highest cell viability of 108.55% due to the high γ of the surface, which led to high adsorption of proteins on the top surface of the nanotubes. The second highest cell viability was observed on the nanotubular surface with Di of 33.3 nm, which is believed to result from its high γ as well as the optimum spacing between nanotubes. Ra did not appear to be clearly linked to cellular response; however, there may exist a threshold value of surface energy of ∼70 mJ/m2, below which the cell response is less sensitive and above which the cell viability increases with increasing γ. This indicates that the TiO2-Nb2O5-ZrO2 nanotubes provided a suitable environment for enhanced attachment and growth of osteoblast-like cells as compared to the bare Ti35Zr28Nb alloy surface.
Collapse
Affiliation(s)
- Muhammad Qadir
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Jixing Lin
- Department of Material Engineering , Zhejiang Industry & Trade Vocational College , Wenzhou , Zhejiang 325003 , China
| | - Arne Biesiekierski
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Yuncang Li
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Cuie Wen
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| |
Collapse
|
5
|
Meyerink JG, Kota D, Wood ST, Crawford GA. Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms. Acta Biomater 2018; 79:364-374. [PMID: 30172934 DOI: 10.1016/j.actbio.2018.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022]
Abstract
The therapeutic applications of titanium dioxide nanotubes as osteogenic surface treatments for titanium-based implants are largely due to the finely tunable physical characteristics of these nanostructures. As these characteristics change, so does the cellular response, yet the exact mechanisms for this relationship remains largely undefined. We present a novel TiO2 NT imaging platform that is suitable for use with live-cell imaging techniques, thereby enabling, for the first time, dynamic investigation of those mechanisms. In this work, fabrication methods for producing transparent TiO2 NTs with diameters of 56 ± 6 nm, 75 ± 7 nm, 92 ± 9 nm, and 116 ± 10 nm are described. To demonstrate the diagnostic potential of these TiO2 NT imaging platforms, the focal adhesion protein vinculin and actin cytoskeletal filaments were fluorescently tagged in osteoblasts and real-time, high-resolution fluorescent microscopy of live-cell interactions with TiO2 NT substrates were observed. The scope of such a platform is expected to extend far beyond the current proof-of-concept, with great potential for addressing the dynamic response of cells interacting with nanostructured substrates. STATEMENT OF SIGNIFICANCE Titanium dioxide (TiO2) nanotubes are known to strongly enhance bone/mesenchymal stem cell behavior and, consequently, have gained attention as potential osteogenic surface treatments for titanium-bone implants. The exact mechanism by which TiO2 nanotubes influence cellular function remains controversial, partly due to limitations in existing cellular imaging methods with opaque substrates. This work identifies fabrication conditions for the successful production of transparent TiO2 nanotube arrays with tailorable diameters, as well as their functionality with pre-osteoblast mouse cells (MC3T3-E1) transfected with fluorescent focal adhesion protein vinculin and cytoskeletal filament actin. We demonstrate a means of recording live-cell, cell-substrate interaction mechanisms via high-resolution fluorescent microscopy and customizable, transparent TiO2 nanotubes to begin defining the relationship between TiO2 nanotube features and cell function.
Collapse
Affiliation(s)
- Jevin G Meyerink
- Biomedical Engineering Program, South Dakota School of Mines & Technology, 501 E St Joseph St, BioSNTR Rapid City, SD 57701, United States
| | - Divya Kota
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, BioSNTR Rapid City, SD 57701, United States
| | - Scott T Wood
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, 501 E St Joseph St, BioSNTR Rapid City, SD 57701, United States
| | - Grant A Crawford
- Materials and Metallurgical Engineering, South Dakota School of Mines & Technology, 501 E St Joseph St, BioSNTR Rapid City, SD 57701, United States.
