1
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Navarro P, Barrera M, Olmo A, Torres Y. Electrical impedance characterization and modelling of Ti-Β implants. J Biomed Mater Res A 2024. [PMID: 39277842 DOI: 10.1002/jbm.a.37797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Commercially pure titanium (c.p. Ti) and Ti6Al4V alloys are the most widely used metallic biomaterials in the biomedical sector. However, their high rigidity and the controversial toxicity of their alloying elements often compromise their clinical success. The use of porous β-Titanium alloys is proposed as a solution to these issues. In this regard, it is necessary to implement economic, repetitive, and non-destructive measurement techniques that allow for the semi-quantitative evaluation of the chemical nature of the implant, its microstructural characteristics, and/or surface changes. This study proposes the use of simple measurement protocols based on electrical impedance measurements, correlating them with the porosity inherent to processing conditions (pressure and temperature), as well as the chemical composition of the implant. Results revealed a clear direct relationship between porosity and electrical impedance. The percentage and/or size of the porosity decrease with an increase in compaction pressure and temperature. Moreover, there is a notable influence of the frequency used in the measurements obtained. Additionally, the sensitivity of this measurement technique has enabled the evaluation of differences in chemical composition and the detection of intermetallics in the implants. For the first time in the literature, this research establishes relationships between stiffness and electrical impedance, using approximations and models for the observed trends. All the results obtained corroborate the appropriateness of the technique to achieve the real-time characterization of Titanium implants, in an efficient and non-invasive way.
Collapse
Affiliation(s)
- Paula Navarro
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
| | - Miguel Barrera
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
| | - Alberto Olmo
- Departamento de Tecnología Electrónica, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Sevilla, Spain
- Instituto de Microelectrónica de Sevilla, IMSE-CNM-CSIC, Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Superior de Ingenieros, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Cojocaru VD, Dan A, Șerban N, Cojocaru EM, Zărnescu-Ivan N, Gălbinașu BM. Effect of Cold-Rolling Deformation on the Microstructural and Mechanical Properties of a Biocompatible Ti-Nb-Zr-Ta-Sn-Fe Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2312. [PMID: 38793379 PMCID: PMC11122836 DOI: 10.3390/ma17102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
The primary focus of the current paper centers on the microstructures and mechanical properties exhibited by a Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt. %) (TNZTSF) alloy that has been produced through an intricate synthesis process comprising cold-crucible induction in levitation, carried out in an atmosphere controlled by argon, and cold-rolling deformation (CR), applying systematic adjustments in the total deformation degree (total applied thickness reduction), spanning from 10% to 60%. The microstructural characteristics of the processed specimens were investigated by SEM and XRD techniques, and the mechanical properties by tensile and microhardness testing. The collected data indicate that the TNZTSF alloy's microstructure, in the as-received condition, consists of a β-Ti phase, which shows polyhedral equiaxed grains with an average grain size close to 82.5 µm. During the cold-deformation processing, the microstructure accommodates the increased applied deformation degree by increasing crystal defects such as sub-grain boundaries, dislocation cells, dislocation lines, and other crystal defects, powerfully affecting the morphological characteristics. The as-received TNZTSF alloy showed both high strength (i.e., ultimate tensile strength close to σUTS = 705.6 MPa) and high ductility (i.e., elongation to fracture close to εf = 11.1%) properties, and the computed β-Ti phase had the lattice parameter a = 3.304(7) Å and the average lattice microstrain ε = 0.101(3)%, which are drastically influenced by the applied cold deformation, increasing the strength properties and decreasing the ductility properties due to the increased crystal defects density. Applying a deformation degree close to 60% leads to an ultimate tensile strength close to σUTS = 1192.1 MPa, an elongation to fracture close to εf = 7.9%, and an elastic modulus close to 54.9 GPa, while the computed β-Ti phase lattice parameter becomes a = 3.302(1) Å.
Collapse
Affiliation(s)
- Vasile Dănuț Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (A.D.); (N.Ș.); (E.M.C.)
| | - Alexandru Dan
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (A.D.); (N.Ș.); (E.M.C.)
| | - Nicolae Șerban
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (A.D.); (N.Ș.); (E.M.C.)
| | - Elisabeta Mirela Cojocaru
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (A.D.); (N.Ș.); (E.M.C.)
| | - Nicoleta Zărnescu-Ivan
- Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania; (V.D.C.); (A.D.); (N.Ș.); (E.M.C.)
| | - Bogdan Mihai Gălbinașu
- Dental Medicine Faculty, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
4
|
Sun Y, Liu Q, Yu Z, Ren L, Zhao X, Wang J. Study on Osseointegration Capability of β-Type Ti-Nb-Zr-Ta-Si Alloy for Orthopedic Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:472. [PMID: 38276411 PMCID: PMC10820894 DOI: 10.3390/ma17020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Osseointegration is the basic condition for orthopedic implants to maintain long-term stability. In order to achieve osseointegration, a low elastic modulus is the most important performance indicator. It is difficult for traditional titanium alloys to meet this requirement. A novel β-titanium alloy (Ti-35Nb-7Zr-5Ta)98Si2 was designed, which had excellent strength (a yield strength of 1296 MPa and a breaking strength 3263 MPa), an extremely low elastic modulus (37 GPa), and did not contain toxic elements. In previous in vitro studies, we confirmed the good biocompatibility of this alloy and similar bioactivity to Ti-6Al-4V, but no in vivo study was performed. In this study, Ti-6Al-4V and (Ti-35Nb-7Zr-5Ta)98Si2 were implanted into rabbit femurs. Imaging evaluation and histological morphology were performed, and the bonding strength and bone contact ratio of the two alloys were measured and compared. The results showed that both alloys remained in their original positions 3 months after implantation, and neither imaging nor histological observations found inflammatory reactions in the surrounding bone. The bone-implant contact ratio and bonding strength of (Ti-35Nb-7Zr-5Ta)98Si2 were significantly higher than those of Ti-6Al-4V. The results confirmed that (Ti-35Nb-7Zr-5Ta)98Si2 has a better osseointegration ability than Ti-6Al-4V and is a promising material for orthopedic implants.
