1
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
2
|
Lipowska-Kur D, Otulakowski Ł, Szeluga U, Jelonek K, Utrata-Wesołek A. Diverse Strategies to Develop Poly(ethylene glycol)-Polyester Thermogels for Modulating the Release of Antibodies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4472. [PMID: 39336212 PMCID: PMC11433636 DOI: 10.3390/ma17184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
In this work, we present basic research on developing thermogel carriers containing high amounts of model antibody immunoglobulin G (IgG) with potential use as injectable molecules. The quantities of IgG loaded into the gel were varied to evaluate the possibility of tuning the dose release. The gel materials were based on blends of thermoresponsive and degradable ABA-type block copolymers composed of poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) or poly(lactide-co-caprolactone)-b-poly(ethylene glycol)-b-(lactide-co-caprolactone) (PLCL-PEG-PLCL). Primarily, the gels with various amounts of IgG were obtained via thermogelation, where the only factor inducing gel formation was the change in temperature. Next, to control the gels' mechanical properties, degradation rate, and the extent of antibody release, we have tested two approaches. The first one involved the synergistic physical and chemical crosslinking of the copolymers. To achieve this, the hydroxyl groups located at the ends of the PLGA-PEG-PLGA chain were modified into acrylate groups. In this case, the thermogelation was accompanied by chemical crosslinking through the Michael addition reaction. Such an approach increased the dynamic mechanical properties of the gels and simultaneously prolonged their decomposition time. An alternative solution was to suspend crosslinked PEG-polyester nanoparticles loaded with IgG in a PLGA-PEG-PLGA gelling copolymer. We observed that loading IgG into thermogels lowered the gelation temperature (TGEL) value and increased the storage modulus of the gels, as compared with gels without IgG. The prepared gel materials were able to release the IgG from 8 up to 80 days, depending on the gel formulation and on the amount of loaded IgG. The results revealed that additional, chemical crosslinking of the thermogels and also suspension of particles in the polymer matrix substantially extended the duration of IgG release. With proper matching of the gel composition, environmental conditions, and the type and amount of active substances, antibody-containing thermogels can serve as effective IgG delivery materials.
Collapse
Affiliation(s)
- Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (U.S.); (K.J.)
| | | | | | | | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (Ł.O.); (U.S.); (K.J.)
| |
Collapse
|
3
|
Snyder Y, Todd M, Jana S. Substrates with Tunable Hydrophobicity for Optimal Cell Adhesion. Macromol Biosci 2024:e2400196. [PMID: 39177156 DOI: 10.1002/mabi.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Mary Todd
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Pi W, Chen H, Liu Y, Xiang J, Zhang H, Yang X, Zhang M, Cao J, Chang T, Zheng Y, Liu S, Zhang H, Han Q, Liu K, Fu X, Shao Y, Sun X. Flexible Sono-Piezo Patch for Functional Sweat Gland Repair through Endogenous Microenvironmental Remodeling. ACS NANO 2024. [PMID: 39038113 DOI: 10.1021/acsnano.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Remodeling the endogenous regenerative microenvironment in wounds is crucial for achieving scarless, functional tissue regeneration, especially the functional recovery of skin appendages such as sweat glands in burn patients. However, current approaches mostly rely on the use of exogenous materials or chemicals to stimulate cell proliferation and migration, while the remodeling of a pro-regenerative microenvironment remains challenging. Herein, we developed a flexible sono-piezo patch (fSPP) that aims to create an endogenous regenerative microenvironment to promote the repair of sweat glands in burn wounds. This patch, composed of multifunctional fibers with embedded piezoelectric nanoparticles, utilized low-intensity pulsed ultrasound (LIPUS) to activate electrical stimulation of the target tissue, resulting in enhanced pro-regenerative behaviors of niche tissues and cells, including peripheral nerves, fibroblasts, and vasculatures. We further demonstrated the effective wound healing and regeneration of functional sweat glands in burn injuries solely through such physical stimulation. This noninvasive and drug-free therapeutic approach holds significant potential for the clinical treatment of burn injuries.