| |
Collapse
|
6
|
Cheng Y, Yang H, Yang Y, Huang J, Wu K, Chen Z, Wang X, Lin C, Lai Y. Progress in TiO 2 nanotube coatings for biomedical applications: a review. J Mater Chem B 2018; 6:1862-1886. [PMID: 32254353 DOI: 10.1039/c8tb00149a] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Titanium dioxide nanotubes (TNTs) have drawn wide attention and been extensively applied in the field of biomedicine, due to their large specific surface area, good corrosion resistance, excellent biocompatibility, and enhanced bioactivity. This review describes the preparation of TNTs and the surface modification that entrust the nanotubes with better antibacterial property and enhanced osteoblast adhesion, proliferation, and differentiation. Considering the contact between TNTs' surface and surrounding tissues after implantation, the interactions between TNTs (with properties including their diameter, length, wettability, and crystalline phase) and proteins, platelets, bacteria, and cells are illustrated. The state of the art in the applications of TNTs in dentistry, orthopedic implants, and cardiovascular stents are introduced. In particular, the application of TNTs in biosensing has attracted much attention due to its ability for the rapid diagnosis of diseases. Finally, the difficulties and challenges in the practical application of TNTs are also discussed.
Collapse
Affiliation(s)
- Yan Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Radtke A, Topolski A, Jędrzejewski T, Kozak W, Sadowska B, Więckowska-Szakiel M, Piszczek P. Bioactivity Studies on Titania Coatings and the Estimation of Their Usefulness in the Modification of Implant Surfaces. NANOMATERIALS 2017; 7:nano7040090. [PMID: 28441733 PMCID: PMC5408182 DOI: 10.3390/nano7040090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Morphologically different titania coatings (nanofibers (TNFs), nanoneedles (TNNs), and nanowires (TNWs)) were studied as potential biomedical materials. The abovementioned systems were produced in situ on Ti6Al4V substrates via direct oxidation processes using H2O2 and H2O2/CaCl2 agents, and via thermal oxidation in the presence of Ar and Ar/H2O2. X-ray diffraction and Raman spectroscopy have been used to structurally characterize the produced materials. The morphology changes on the titanium alloy surface were investigated using scanning electron microscopy. The bioactivity of the samples has been estimated by the analysis of the produced titania coatings’ biocompatibility, and by the determination of their ability to reduce bacterial biofilm formation. The photoactivity of the produced nanocoatings was also analyzed, in order to determine the possibility of using titania coated implant surfaces in the sterilization process of implants. Photocatalytic activity was estimated using the methylene blue photodegradation kinetics, in the presence of UV light.
Collapse
Affiliation(s)
- Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| | - Adrian Topolski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Tomasz Jędrzejewski
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Wiesław Kozak
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Beata Sadowska
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Marzena Więckowska-Szakiel
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| |
Collapse
|
8
|
Khudhair D, Bhatti A, Li Y, Hamedani HA, Garmestani H, Hodgson P, Nahavandi S. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1125-1142. [PMID: 26652471 DOI: 10.1016/j.msec.2015.10.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/16/2015] [Accepted: 10/13/2015] [Indexed: 01/25/2023]
Abstract
Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.
Collapse
Affiliation(s)
- D Khudhair
- Deakin University, Waurn Ponds Campus, Vic 3216, Australia
| | - A Bhatti
- Deakin University, Waurn Ponds Campus, Vic 3216, Australia.