Collapse
Affiliation(s)
- Yu Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China;
| | - Qingping Liu
- Key of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (Q.L.); (Z.Y.); (L.R.)
| | - Zhenglei Yu
- Key of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (Q.L.); (Z.Y.); (L.R.)
| | - Luquan Ren
- Key of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China; (Q.L.); (Z.Y.); (L.R.)
| | - Xin Zhao
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China;
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China;
| |
Collapse
|
5
|
Fang H, Xu X, Zhang H, Sun Q, Sun J. Alloying Effect on Transformation Strain and Martensitic Transformation Temperature of Ti-Based Alloys from Ab Initio Calculations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6069. [PMID: 37687762 PMCID: PMC10488558 DOI: 10.3390/ma16176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The accurate prediction of alloying effects on the martensitic transition temperature (Ms) is still a big challenge. To investigate the composition-dependent lattice deformation strain and the Ms upon the β to α″ phase transition, we calculate the total energies and transformation strains for two selected Ti-Nb-Al and Ti-Nb-Ta ternaries employing a first-principles method. The adopted approach accurately estimates the alloying effect on lattice strain and the Ms by comparing it with the available measurements. The largest elongation and the largest compression due to the lattice strain occur along ±[011]β and ±[100]β, respectively. As compared to the overestimation of the Ms from existing empirical relationships, an improved Ms estimation can be realized using our proposed empirical relation by associating the measured Ms with the energy difference between the β and α″ phases. There is a satisfactory agreement between the predicted and measured Ms, implying that the proposed empirical relation could accurately describe the coupling alloying effect on Ms. Both Al and Ta strongly decrease the Ms, which is in line with the available observations. A correlation between the Ms and elastic modulus, C44, is found, implying that elastic moduli may be regarded as a prefactor of composition-dependent Ms. This work sheds deep light on precisely and directly predicting the Ms of Ti-containing alloys from the first-principles method.
Collapse
Affiliation(s)
- Honglin Fang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (H.F.); (X.X.); (J.S.)
| | - Xingge Xu
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (H.F.); (X.X.); (J.S.)
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (H.F.); (X.X.); (J.S.)
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiaoyan Sun
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (H.F.); (X.X.); (J.S.)
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (H.F.); (X.X.); (J.S.)
| |
Collapse
|
6
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
7
|
Ahadi F, Azadi M, Biglari M, Bodaghi M, Khaleghian A. Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems. Heliyon 2023; 9:e13575. [PMID: 36846695 PMCID: PMC9950843 DOI: 10.1016/j.heliyon.2023.e13575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
In the world, one of the leading causes of death is coronary artery disease (CAD). There are several ways to treat this disease, and stenting is currently the most appropriate way in many cases. Nowadays, the use of stents has rapidly increased, and they have been introduced in various models, with different geometries and materials. To select the most appropriate stent required, it is necessary to have an analysis of the mechanical behavior of various types of stents. The purpose of this article is to provide a complete overview of advanced research in the field of stents and to discuss and conclude important studies on different topics in the field of stents. In this review, we introduce the types of coronary stents, materials, stent processing technique, stent design, classification of stents based on the mechanism of expansion, and problems and complications of stents. In this article, by reviewing the biomechanical studies conducted in this field and collecting and classifying their results, a useful set of information has been presented to continue research in the direction of designing and manufacturing more efficient stents, although the clinical-engineering field still needs to continue research to optimize the design and construction. The optimum design of stents in the future is possible by simulation and using numerical methods and adequate knowledge of stent and artery biomechanics.
Collapse
Affiliation(s)
- Fatemeh Ahadi
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mohammad Azadi
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mojtaba Biglari
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Bae JH, Nyamaa O, Lee JS, Yun SD, Woo SM, Yang JH, Kim MS, Noh JP. Electrochemical properties of the Si thin-film anode deposited on Ti-Nb-Zr shape memory alloy in Li-ion batteries. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Adamek G, Kozlowski M, Junka A, Siwak P, Jakubowicz J. Preparation and Properties of Bulk and Porous Ti-Ta-Ag Biomedical Alloys. MATERIALS 2022; 15:ma15124332. [PMID: 35744391 PMCID: PMC9227435 DOI: 10.3390/ma15124332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
The paper presents the results of the preparation of bulk and porous Ti-Ta-Ag alloys. The first step of this study was the preparation of the powder alloys using mechanical alloying (MA). The second was hot-pressing consolidation and sintering with a space holder, which resulted in high-density and high-porosity (approximately 70%) samples, respectively. Porosity, morphology, mechanical properties, biocompatibility, and antibacterial behavior were investigated and related to the preparation procedures. The authors found that Ta and Ag heavily influence the microstructure and determine other biomaterial-related properties. These new materials showed positive behavior in the MTT assay, and antibacterial properties. Such materials could find applications in the production of hard tissue implants.
Collapse
Affiliation(s)
- Grzegorz Adamek
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland; (M.K.); (J.J.)
- Correspondence: ; Tel.: +48-61-665-3665
| | - Mikolaj Kozlowski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland; (M.K.); (J.J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland;
| | - Piotr Siwak
- Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
| | - Jaroslaw Jakubowicz
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland; (M.K.); (J.J.)
| |
Collapse
|
11
|
Microstructure and Mechanical Properties of Ti-25Nb-4Ta-8Sn Alloy Prepared by Spark Plasma Sintering. MATERIALS 2022; 15:ma15062158. [PMID: 35329609 PMCID: PMC8955612 DOI: 10.3390/ma15062158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022]
Abstract
As the commercially most-used Ti-6Al-4V alloy has a different modulus of elasticity compared to the modulus of elasticity of bone and contains allergenic elements, β-Ti alloy could be a suitable substitution in orthopedics. The spark plasma sintering (SPS) method is feasible for the preparation of materials, with very low porosity and fine-grained structure, leading to higher mechanical properties. In this study, we prepared quaternary Ti-25Nb-4Ta-8Sn alloy using the spark plasma sintering method. The material was also heat-treated in order to homogenize the structure and compare the microstructure and properties in as-sintered and annealed states. The SPS sample had a modulus of elasticity of about 63 ± 1 GPa, which, after annealing, increased to the value of 73 ± 1 GPa. The tensile yield strength (TYS) of the SPS sample was 730 ± 52 MPa, ultimate tensile strength (UTS) 764 ± 10 MPa, and ductility 22 ± 9%. Annealed samples reached higher values of TYS and UTS (831 ± 60 MPa and 954 ± 48 MPa), but the ductility decreased to the value of 3 ± 1%. The obtained results are discussed considering the observed microstructure of the alloy.