Collapse
Affiliation(s)
- Wei Pi
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Huating Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Meiru Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Jiawei Cao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tie Chang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yifan Zheng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Shiyi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaobing Fu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Sun
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing 100048, China
| |
Collapse
|
5
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
6
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
7
|
Bao H, Zhang Y, Xin H, Gao Y, Hou Y, Yue G, Wang N, Wang Y, Li C, Liu F, Zhao Y, Kong L. The Construction of Three-Layered Biomimetic Arterial Graft Balances Biomechanics and Biocompatibility for Dynamic Biological Reconstruction. ACS OMEGA 2024; 9:7609-7620. [PMID: 38405546 PMCID: PMC10882685 DOI: 10.1021/acsomega.3c06628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
The process of reconstructing an arterial graft is a complex and dynamic process that is subject to the influence of various mechanical factors, including tissue regeneration and blood pressure. The attainment of favorable remodeling outcomes is contingent upon the biocompatibility and biomechanical properties of the arterial graft. A promising strategy involves the emulation of the three-layer structure of the native artery, wherein the inner layer is composed of polycaprolactone (PCL) fibers aligned with blood flow, exhibiting excellent biocompatibility that fosters endothelial cell growth and effectively prevents platelet adhesion. The middle layer, consisting of PCL and polyurethane (PU), offers mechanical support and stability by forming a contractile smooth muscle ring and antiexpansion PU network. The outer layer, composed of PCL fibers with an irregular arrangement, promotes the growth of nerves and pericytes for long-term vascular function. Prioritizing the reconstruction of the inner and outer layers establishes a stable environment for intermediate smooth muscle growth. Our three-layer arterial graft is designed to provide the blood vessel with mechanical support and stability through nondegradable PU, while the incorporation of degradable PCL generates potential spaces for tissue ingrowth, thereby transforming our graft into a living implant.
Collapse
Affiliation(s)
- Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yanyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - He Xin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Guichu Yue
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Nü Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yaqiong Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Chun Li
- Shandong Nafeibo Technology Development Co., Ltd, Yantai 264000, China
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yong Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
9
|
Ahmed J, Gultekinoglu M, Edirisinghe M. Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1916. [PMID: 37553260 DOI: 10.1002/wnan.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023]
Abstract
Centrifugal spinning is a technology used to generate small diameter fibers and has been extensively studied for its vast applications in biomedical engineering. Centrifugal spinning is known for its rapid production rate and has inspired the creation of other technologies which leverage the high-speed rotation, namely Pressurized Gyration. Pressurized gyration incorporates a unique applied gas pressure which serves to provide additional control over the fiber production process. The resulting fibers are uniquely suitable for a range of healthcare-related applications that are thoroughly discussed in this work, which involve scaffolds for tissue engineering, solid dispersions for drug delivery, antimicrobial meshes for filtration and bandage-like fibrous coverings for wound healing. In this review, the notable recent developments in centrifugal spinning and pressurized gyration are presented and how these technologies are being used to further the range of uses of biomaterials engineering, for example the development of core-sheath fabrication techniques for multi-layered fibers and the combination with electrospinning to produce advanced fiber mats. The enormous potential of these technologies and their future advancements highlights how important they are in the biomedical discipline. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
10
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