| | - Y Li
- RMIT University, Bundoora, Victoria 3083, Australia
| | | | | | - P Hodgson
- Deakin University, Waurn Ponds Campus, Vic 3216, Australia
| | - S Nahavandi
- Deakin University, Waurn Ponds Campus, Vic 3216, Australia
| |
Collapse
|
9
|
Wang Y, Zhang D, Wen C, Li Y. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16018-16026. [PMID: 26136139 DOI: 10.1021/acsami.5b04304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface properties such as physicochemical characteristics and topographical parameters of biomaterials, essentially determining the interaction between the biological cells and the biomaterial, are important considerations in the design of implant materials. In this study, a layer of SrTiO3-TiO2 nanoparticle-nanotube heterostructures on titanium has been fabricated via anodization combined with a hydrothermal process. Titanium was anodized to create a layer of titania (TiO2) nanotubes (TNTs), which was then decorated with a layer of SrTiO3 nanoparticles via hydrothermal processing. SrTiO3-TiO2 heterostructures with high and low volume fraction of SrTiO3 nanoparticle (denoted by 6.3-Sr/TNTs and 1.4-Sr/TNTs) were achieved by using a hydrothermal processing time of 12 and 3 h, respectively. The in vitro biocompatibility of the SrTiO3-TiO2 heterostructures was assessed by using osteoblast cells (SaOS2). Our results indicated that the SrTiO3-TiO2 heterostructures with different volume fractions of SrTiO3 nanoparticles exhibited different Sr ion release in cell culture media and different surface energies. An appropriate volume fraction of SrTiO3 in the heterostructures stimulated the secretion of cell filopodia, leading to enhanced biocompatibility in terms of cell attachment, anchoring, and proliferation on the heterostructure surface.
Collapse
Affiliation(s)
- Yu Wang
- †Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217, Australia
| | - Dongmei Zhang
- †Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217, Australia
| | - Cuie Wen
- ‡School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuncang Li
- ‡School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Morita Y, Yamamoto S, Ju Y. Development of a new co-culture system, the "separable-close co-culture system," to enhance stem-cell-to-chondrocyte differentiation. Biotechnol Lett 2015; 37:1911-8. [PMID: 25994581 DOI: 10.1007/s10529-015-1858-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To develop a new co-culture system, the separable-close co-culture system, to replace the indirect co-culture system which analyzes cellular interactions between two groups of cells with each type being cultured separately and also the direct co-culture system where the two cell types are cultured together. RESULTS The new system not only achieved effective cellular interactions but also allowed the effect that one group of cells has on another group of cells to be evaluated. We performed co-culturing of human bone marrow mesenchymal stem cells and human articular chondrocytes using the new system. The new system made it possible to assess separately the effects of one group of cells on the other cell type, as in the indirect co-culture system. Furthermore, the new system rivaled or surpassed other co-culture systems in terms of the chondrogenic gene expression. CONCLUSION The new co-culture system is effective in terms of assessing gene expression in two cell types.
Collapse
Affiliation(s)
- Yasuyuki Morita
- Department of Mechanical Science & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | |
Collapse
|
11
|
Beltrán-Partida E, Moreno-Ulloa A, Valdez-Salas B, Velasquillo C, Carrillo M, Escamilla A, Valdez E, Villarreal F. Improved Osteoblast and Chondrocyte Adhesion and Viability by Surface-Modified Ti6Al4V Alloy with Anodized TiO₂ Nanotubes Using a Super-Oxidative Solution. MATERIALS 2015; 8:867-883. [PMID: 28787976 PMCID: PMC5455429 DOI: 10.3390/ma8030867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/07/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Av. Zotoluca y Chinampas, s/n, Mexicali C.P. 21040, Baja California, Mexico.
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Aldo Moreno-Ulloa
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México C.P. 11340, D.F., Mexico.
| | - Benjamín Valdez-Salas
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Cristina Velasquillo
- Instituto Nacional de Rehabilitación, Calz. México Xochimilco, No. 289, Arenal de Guadalupe, México C.P. 14389, D.F., Mexico.
| | - Monica Carrillo
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Alan Escamilla
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. B. Juárez y Calle de la Normal s/n, Mexicali C.P. 21280, Baja California, Mexico.
| | - Ernesto Valdez
- Centro Medico Ixchel, Bravo y Obregón, Mexicali C.P. 21000, Baja California, Mexico.
| | - Francisco Villarreal
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Damodaran VB, Bhatnagar D, Leszczak V, Popat KC. Titania nanostructures: a biomedical perspective. RSC Adv 2015. [DOI: 10.1039/c5ra04271b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A systematic and comprehensive summary of various TNS-based biomedical research with a special emphasis on drug-delivery, tissue engineering, biosensor, and anti-bacterial applications.