Collapse
|
12
|
Adamek G, Junka A, Wirstlein P, Jurczyk MU, Siwak P, Koper J, Jakubowicz J. Biomedical Ti-Nb-Zr Foams Prepared by Means of Thermal Dealloying Process and Electrochemical Modification. MATERIALS 2022; 15:ma15062130. [PMID: 35329580 PMCID: PMC8951041 DOI: 10.3390/ma15062130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
The paper presents results of preparation and modification of Ti20Nb5Zr foams by a thermal dealloying method followed by electrochemical modification. The first step of this study was the preparation of Ti20Nb5Zr30Mg nanopowder using mechanical alloying (MA). The second was forming green compacts by cold pressing and then sintering with magnesium dealloyed from the structure, which resulted in pores formation. The next step was surface modification by electrochemical etching and silver nanoparticle deposition. Porosity, morphology, mechanical properties as well as biocompatibility and antibacterial behavior were investigated. Titanium foam porosity up to approximately 60% and wide pore size distribution were successfully prepared. The new materials have shown positive behavior in the MTT assay as well as antibacterial properties. These results confirmed great potential for thermal dealloying in preparation of porous structures.
Collapse
Affiliation(s)
- Grzegorz Adamek
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-665-3665
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211, 50-534 Wroclaw, Poland;
| | - Przemyslaw Wirstlein
- Department of Gynecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Mieczyslawa U. Jurczyk
- Division Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Piotr Siwak
- Institute of Mechanical Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
| | - Jeremiasz Koper
- Electrotile Sp. z o.o., Puławska 427, 02-801 Warszawa, Poland;
| | - Jaroslaw Jakubowicz
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland;
| |
Collapse
|
13
|
Study of Electrochemical and Biological Characteristics of As-Cast Ti-Nb-Zr-Ta System Based on Its Microstructure. METALS 2022. [DOI: 10.3390/met12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quaternary Ti-Nb-Zr-Ta (TNZT) alloy was successfully cast-fabricated with the objective to be used in the medical field. Samples’ microstructure was compared to CP-Ti and Ti-6Al-4V (control samples) and related to corrosion, ion release and biological properties. As-cast TNZT was formed with large β grain sizes (285 µm) compared to the ultrafine α grain sizes of CP-Ti (11 µm) and the α + β ultrafine grain sizes of 1.45 µm and 0.74 µm. Hardness and flexural elastic moduli (94 HV and 43 GPa) came close to the biological structures, such as dentin and enamel values. The ion release mechanism of as-cast TNZT was significantly lesser than CP-Ti and Ti-6Al-4V, which can be related to the difference in samples’ grain sizes and chemical compositions. However, the corrosion rate was higher than for the control samples; this way offers corrosion properties inferior with respect to the properties obtained in the reference materials. Biological assays demonstrated that the two-cell (hDPSCs and MG-63) lineage studied presented good adhesion and capability to differentiate in bone cells on the as-cast TNZT surface, and no cytotoxicity effects were found. Details and reasons based on samples’ microstructure are discussed.
Collapse
|
14
|
Scafa Udriște A, Niculescu AG, Grumezescu AM, Bădilă E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2498. [PMID: 34065986 PMCID: PMC8151529 DOI: 10.3390/ma14102498] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
One of the leading causes of morbidity and mortality worldwide is coronary artery disease, a condition characterized by the narrowing of the artery due to plaque deposits. The standard of care for treating this disease is the introduction of a stent at the lesion site. This life-saving tubular device ensures vessel support, keeping the blood-flow path open so that the cardiac muscle receives its vital nutrients and oxygen supply. Several generations of stents have been iteratively developed towards improving patient outcomes and diminishing adverse side effects following the implanting procedure. Moving from bare-metal stents to drug-eluting stents, and recently reaching bioresorbable stents, this research field is under continuous development. To keep up with how stent technology has advanced in the past few decades, this paper reviews the evolution of these devices, focusing on how they can be further optimized towards creating an ideal vascular scaffold.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Cardiology Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Elisabeta Bădilă
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.S.U.); (E.B.)
- Internal Medicine Department, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
15
|
Yolun A, Şimşek M, Kaya M, Annaç EE, Köm M, Çakmak Ö. Fabrication, characterization, and in vivo biocompatibility evaluation of titanium-niobium implants. Proc Inst Mech Eng H 2020; 235:99-108. [PMID: 32988330 DOI: 10.1177/0954411920960854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, biocompatible titanium-niobium (Ti-Nb) alloys were fabricated by using powder metallurgy methods. Physical, morphological, thermal, and mechanical analyses were performed and their in vivo compatibility was evaluated. Besides α, β, and α″ martensitic phases, α+β Widmanstätten phase due to increasing sintering temperature was seen in the microstructure of the alloys. Phase transformation temperatures of the samples decreased as Nb content increased. The ratio of Nb in the samples affected their mechanical properties. No toxic effect was observed on implanted sites. This study shows that Ti-Nb alloys can be potentially used for orthopedic applications without any toxic effects.