11
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Gilani SJ, Bin-Jumah MN, Fatima F. Development of Statistically Optimized Piperine-Loaded Polymeric Nanoparticles for Breast Cancer: In Vitro Evaluation and Cell Culture Studies. ACS OMEGA 2023; 8:44183-44194. [PMID: 38027324 PMCID: PMC10666216 DOI: 10.1021/acsomega.3c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Piperine (PPN) is a natural alkaloid derived from black pepper (Piper nigrum L.) and has garnered substantial attention for its potential in breast cancer therapy due to its diverse pharmacological properties. However, its highly lipophilic characteristics and poor dissolution in biological fluids limit its clinical application. Therefore, to overcome this limitation, we formulate and evaluate PPN-encapsulated polycaprolactone (PCL) nanoparticles (PPN-PCL-NPs). The nanoparticles were prepared by a single-step nanoprecipitation method and further optimized by a formulation design approach. The influence of selected independent variables PCL (X1), poloxamer 188 (P-188; X2), and stirring speed (SS; X3) were investigated on the particle size (PS), polydispersity index (PDI), and % encapsulation efficiency (EE). The selected optimized nanoparticles were further assessed for stability, in vitro release, and in vitro antibreast cancer activity in the MCF-7 cancer cell line. The PS, PDI, zeta potential, and % EE of the optimized PPN-PCL-NPs were observed to be 107.61 ± 5.28 nm, 0.136 ± 0.011, -20.42 ± 1.82 mV, and 79.53 ± 5.22%, respectively. The developed PPN-PCL-NPs were stable under different temperature conditions with insignificant changes in their pharmaceutical attributes. The optimized PPN-PCL-NPs showed a burst release for the first 6 h and later showed sustained release for 48 h. The PPN-PCL-NPs exhibit exceptional cytotoxic effects in MCF-7 breast tumor cells in comparison with the native PPN. Thus, the formulation of PPN-loaded PCL-NPs can be a promising approach for better therapeutic efficacy against breast cancer.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Farhat Fatima
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
13
|
Changizi S, Sameti M, Bazemore GL, Chen H, Bashur CA. Epsin Mimetic UPI Peptide Delivery Strategies to Improve Endothelization of Vascular Grafts. Macromol Biosci 2023; 23:e2300073. [PMID: 37117010 DOI: 10.1002/mabi.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 04/30/2023]
Abstract
Endothelialization of engineered vascular grafts for replacement of small-diameter coronary arteries remains a critical challenge. The ability for an acellular vascular graft to promote endothelial cell (EC) recruitment in the body would be very beneficial. This study investigated epsins as a target since they are involved in internalization of vascular endothelial growth factor receptor 2. Specifically, epsin-mimetic UPI peptides are delivered locally from vascular grafts to block epsin activity and promote endothelialization. The peptide delivery from fibrin coatings allowed for controlled loading and provided a significant improvement in EC attachment, migration, and growth in vitro. The peptides have even more important impacts after grafting into rat abdominal aortae. The peptides prevented graft thrombosis and failure that is observed with a fibrin coating alone. They also modulated the in vivo remodeling. The grafts are able to remodel without the formation of a thick fibrous capsule on the adventitia with the 100 µg mL-1 peptide-loaded condition, and this condition enabled the formation of a functional EC monolayer in the graft lumen after only 1 week. Overall, this study demonstrated that the local delivery of UPI peptides is a promising strategy to improve the performance of vascular grafts.
Collapse
Affiliation(s)
- Shirin Changizi
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Mahyar Sameti
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Gabrielle L Bazemore
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chris A Bashur
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA
| |
Collapse
|
14
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
15
|
Oleksy M, Dynarowicz K, Aebisher D. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review. Molecules 2023; 28:6213. [PMID: 37687042 PMCID: PMC10488517 DOI: 10.3390/molecules28176213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
16
|
Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, Xu J, Zhou G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5459. [PMID: 37570163 PMCID: PMC10419642 DOI: 10.3390/ma16155459] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.