Collapse
Affiliation(s)
- Vinod B. Damodaran
- New Jersey Center for Biomaterials and Rutgers – The State University of New Jersey
- Piscataway
- USA
| | - Divya Bhatnagar
- New Jersey Center for Biomaterials and Rutgers – The State University of New Jersey
- Piscataway
- USA
| | - Victoria Leszczak
- Department of Mechanical Engineering and School of Biomedical Engineering
- Colorado State University
- Fort Collins
- USA
| | - Ketul C. Popat
- Department of Mechanical Engineering and School of Biomedical Engineering
- Colorado State University
- Fort Collins
- USA
| |
Collapse
|
13
|
Losic D, Aw MS, Santos A, Gulati K, Bariana M. Titania nanotube arrays for local drug delivery: recent advances and perspectives. Expert Opin Drug Deliv 2014; 12:103-27. [DOI: 10.1517/17425247.2014.945418] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Indira K, Mudali UK, Rajendran N. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. J Biomater Appl 2013; 29:113-29. [PMID: 24346137 DOI: 10.1177/0885328213516821] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article investigates the in-vitro biocompatibility and corrosion behaviour of strontium ion incorporated TiO2 nanotube arrays formed by anodization method for orthopaedic applications. The morphological studies were carried out using field emission scanning electron microscopy, atomic force microscopy, attenuated total reflectance fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thin film X-ray diffraction techniques. The morphological investigation indicated that the length and the average diameter of nanotube were 2.1 ± 0.3 µm and 110 ± 4 nm, respectively. The wettability measurements showed that the TiO2 nanotube arrays have super wettability, as well as, strontium ion incorporated TiO2 nanotube arrays exhibited hydrophilic behaviour. Excellent in-vitro bioactivity was observed for TiO2 nanotube arrays with strontium ions. Electrochemical studies in Hank's solution showed that the TiO2 nanotube arrays with strontium ions have enhanced corrosion resistance.
Collapse
Affiliation(s)
- K Indira
- Department of Chemistry, Anna University, Chennai, India
| | - U Kamachi Mudali
- Corrosion Science and Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam, India
| | - N Rajendran
- Department of Chemistry, Anna University, Chennai, India
| |
Collapse
|
15
|
Descamps S, Awitor KO, Raspal V, Johnson MB, Bokalawela RSP, Larson PR, Doiron CF. Mechanical Properties of Nanotextured Titanium Orthopedic Screws for Clinical Applications. J Med Device 2013; 7:210051-210055. [PMID: 23904907 DOI: 10.1115/1.4023705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/17/2013] [Indexed: 11/08/2022] Open
Abstract
In this work, we modified the topography of commercial titanium orthopedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterized using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and [Formula: see text]. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter. Results showed that the fabricated nanotube layers can resist mechanical stresses close to those found in clinical situations.
Collapse
|
16
|
Goktas S, Matuska AM, Pierre N, Gibson TM, Dmytryk JJ, McFetridge PS. Decellularization method influences early remodeling of an allogenic tissue scaffold. J Biomed Mater Res A 2013; 102:8-16. [DOI: 10.1002/jbm.a.34692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/25/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Selda Goktas
- School of Chemical; Biological and Materials Engineering; University of Oklahoma; Oklahoma
| | - Andrea M. Matuska
- J. Crayton Pruitt Family Department of Biomedical Engineering; University of Florida; Florida
| | - Nicolas Pierre
- School of Chemical; Biological and Materials Engineering; University of Oklahoma; Oklahoma
| | - Tyler M. Gibson
- School of Chemical; Biological and Materials Engineering; University of Oklahoma; Oklahoma
| | - John J. Dmytryk
- Department of Periodontics; University of Oklahoma Health Sciences Center; Oklahoma
| | - Peter S. McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering; University of Florida; Florida
| |
Collapse
|
17
|
Li X, Cui R, Liu W, Sun L, Yu B, Fan Y, Feng Q, Cui F, Watari F. The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials. JOURNAL OF NANOMATERIALS 2013; 2013. [DOI: 10.1155/2013/728130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/22/2013] [Indexed: 02/02/2025]
Abstract
Nanofibers and nanotubes have recently gained substantial interest for potential applications in tissue engineering due to their large ratio of surface area to volume and unique microstructure. It has been well proved that the mechanical property of matrix could be largely enhanced by the addition of nanoscaled fibers or tubes. At present, more and more researches have shown that the biocompatibility and bioactivity of biomedical materials could be improved by the addition of nanofibers or nanotubes. In this review, the efforts using nanofibers and nanotubes to improve biocompatibility and bioactivity of biomedical materials, including polymeric nanofibers/nanotubes, metallic nanofibers/nanotubes, and inorganic nanofibers/nanotubes, as well as their researches related, are demonstrated in sequence. Furthermore, the possible mechanism of improving biocompatibility and bioactivity of biomedical materials by nanofibers or nanotubes has been speculated to be that the specific protein absorption on the nanoscaled fibers or tubes plays important roles.