Collapse
Affiliation(s)
- Abdurrahman Yolun
- Department of Physics, Faculty of Science, İnönü University, Malatya, Turkey
| | - Murat Şimşek
- Department of Biomedical Engineering, Faculty of Engineering, İnönü University, Malatya, Turkey
| | - Mehmet Kaya
- Machinery and Metal Technologies Department, Çorlu Vacational School, Tekirdağ Namık Kemal University, Çorlu/Tekirdağ, Turkey
| | - Ebru Elibol Annaç
- Department of Histology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Mustafa Köm
- Department of Surgery, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ömer Çakmak
- Meterial Science and Engineering, Engineering Faculty, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
16
|
Jawed SF, Liu YJ, Wang JC, Rabadia CD, Wang LQ, Li YH, Zhang XH, Zhang LC. Tailoring deformation and superelastic behaviors of beta-type Ti-Nb-Mn-Sn alloys. J Mech Behav Biomed Mater 2020; 110:103867. [PMID: 32957184 DOI: 10.1016/j.jmbbm.2020.103867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A group of Ti-25Nb-xMn-ySn (in wt%; x = 2, 4 and y = 1, 5) alloys were designed using the "BF-d-electron superelasticity" empirical relationship and subsequently were cast in order to investigate their microstructure, deformation and superelastic behaviors. Monolithic β phase is found in all investigated alloys except in Ti-25Nb-2Mn-1Sn alloy which exhibits α"+β dual-phase microstructure. During compression testing, the Ti-25Nb-2Mn-1Sn alloy fails and demonstrates sufficient plasticity of ~ 41% and ultimate compressive strength of ~ 1800 MPa, where other alloys do not fail within the load capacity of 100 kN. Among all the investigated alloys, Ti-25Nb-4Mn-1Sn alloy exhibits the highest yield strength (~ 710 MPa) while Ti-25Nb-2Mn-1Sn alloy possesses the highest hardness (~ 244 HV). In this work, yield strength is influenced by solid solution and grain boundary strengthening while hardness is affected by the amount of constituent phases in each alloy. Additionally, Ti-25Nb-4Mn-1Sn shows highest recoverable strain (2.35%) and superelastic recovery ratio (90%) during cyclic loading-unloading up to 3% strain level, with highest total energy absorption among the investigated alloys. Moreover, all the Ti-25Nb-xMn-ySn alloys display shear bands except that Ti-25Nb-2Mn-1Sn alloy displays shear bands together with some cracks on the outer surface of compressively deformed morphologies.
Collapse
Affiliation(s)
- S F Jawed
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Y J Liu
- School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - J C Wang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - C D Rabadia
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - L Q Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Y H Li
- School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - X H Zhang
- School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - L C Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
17
|
The Electrochemical and Mechanical Behavior of Bulk and Porous Superelastic Ti‒Zr-Based Alloys for Biomedical Applications. MATERIALS 2019; 12:ma12152395. [PMID: 31357580 PMCID: PMC6696258 DOI: 10.3390/ma12152395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Titanium alloys are well recognized as appropriate materials for biomedical implants. These devices are designed to operate in quite aggressive human body media, so it is important to study the corrosion and electrochemical behavior of the novel materials alongside the underlying chemical and structural features. In the present study, the prospective Ti‒Zr-based superelastic alloys (Ti-18Zr-14Nb, Ti-18Zr-15Nb, Ti-18Zr-13Nb-1Ta, atom %) were analyzed in terms of their phase composition, functional mechanical properties, the composition and structure of surface oxide films, and the corresponding corrosion and electrochemical behavior in Hanks’ simulated biological solution. The electrochemical parameters of the Ti-18Zr-14Nb material in bulk and foam states were also compared. The results show a significant difference in the functional performance of the studied materials, with different composition and structure states. In particular, the positive effect of the thermomechanical treatment regime, leading to the formation of a favorable microstructure on the corrosion resistance, has been revealed. In general, the Ti-18Zr-15Nb alloy exhibits the optimum combination of functional characteristics in Hanks’ solution, while the Ti-18Zr-13Nb-1Ta alloy shows the highest resistance to the corrosion environment. The Ti-18Zr-14Nb-based foam material exhibits slightly lower passivation kinetics as compared to its bulk equivalent.
Collapse
|
18
|
Tan MHC, Baghi AD, Ghomashchi R, Xiao W, Oskouei RH. Effect of niobium content on the microstructure and Young's modulus of Ti-xNb-7Zr alloys for medical implants. J Mech Behav Biomed Mater 2019; 99:78-85. [PMID: 31344525 DOI: 10.1016/j.jmbbm.2019.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
New generation titanium alloys with low elastic moduli are promising materials for medical implants, particularly load-bearing orthopaedic implants. In this paper, the effect of niobium content on the microstructure and mechanical properties of new Ti alloys including Ti-23Nb-7Zr, Ti-28Nb-7Zr and Ti-33Nb-7Zr (wt%) is studied. Ti-23Nb-7Zr was found to mainly form α΄ and α″- phases, while both the Ti-28Nb-7Zr and Ti-33Nb-7Zr consisted of α″ and β-phases with an increased amount of β-phase in the alloy with 33 wt% of Nb. X-ray diffraction and microstructural analyses showed that the addition of Nb stabilises the β-phase in the solution treated condition with the depleting amount of α΄ and α″- phases. The hardness and Young's modulus values were highest in Ti-23Nb-7Zr which is attributed to the high fraction of α΄- phase in this alloy. The Young's moduli achieved for the three alloys through nanoindentation were 35.9, 29.1 and 29.0 GPa, respectively. The new alloys are encouraging candidates for orthopaedic implants due to their low elastic modulus which can help inhibit stress shielding, although biocompatibility tests (in-vitro and in-vivo) are suggested for future work.