Collapse
Affiliation(s)
- Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yifeng Fang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Zhao Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yajie Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Yujia Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Li Gan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510030, China
| | - Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (R.X.); (Y.F.); (Z.Z.); (Y.C.); (Y.Y.); (L.G.)
| |
Collapse
|
17
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Fabrication of Electrospun Polycaprolactone/Casein Nanofibers Containing Green Tea Essential Oils: Applicable for Active Food Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Biodegradable Nanoparticles Loaded with Levodopa and Curcumin for Treatment of Parkinson's Disease. Molecules 2022; 27:molecules27092811. [PMID: 35566173 PMCID: PMC9101601 DOI: 10.3390/molecules27092811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. Levodopa (L-DOPA) remains the gold-standard drug available for treating PD. Curcumin has many pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anti-amyloid, and antitumor properties. Copolymers composed of Poly (ethylene oxide) (PEO) and biodegradable polyesters such as Poly (ε-caprolactone) (PCL) can self-assemble into nanoparticles (NPs). This study describes the development of NH2–PEO–PCL diblock copolymer positively charged and modified by adding glutathione (GSH) on the outer surface, resulting in a synergistic delivery of L-DOPA curcumin that would be able to pass the blood–brain barrier. Methods: The NH2–PEO–PCL NPs suspensions were prepared by using a nanoprecipitation and solvent displacement method and coated with GSH. NPs were submitted to characterization assays. In order to ensure the bioavailability, Vero and PC12 cells were treated with various concentrations of the loaded and unloaded NPs to observe cytotoxicity. Results: NPs have successfully loaded L-DOPA and curcumin and were stable after freeze-drying, indicating advancing into in vitro toxicity testing. Vero and PC12 cells that were treated up to 72 h with various concentrations of L-DOPA and curcumin-loaded NP maintained high viability percentage, indicating that the NPs are biocompatible. Conclusions: NPs consisting of NH2–PEO–PCL were characterized as potential formulations for brain delivery of L-DOPA and curcumin. The results also indicate that the developed biodegradable nanomicelles that were blood compatible presented low cytotoxicity.
Collapse
|
20
|
Design and manufacturing a tubular structures based on poly(ɛ-caprolactone) / poly(glycerol-sebacic acid) biodegradable nanocomposite blends: suggested for applications in the nervous, vascular and renal tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02881-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Wang X, Zheng X, Liu X, Zeng B, Xu Y, Yuan C, Dai L. K+-Responsive Crown Ether-Based Amphiphilic Copolymer: Synthesis and Application in the Release of Drugs and Au Nanoparticles. Polymers (Basel) 2022; 14:polym14030406. [PMID: 35160395 PMCID: PMC8840459 DOI: 10.3390/polym14030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to unique chelating and macrocyclic effects, crown ether compounds exhibit wide application prospects. They could be introduced into amphiphilic copolymers to provide new trigger mode for drug delivery. In this work, new amphiphilic random polymers of poly(lipoic acid-methacrylate-co-poly(ethylene glycol) methyl ether methacrylate-co-N-isopropylacrylamide-co-benzo-18-crown-6-methacrylamide (abbrev. PLENB) containing a crown ether ring and disulphide bond were synthesized via RAFT polymerization. Using the solvent evaporation method, the PLENB micelles were formed and then used to load substances, such as doxorubicin hydrochloride (DOX) and gold nanoparticles. The results showed that PLENB exhibited a variety of lowest critical solution temperature (LCST) in response to the presence of different ions, such as K+, Na+ and Mg2+. In particular, the addition of 150 mM K+ increased the LCST of PLENB from 31 to 37 °C and induced the release of DOX from the PLENB@DOX assemblies with a release rate of 99.84% within 12 h under 37 °C. However, Na+ and Mg2+ ions could not initiate the same response. Furthermore, K+ ions drove the disassembly of gold aggregates from the PLENB-SH@Au assemblies to achieve the transport of Au NPs, which is helpful to construct a K+-triggered carrier system.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
| | - Xianghong Zheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
| | - Xinyu Liu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Birong Zeng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
- Correspondence: (B.Z.); (L.D.)
| | - Yiting Xu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Conghui Yuan
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Lizong Dai
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
- Correspondence: (B.Z.); (L.D.)