Collapse
|
18
|
Sharma S, Panitch A, Neu CP. Incorporation of an aggrecan mimic prevents proteolytic degradation of anisotropic cartilage analogs. Acta Biomater 2013; 9:4618-25. [PMID: 22939923 DOI: 10.1016/j.actbio.2012.08.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 12/16/2022]
Abstract
Biomimetic scaffolds that promote regeneration and resist proteolysis are required as a tissue engineering solution to repair or replace a broad range of diseased tissues. Native corrosive environments, such as the richly enzymatic milieu of diseased articular cartilage, degrade the local extracellular matrix structure, so an implantable replacement must both replicate the healthy structure and demonstrate substantial proteolytic immunity, yet promote regeneration, if long-term functional success is to be achieved. Here, we combine magnetically aligned collagen with peptidoglycans, biosynthetic molecules that mimic proteoglycan activity but lack core proteins susceptible to proteases, to develop cartilage scaffold analogs with tailored functionality. With the incorporation of the aggrecan mimic, we demonstrate an ability to enhance bulk mechanical properties and prevent cytokine-induced degradation. Furthermore, fiber alignment in collagen scaffolds enhanced the gene expression of aggrecan, indicating cell responsiveness to anisotropy that also better replicates the natural environment of cartilage. Finally, the expression of type II collagen is enhanced with both alignment and incorporation of the aggrecan mimic, showing synergism between fiber alignment and incorporation of the aggrecan mimic. The work presented here identified a mechanistic synergy of matrix molecules and organization to prevent proteolysis while simultaneously upregulating protein expression.
Collapse
Affiliation(s)
- Shaili Sharma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
19
|
Cairns DM, Liu R, Sen M, Canner JP, Schindeler A, Little DG, Zeng L. Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS One 2012; 7:e39642. [PMID: 22768305 PMCID: PMC3388093 DOI: 10.1371/journal.pone.0039642] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 05/26/2012] [Indexed: 01/04/2023] Open
Abstract
Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing.
Collapse
Affiliation(s)
- Dana M. Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Renjing Liu
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Manpreet Sen
- Building Diversity in Biomedical Research Program (BDBS), Tufts University School of Medicine, Massachusetts, United States of America
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - James P. Canner
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - David G. Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Westmead, Australia
- Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Li Zeng
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Building Diversity in Biomedical Research Program (BDBS), Tufts University School of Medicine, Massachusetts, United States of America
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Orthopaedic Surgery, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. J Biomed Mater Res A 2012; 100:2526-36. [PMID: 22492677 DOI: 10.1002/jbm.a.34147] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/30/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
The injury and degeneration of articular cartilage and associated arthritis are leading causes of disability worldwide. Cartilage tissue engineering as a treatment modality for cartilage defects has been investigated for over 20 years. Various scaffold materials have been developed for this purpose, but has yet to achieve feasibility and effectiveness for widespread clinical use. Currently, the regeneration of articular cartilage remains a formidable challenge, due to the complex physiology of cartilage tissue and its poor healing capacity. Although intensive research has been focused on the developmental biology and regeneration of cartilage tissue and a diverse plethora of biomaterials have been developed for this purpose, cartilage regeneration is still suboptimal, such as lacking a layered structure, mechanical mismatch with native cartilage and inadequate integration between native tissue and implanted scaffold. The ideal scaffold material should have versatile properties that actively contribute to cartilage regeneration. Functional scaffold materials may overcome the various challenges faced in cartilage tissue engineering by providing essential biological, mechanical, and physical/chemical signaling cues through innovative design. This review thus focuses on the complex structure of native articular cartilage, the critical properties of scaffolds required for cartilage regeneration, present strategies for scaffold design, and future directions for cartilage regeneration with functional scaffold materials.