Collapse
Affiliation(s)
- Magdalen H C Tan
- College of Science and Engineering, Flinders University, Clovelly Park, SA, 5042, Australia
| | - Alireza Dareh Baghi
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Reza Ghomashchi
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Wenlong Xiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Reza H Oskouei
- College of Science and Engineering, Flinders University, Clovelly Park, SA, 5042, Australia.
| |
Collapse
|
19
|
Munir KS, Wen C, Li Y. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. ACTA ACUST UNITED AC 2019; 3:e1800212. [PMID: 32627403 DOI: 10.1002/adbi.201800212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Current challenges in existing metallic biomaterials encourage undertaking research in the development of novel materials for biomedical applications. This paper critically reviews the potential of carbon nanotubes (CNT) and graphene as nanoreinforcements in metallic biomaterials for bone tissue engineering. Unique and remarkable mechanical, electrical, and biological properties of these carbon nanomaterials allow their use as secondary-phase reinforcements in monolithic biomaterials. The nanoscale dimensions and extraordinarily large surface areas of CNT and graphene make them suitable materials for purposeful reaction with living organisms. However, the cytocompatibility of CNT and graphene is still a controversial issue that impedes advances in utilizing these promising materials in clinical orthopedic applications. The interaction of CNT and graphene with biological systems including proteins, nucleic acids, and human cells is critically reviewed to assess their cytocompatibity in vitro and in vivo. It is revealed that composites reinforced with CNT and graphene show enhanced adhesion of osteoblast cells, which subsequently promotes bone tissue formation in vivo. This potential is expected to pave the way for developing ground-breaking technologies in regenerative medicine and bone tissue engineering. In addition, current progress and future research directions are highlighted for the development of CNT and graphene reinforced implants for bone tissue engineering.
Collapse
Affiliation(s)
- Khurram S Munir
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
20
|
Abstract
Ages of history are defined by the underlying materials that promoted human development: stone, bronze, and iron ages. Since the middle of the last century, humanity has lived in a silicon age, where the development of the transistor ushered in new technologies previously thought inconceivable. But as technology has advanced, so have the requirements for new materials to sustain increasing physical demands. The field of solid state chemistry is dedicated to the discovery of new materials and phenomena, and though most materials discoveries in history have been through serendipity rather than careful reaction design, the last few decades have seen an increase in the number of materials discovered through a consideration of chemical reaction kinetics and thermodynamics. Materials by design have changed the way solid state chemists approach the synthesis of possible materials with interesting and useful properties. Unlike other chemistry subfields such as organic chemistry and biochemistry, solid state chemistry does not currently benefit from a toolbox of reactions that can allow for the synthesis of any arbitrary material. The diversity and complexity of the solid state phase space likely inhibits chemists from ever having such a toolbox. However, a thorough understanding of the various synthetic techniques involved in the synthesis of stable and metastable solids may be realized through an understanding of the reaction kinetics and thermodynamics. In the Account, we review the common synthesis techniques involved in the formation of metastable materials and break down their underlying chemistry to the simplest reaction mechanisms involved. The synthesis reactions of most metastable materials can be understood through these three reaction driving parameters, which include the exploitation of Le Chatelier's principle, thermo-kinetic reaction coupling, and lowering the activation energy of formation of the metastable product, and we identify several materials whose syntheses are described either by one or a combination of these driving parameters. We identify what exists at the frontier of materials discovery by design, including novel applications of supercritical fluids for tuning between "gas" and "solvent"-like environments. While conventional solvation requires changes in either the temperature or composition of the system, supercritical fluid solvation requires only changes in the fluid density, which opens up the possibilities for the synthesis of new materials. Most importantly, however, we look toward the future of materials synthesis by design and see that it must be a collaborative one. At present, chemists design materials using knowledge about chemical structure and reactivity but often target specific materials with very specific properties. In contrast, computational chemists perform calculations on millions of different elemental combinations and find many candidates of possible materials with interesting properties, though most of these are not realizable synthetically due to limitations in reactivity, kinetics, or thermodynamics. Synthetic harmony can be achieved through active collaboration and communication between these two subfields of chemistry, such that new calculations can incorporate complete knowledge about reaction kinetics and thermodynamics, and new syntheses target computationally predicted materials derived from an understanding of mapped reaction landscapes.
Collapse
Affiliation(s)
- Juan R. Chamorro
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tyrel M. McQueen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Yang J, Baatarsukh M, Bae J, Huh S, Jeong H, Choi B, Nam T, Noh J. Phase Stability and Properties of Ti-Nb-Zr Thin Films and Their Dependence on Zr Addition. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1361. [PMID: 30082632 PMCID: PMC6119924 DOI: 10.3390/ma11081361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Ternary Ti-Nb-Zr alloys were prepared by a magnetron sputtering method with porous structures observed in some of them. In bulk, in order to control the porous structure, a space holder (NH₄HCO₃) is used in the sintering method. However, in the present work, we show that the porous structure is also dependent on alloy composition. The results from Young's modulus tests confirm that these alloys obey d-electrons alloy theory. However, the Young's modulus of ternary thin films (≈80⁻95 GPa) is lower than that for binary alloys (≈108⁻123 GPa). The depth recovery ratio of ternary Ti-Nb-Zr thin films is also higher than that for binary β-Ti-(25.9⁻34.2)Nb thin film alloys.
Collapse
Affiliation(s)
- Jeonghyeon Yang
- Department of Mechanical System Engineering, Gyeongsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Munkhbayar Baatarsukh
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Joohyeon Bae
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Sunchul Huh
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Hyomin Jeong
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Byeongkeun Choi
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| | - Taehyun Nam
- Department of Materials Engineering and Convergence Technology & RIGECT, Gyeonsang National University, 501, Jinju-daero, Jinju 52828, Korea.
| | - Jungpil Noh
- Department of Energy and Mechanical Engineering and Institute of Marine Industry, Gyeonsang National University, 38, Cheondaegukchi-gil, Tongyeong 53064, Korea.
| |
Collapse
|
22
|
Effects of Solution Treating on Microstructural and Mechanical Properties of a Heavily Deformed New Biocompatible Ti–Nb–Zr–Fe Alloy. METALS 2018. [DOI: 10.3390/met8050297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites. MATERIALS 2018; 11:ma11040608. [PMID: 29659504 PMCID: PMC5951492 DOI: 10.3390/ma11040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/25/2022]
Abstract
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.