| |
Collapse
|
22
|
Interactions in solvent–polycaprolactone–cellulose nanocrystals–polyvinyl pyrrolidone system: Experiment and molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Sci Rep 2021; 11:17688. [PMID: 34480072 PMCID: PMC8417216 DOI: 10.1038/s41598-021-96980-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Active wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes. Secondly, using a mouse model we showed that NANO loaded with LPPO significantly reduced the Staphylococcus aureus counts in infected wounds as evaluated 7 days post-surgery. Furthermore, the rate of degradation and subsequent LPPO release in infected wounds was also facilitated by lytic enzymes secreted by inoculated bacteria. Finally, LPPO displayed negligible to no systemic absorption. In conclusion, the composite antibacterial NANO-LPPO-based dressing reduces the bacterial load and promotes skin repair, with the potential to treat wounds in clinical settings.
Collapse
|
24
|
Lee SJ, Nam Y, Rim YA, Lee K, Ju JH, Kim DS. Perichondrium-inspired permeable nanofibrous tube well promoting differentiation of hiPSC-derived pellet toward hyaline-like cartilage pellet. Biofabrication 2021; 13. [PMID: 34404032 DOI: 10.1088/1758-5090/ac1e76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
The pellet formation has been regarded as a golden standard forin vitrochondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of differentiated cartilage pellet in defective articular cartilage treatment. To address this drawback, a perichondrium-inspired permeable nanofibrous tube (PINaT) well with a nanofibrous wall permeable to gas and soluble molecules is proposed. The PINaT well was fabricated with a micro deep drawing process where a flat thin nanofibrous membrane was transformed to a 3.5 mm deep tube well with a ∼50µm thick nanofibrous wall. Similar toin vivoperichondrium, the PINaT well was found to allow oxygen and growth factor diffusion required for chondrogenic differentiation across the entire nanofibrous wall. Analyses of gene expressions (COL2A1, COL10A1, ACAN, and SOX9), proteins (type II and X collagen), and glycosaminoglycans contents were conducted to assess the differentiation performance and clinical efficacy of differentiated cartilage pellet. The regulated spatially homogeneous chondrogenic microenvironment around the human induced pluripotent stem cell-derived pellet (3 × 105cells per pellet) in the PINaT well remarkably improved the quality of the differentiated pellet toward a more hyaline-like cartilage pellet. Furthermore, an accelerated chondrogenic differentiation process of the pellet produced by the PINaT well was achieved for 14 days, demonstrating a hyaline cartilage-specific marker similar to the control pellet differentiated for 20 days. Finally, the enhanced clinical efficacy of the hyaline-like cartilage pellet was confirmed using an osteochondral defect rat model, with the repaired tissue resembling hyaline cartilage rather than fibrous cartilage after 8 weeks of regeneration.
Collapse
Affiliation(s)
- Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Relaxation behaviour and free volume of bio-based Poly(trimethylene terephthalate)-block-poly(caprolactone) copolymers as revealed by Broadband Dielectric and Positron Annihilation Lifetime Spectroscopies. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Tekale SU, Rottenberg Y, Ingle RD, Domb AJ, Pawar RP. Recent developments in biodegradable block copolymers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sunil U. Tekale
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | | | - Rajita D. Ingle
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | - Abraham J. Domb
- School of Pharmacy‐Faculty of Medicine and Institute of Drug Research, Alex Grass Center for Drug Research The Hebrew University of Jerusalem Jerusalem Israel
| | - Rajendra P. Pawar
- Department of Chemistry Shiv Chhatrapati College Aurangabad Maharashtra India
| |
Collapse
|
27
|