Collapse
Affiliation(s)
- Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China.
| | | | | | | | | |
Collapse
|
21
|
Lai JY, Tu IH. Adhesion, phenotypic expression, and biosynthetic capacity of corneal keratocytes on surfaces coated with hyaluronic acid of different molecular weights. Acta Biomater 2012; 8:1068-79. [PMID: 22134163 DOI: 10.1016/j.actbio.2011.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/21/2011] [Accepted: 11/10/2011] [Indexed: 12/13/2022]
Abstract
In ophthalmology, hyaluronic acid (HA) is an important extracellular matrix (ECM) component and is appropriate for use in generating a microenvironment for cell cultivation. The aim of this work was to evaluate the rabbit corneal keratocyte (RCK) growth in response to HA coatings under serum-free conditions. After modification with HA of varying molecular weights (MWs: 35-1500kDa), the surfaces were characterized by atomic force microscopy and contact angle measurements, and were used for cell culture studies. Our data indicated that the substrates coated with higher negatively charged HA become rougher and are more hydrophilic, resulting in the decrease of cell adhesion and cell-matrix interaction. This early cellular event was likely responsible for the determination of keratocyte configuration. Additionally, for the growth of RCKs on dry HA coatings with surface roughness of 1.1-1.7 nm, a strong cell-cell interaction was observed, which may facilitate the formation of multicellular spheroid aggregates and maintenance of mitotically quiescent state. At each culture time point from 1 to 5 days, a better biosynthetic capacity associated with a higher prevalence of elevated ECM production was found for the cells in a spherical configuration. Irrespective of polysaccharide MW of surface coatings, the RCKs presented good viability without hypoxia-induced death. As compared with a monolayer of adherent keratocytes on tissue culture polystyrene plates and low MW HA-modified samples, the cell spheroids (76-110 μm in diameter) showed significantly higher expressions of keratocan and lumican and lower expressions of biglycan, similar to those of keratocytes in vivo. Moreover, the expression levels of corneal crystallin aldehyde dehydrogenase (7-9-fold increase) and nestin (10-16-fold increase) were greater in larger-sized spheroids, indicating higher ability to maintain cellular transparency and self-renewal potential. It is concluded that the cultured RCKs on surfaces coated with HA of different MWs can sense ECM cues, and the multicellular spheroids may potentially be used for corneal stromal tissue engineering applications.
Collapse
|
22
|
Abstract
Titania nanotube (NT) arrays with a length of 550nm were fabricated on the flat titanium substrate by anodization. The microstructure was identified by scanning electron microscope. The composition has been investigated with X-ray photoelectron microscopy. It also showed that, as compared with the flat surface, the density of Ti-OH groups on the NT surface has been increased. However, according to the contact angle goniometer, the hydrophilicity of the NT surface becomes worse than that of the flat surface. In addition, surface roughness was investigated by non-contact atomic force microscope. It demonstrated that the nano-roughness of NT arrays has been increased. More important is the relationship between contact angle and roughness factor have been analyzed based on the modified Young’s equation. These results indicate that the anodized NT structures may have provided an optimal surface roughness for promoting the bioactivity.
Collapse
|