Collapse
|
24
|
Jetté B, Brailovski V, Dumas M, Simoneau C, Terriault P. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. J Mech Behav Biomed Mater 2018; 77:58-72. [DOI: 10.1016/j.jmbbm.2017.08.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/13/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
|
25
|
Wu J, Li H, Yuan B, Gao Y. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys. J Mech Behav Biomed Mater 2017; 75:574-580. [DOI: 10.1016/j.jmbbm.2017.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023]
|
26
|
Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J Mech Behav Biomed Mater 2017; 77:539-550. [PMID: 29069636 DOI: 10.1016/j.jmbbm.2017.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Dense and stiff metallic femoral stems implanted into femurs for total hip arthroplasties produce a stress shielding effect since they modify the original load sharing path in the bony structure. Consequently, in the long term, the strain adaptive nature of bones leads to bone resorption, implant loosening, and the need for arthroplasty revision. The design of new cementless femoral stems integrating open porous structures can reduce the global stiffness of the stems, allowing them a better match with that of bones and provide their firm fixation via bone ingrowth, and, thus reduce the risk of implantation failure. METHODS This paper aims to develop and validate a simplified numerical model of stress shielding, which calculates the levels of bone resorption or formation by comparing strain distributions on the surface of the intact and the implanted femurs subjected to a simulated biological loading. Two femoral stems produced by laser powder-bed fusion using Ti-6Al-4V alloy are employed: the first is fully dense, while the second features a diamond cubic lattice structure in its core. The validation consists of a comparison of the numerically calculated force-displacement diagrams, and displacement and strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS AND CONCLUSIONS The numerical models showed reasonable agreement between the force-displacement diagrams. Also, satisfactory results for the correlation analyses of the total displacement and equivalent strain fields were obtained. The stress shielding effect of the implant was assessed by comparing the equivalent strain fields of the implanted and intact femurs. The results obtained predicted less bone resorption in the femur implanted with the porous stem than with its dense counterpart.
Collapse
|
27
|
Cordeiro JM, Beline T, Ribeiro ALR, Rangel EC, da Cruz NC, Landers R, Faverani LP, Vaz LG, Fais LMG, Vicente FB, Grandini CR, Mathew MT, Sukotjo C, Barão VAR. Development of binary and ternary titanium alloys for dental implants. Dent Mater 2017; 33:1244-1257. [PMID: 28778495 DOI: 10.1016/j.dental.2017.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. METHODS The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). RESULTS The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. SIGNIFICANCE The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements.
Collapse
Affiliation(s)
- Jairo M Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Thamara Beline
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA
| | - Ana Lúcia R Ribeiro
- Faculdade de Ciências do Tocantins (FACIT), Rua D 25, Qd 11, Lt 10, Setor George Yunes, Araguaína, Tocantins 77818-650, Brazil; Faculdade de Ciências Humanas, Econômicas e da Saúde de Araguaína/Instituto Tocantinense Presidente Antônio Carlos (FAHESA/ITPAC), Av. Filadélfia, 568, Araguaína, Tocantins 77816-540, Brazil
| | - Elidiane C Rangel
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Nilson C da Cruz
- Univ Estadual Paulista (UNESP), Engineering College, Laboratory of Technological Plasmas, Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Institute of Physics Gleb Wataghin, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, São Paulo 13083-859, Brazil
| | - Leonardo P Faverani
- Univ Estadual Paulista (UNESP), Aracatuba Dental School, Department of Surgery and Integrated Clinic, R. José Bonifácio, 1193, Aracatuba, São Paulo 16015-050, Brazil
| | - Luís Geraldo Vaz
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Laiza M G Fais
- Univ Estadual Paulista (UNESP), Araraquara Dental School, Department of Dental Materials and Prosthodontics, R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Fabio B Vicente
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Universidade Paulista (UNIP), Av. Nossa Sra. de Fátima, 9-50, Bauru, São Paulo 17017-337, Brazil
| | - Carlos R Grandini
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; Univ Estadual Paulista (UNESP), Laboratório de Anelasticidade e Biomateriais, Av. Eng. Luiz Edmundo Carrijo Coube, Bauru, São Paulo 17033-360, Brazil
| | - Mathew T Mathew
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois College of Medicine at Rockford, Department of Biomedical Sciences, 1601 Parkview Avenue, Rockford, IL 61107, USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Cortino Sukotjo
- Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA; University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, 801 S Paulina, Chicago, IL 60612, USA
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil and USA.
| |
Collapse
|
28
|
Metals in Spine. World Neurosurg 2017; 100:619-627. [DOI: 10.1016/j.wneu.2016.12.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/06/2023]
|
29
|
Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. J Mech Behav Biomed Mater 2017; 65:716-723. [DOI: 10.1016/j.jmbbm.2016.09.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
|
30
|
Surface treatment of bulk and porous materials based on superelastic titanium alloys for medical implants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Miotto LN, Fais LM, Ribeiro AL, Vaz LG. Surface properties of Ti-35Nb-7Zr-5Ta. J Prosthet Dent 2016; 116:102-11. [DOI: 10.1016/j.prosdent.2015.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
|
32
|
Ruan J, Yang H, Weng X, Miao J, Zhou K. Preparation and characterization of biomedical highly porous Ti-Nb alloy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:76. [PMID: 26886824 DOI: 10.1007/s10856-016-5685-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
The compressive strength and the biocompatibility were assessed for the porous Ti-25 wt%Nb alloy fabricated by the combination of the sponge impregnation technique and sintering technique. The alloy provided pore sizes of 300-600 μm, porosity levels of 71 ± 1.5%, in which the volume fraction of open pores was 94 ± 1.3%. The measurements also showed that the alloy had the compressive Young's modulus of 2.23 ± 0.5 GPa and the strength of 98.4 ± 4.5 MPa, indicating that the mechanical properties of the alloy are similar to those of human bone. The scanning electron microscopy (SEM) observations revealed that the pores were well connected to form three-dimension (3D) network open cell structure. Moreover, no obvious impurities were detected in the porous structure. The experiments also confirmed that rabbit bone mesenchymal stem cells (MSCs) could adhere and proliferate in the porous Ti-25 wt%Nb alloy. The interactions between the porous alloy and the cells are attributed to the porous structure with relatively higher surface. The suitable mechanical and biocompatible properties confirmed that this material has a promising potential in the application for tissue engineering.
Collapse
Affiliation(s)
- Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People's Republic of China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaojun Weng
- Department of Joint Surgery & Sports Medicine, Orthopaedic Centre, Hunan People's Hospital, Changsha, 410002, People's Republic of China
| | - Jinglei Miao
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, 400013, People's Republic of China
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
33
|
Rubshtein AP, Makarova EB, Rinkevich AB, Medvedeva DS, Yakovenkova LI, Vladimirov AB. Elastic properties of a porous titanium-bone tissue composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:54-60. [PMID: 25953540 DOI: 10.1016/j.msec.2015.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/06/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone.
Collapse
Affiliation(s)
- A P Rubshtein
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia.
| | - E B Makarova
- V.D. Chaklin Ural Scientific & Research Institute of Traumatology and Orthopaedics, 7 Bankovskiy per., Ekaterinburg 620014, Russia
| | - A B Rinkevich
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - D S Medvedeva
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - L I Yakovenkova
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| | - A B Vladimirov
- M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18S. Kovalevskaya St., Ekaterinburg 620990, Russia
| |
Collapse
|
34
|
Sun Y, Song Y, Zuo J, Wang S, Gao Z. Biocompatibility evaluation of novel β-type titanium alloy (Ti–35Nb–7Zr–5Ta)98Si2in vitro. RSC Adv 2015. [DOI: 10.1039/c5ra19767h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell proliferation, osteoblast adhesion, morphology, differentiation, inflammatory response, apoptosis and biomineralization were investigated to evaluate the biocompatibility of (Ti–35Nb–7Zr–5Ta)98Si2 alloy.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopaedics
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- P. R. China
| | - Yang Song
- Department of Orthopaedics
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- P. R. China
| | - Jianlin Zuo
- Department of Orthopaedics
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- P. R. China
| | - Shengqun Wang
- Department of Orthopaedics
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- P. R. China
| | - Zhongli Gao
- Department of Orthopaedics
- China-Japan Union Hospital of Jilin University
- Changchun 130033
- P. R. China
| |
Collapse
|
35
|
Hynowska A, Blanquer A, Pellicer E, Fornell J, Suriñach S, Baró MD, Gebert A, Calin M, Eckert J, Nogués C, Ibáñez E, Barrios L, Sort J. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery. J Biomed Mater Res B Appl Biomater 2014; 103:1569-79. [PMID: 25533018 DOI: 10.1002/jbm.b.33346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 11/10/2022]
Abstract
The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility.
Collapse
Affiliation(s)
- A Hynowska
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - A Blanquer
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - E Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - J Fornell
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - S Suriñach
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - M D Baró
- Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - A Gebert
- IFW Dresden, Institute for Complex Materials, P.O. Box 270116, Dresden, D-01171, Germany
| | - M Calin
- IFW Dresden, Institute for Complex Materials, P.O. Box 270116, Dresden, D-01171, Germany
| | - J Eckert
- IFW Dresden, Institute for Complex Materials, P.O. Box 270116, Dresden, D-01171, Germany.,TU Dresden, Institute of Materials Science, Dresden, D-01062, Germany
| | - C Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - E Ibáñez
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - L Barrios
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| | - J Sort
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Spain
| |
Collapse
|
36
|
Rivard J, Brailovski V, Dubinskiy S, Prokoshkin S. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:421-33. [DOI: 10.1016/j.msec.2014.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 09/23/2014] [Indexed: 01/20/2023]
|
37
|
Sushko GB, Verkhovtsev AV, Solov'yov AV. Validation of classical force fields for the description of thermo-mechanical properties of transition metal materials. J Phys Chem A 2014; 118:8426-36. [PMID: 24766551 DOI: 10.1021/jp501723w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is demonstrated that classical force fields validated through the density functional theory (DFT) calculations of small titanium and nickel clusters can be applied for the description of thermo-mechanical properties of corresponding materials. This has been achieved by means of full-atom molecular dynamics simulations of nanoindentation of amorphous and nanostructured Ti and Ni-Ti materials. The theoretical analysis performed and comparison with experimental data demonstrate that the utilized classical force fields for Ti-Ti, Ni-Ni and Ni-Ti interactions describe reasonably well hardness and the Young's modulus of these materials. This observation is of the general nature and can be utilized for similar numerical exploration of thermo-mechanical properties of a broad range of materials.
Collapse
Affiliation(s)
- Gennady B Sushko
- Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt am Main , Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
38
|
Rao X, Chu C, Zheng Y. Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method. J Mech Behav Biomed Mater 2014; 34:27-36. [DOI: 10.1016/j.jmbbm.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/25/2022]
|
39
|
Li Y, Yang C, Zhao H, Qu S, Li X, Li Y. New Developments of Ti-Based Alloys for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2014; 7:1709-1800. [PMID: 28788539 PMCID: PMC5453259 DOI: 10.3390/ma7031709] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/24/2013] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.
Collapse
Affiliation(s)
- Yuhua Li
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Chao Yang
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Haidong Zhao
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Shengguan Qu
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Xiaoqiang Li
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Yuanyuan Li
- National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
40
|
Rubshtein A, Trakhtenberg I, Makarova E, Triphonova E, Bliznets D, Yakovenkova L, Vladimirov A. Porous material based on spongy titanium granules: Structure, mechanical properties, and osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:363-9. [DOI: 10.1016/j.msec.2013.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/20/2013] [Accepted: 11/15/2013] [Indexed: 11/25/2022]
|
41
|
Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC. An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 2013; 101:3349-64. [PMID: 23766134 PMCID: PMC4854641 DOI: 10.1002/jbm.a.34605] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 01/22/2023]
Abstract
Great deal of research is still going on in the field of orthopedic and craniofacial implant development to resolve various issues being faced by the industry today. Despite several disadvantages of the metallic implants, they continue to be used, primarily because of their superior mechanical properties. In order to minimize the harmful effects of the metallic implants and its by-products, several modifications are being made to these materials, for instance nickel-free stainless steel, cobalt-chromium and titanium alloys are being introduced to eliminate the toxic effects of nickel being released from the alloys, introduce metallic implants with lower modulus, reduce the cost of these alloys by replacing rare elements with less expensive elements etc. New alloys like tantalum, niobium, zirconium, and magnesium are receiving attention given their satisfying mechanical and biological properties. Non-oxide ceramics like silicon nitride and silicon carbide are being currently developed as a promising implant material possessing a combination of properties such as good wear and corrosion resistance, increased ductility, good fracture and creep resistance, and relatively high hardness in comparison to alumina. Polymer/magnesium composites are being developed to improve mechanical properties as well as retain polymer's property of degradation. Recent advances in orthobiologics are proving interesting as well. This paper thus deals with the latest improvements being made to the existing implant materials and includes new materials being introduced in the field of biomaterials.
Collapse
|
42
|
Lewis G. Properties of open-cell porous metals and alloys for orthopaedic applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2293-2325. [PMID: 23851927 DOI: 10.1007/s10856-013-4998-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.
Collapse
Affiliation(s)
- Gladius Lewis
- Department of Mechanical Engineering, The University of Memphis, Memphis, TN, 38152-3180, USA,
| |
Collapse
|
43
|
Characterization of grade 2 commercially pure Trabecular Titanium structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2648-56. [PMID: 23623080 DOI: 10.1016/j.msec.2013.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 02/05/2013] [Accepted: 02/16/2013] [Indexed: 11/22/2022]
Abstract
In this work, two different cellular solid structures, obtained by EBM using grade 2 Titanium powders, were investigated. Relative density was evaluated comparing different methods, the mean diameter of the singular open porosity was calculated by SEM image post-processing; the chemical composition was evaluated using Energy Dispersive X-Ray Spectroscopy (EDXS); the microstructure and grain dimension were investigated using chemical etching and, the mechanical properties were investigated using UMTS 810 Materials Test System. The mean porosity values resulted to be similar to spongy bone (around 77% for sample A and 89% for sample B). The mean diameter of the single porosity resulted to be 640 μm for A and 1250 μm for B. The Vickers microhardness results were homogeneous among the structure and the chemical etching showed a complex microstructure characterized by irregular shaped grains. Sample A, as expected, is more resistant than sample B, while sample B shows a lower elastic modulus.
Collapse
|
44
|
Friák M, Counts WA, Ma D, Sander B, Holec D, Raabe D, Neugebauer J. Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. MATERIALS 2012. [PMCID: PMC5449039 DOI: 10.3390/ma5101853] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present a scale-bridging approach for modeling the integral elastic response of polycrystalline composite that is based on a multi-disciplinary combination of (i) parameter-free first-principles calculations of thermodynamic phase stability and single-crystal elastic stiffness; and (ii) homogenization schemes developed for polycrystalline aggregates and composites. The modeling is used as a theory-guided bottom-up materials design strategy and applied to Ti-Nb alloys as promising candidates for biomedical implant applications. The theoretical results (i) show an excellent agreement with experimental data and (ii) reveal a decisive influence of the multi-phase character of the polycrystalline composites on their integral elastic properties. The study shows that the results based on the density functional theory calculations at the atomistic level can be directly used for predictions at the macroscopic scale, effectively scale-jumping several orders of magnitude without using any empirical parameters.
Collapse
Affiliation(s)
- Martin Friák
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-211-6792-461; Fax: +49-211-6792-465
| | - William Art Counts
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
| | - Duancheng Ma
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
| | - Benedikt Sander
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
| | - David Holec
- Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben, Austria; E-Mail:
| | - Dierk Raabe
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
| | - Jörg Neugebauer
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany; E-Mails: (W.A.C.); (D.M.); (B.S.); (D.R.); (J.N.)
| |
Collapse
|
45
|
Zhang D, Yang S, Wei M, Mao Y, Tan C, Lin J. Effect of Sn addition on the microstructure and superelasticity in Ti–Nb–Mo–Sn Alloys. J Mech Behav Biomed Mater 2012; 13:156-65. [DOI: 10.1016/j.jmbbm.2012.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
46
|
Antunes RA, de Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 2012; 8:937-62. [PMID: 21951920 DOI: 10.1016/j.actbio.2011.09.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/07/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants.
Collapse
|
47
|
Abstract
The processes of structure formation in Ti-Ni and in Ti-Nb-Zr, Ti-Nb-Ta shape memory alloys (SMA) under thermomechanical treatment (TMT) were studied. The TMT comprised cold rolling with true strains from e=0.25 to 2 and post-deformation annealing. Differences in these processes between two groups of alloys are considered. The main conclusions are as follows: nanostructures created by TMT are useful for radical improvement of the SMA functional properties, and an optimum nanostructure (nanocrystalline structure, nanosubgrained structure or theirmixture) should be selected by taking into account other structural and technological factors.
Collapse
|
48
|
Mechanical Properties of Thermomechanically-Processed Metastable Beta Ti-Nb-Zr Alloys for Biomedical Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.4028/www.scientific.net/msf.706-709.455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metastable beta-titanium alloys combine exceptionally low Young's modulus and high biocompatibility, thus attracting special interest in the prospect of their application as biomedical implant material. In this work, Ti-21.8Nb-6Zr (at.%) ingots were manufactured by vacuum argon melting followed by hot isothermal pressing. The obtained ingots were thermomechanically processed using the following TMP sequence: a) cold rolling (CR) from e=0.37 to 2 of the logarithmic thickness reduction; and b) post-deformation annealing (PDA) of between 450 and 700°C (10’…5 h for 600°C and 1 h for other temperatures). The influence of the TMP on the alloy’s mechanical properties under static and cyclic loading was studied.
Collapse
|
49
|
The role of heat treatment on microstructure and mechanical properties of Ti–13Zr–13Nb alloy for biomedical load bearing applications. J Mech Behav Biomed Mater 2011; 4:1132-44. [DOI: 10.1016/j.jmbbm.2011.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/18/2011] [Indexed: 11/19/2022]
|