Kim DH, Lee IH, Yun WS, Shim JH, Choi D, Hwang SH, Kim SW. Long-term efficacy and safety of 3D printed implant in patients with nasal septal deformities. Eur Arch Otorhinolaryngol 2021; 279:1943-1950. [PMID: 34291346 DOI: 10.1007/s00405-021-06996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the long-term safety and efficacy of a 3D-printed bioresorbable polycaprolactone (PCL) nasal implant for nasal septal deformity reconstruction. METHODS Fourteen patients who had undergone nasal septum reconstruction surgery using 3D-printed PCL nasal septal implants were enrolled. The primary outcome was the change in total Nasal Obstruction Symptom Evaluation (NOSE) scale scores between postoperative 3 months and current status (3.59 ± 0.51 years). The secondary outcomes were changes in the minimum cross-sectional area (MCA) and volume of both nasal cavities based on acoustic rhinometry, the cross-sectional area of the ostiomeatal unit, and the nasal septum angle of the paranasal sinus (PNS) in computed tomography (CT) images, and a visual analog scale (VAS) of the patients' subjective satisfaction. RESULTS The results showed no significant changes in the MCAs (Cohen's d:0.09; p = 0.711) or nasal volume (Cohen's d:0.26; p = 0.356), the area of the ostiomeatal unit (Cohen's d:0.49; p = 0.064), septum angles (Cohen's d:0.18; p = 0.831), the NOSE scale (Cohen's d:0.14; p = 0.621), or patients' subjective satisfaction (Cohen's d:0.52; p = 0.076) during the follow-up period. CONCLUSIONS This homogeneous composite microporous PCL nasal septal implant demonstrated long-term clinical efficacy and safety in human tissues that required maintenance of mechanical strength. Therefore, the indications for this implant could extend to various other craniofacial reconstructions in the future.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Il Hwan Lee
- Department of Otolaryngology-Head and Neck Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Won-Soo Yun
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-Si, Gyeonggi-Do, Korea.,Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Dami Choi
- Research Institute, T&R Biofab Co. Ltd, Siheung-Si, Gyeonggi-Do, Korea
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-ro, Bucheon-si, Gyeonggi-Do, 14647, Korea.
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 137-701, Republic of Korea.
| |
Collapse
|
28
|
The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(ε-Caprolactone) Composites Modified by Electron Beam Irradiation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.
Collapse
|
29
|
Venu P, Kumar R, Chethelen RJ, Shunmugam R. Designing amphiphilic branched polymers for supramolecular self-assembly. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1912613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Parvathy Venu
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Rajan Kumar
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Roshni J. Chethelen
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raja Shunmugam
- Polymer Research Centre, Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
30
|
Bronzeri LB, Gauche C, Gudimard L, Courtial EJ, Marquette C, Felisberti MI. Amphiphilic and segmented polyurethanes based on poly(ε-caprolactone)diol and poly(2-ethyl-2-oxazoline)diol: Synthesis, properties, and a preliminary performance study of the 3D printing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Bhushan V, Heitz MP, Baker GA, Pandey S. Ionic Liquid-Controlled Shape Transformation of Spherical to Nonspherical Polymersomes via Hierarchical Self-Assembly of a Diblock Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5081-5088. [PMID: 33845575 DOI: 10.1021/acs.langmuir.1c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report the self-assembly of poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone) (PEG-b-PCL) copolymer in three ionic liquids (ILs) possessing different cations with common bis(trifluoromethylsulfonyl)imide anion. The observed polymeric nanostructures in ILs were directly visualized by room temperature conventional transmission and field emission scanning electron microscopy and were further examined for their size and shape by dynamic light scattering technique. The results show that through changes in the concentration of PEG-b-PCL and/or changing the solvent by using a different IL, we can effectively induce shape transformation of self-assembled PEG-b-PCL nanostructures in order to generate nonspherical polymersomes, such as worm-like aggregates, stomatocytes, nanotubes, large hexagonal and tubular-shaped polymersomes. These findings provide a promising platform for the design of biodegradable soft dynamic systems in the micro-/nano-motor field for cancer-targeted delivery, diagnosis and imaging-guided therapy, and controlled release of therapeutic drugs for treatment of many diseases. Non-spherical polymersome-based vaccines may be taken up more efficiently, especially against viruses for pulmonary drug delivery than the spherical polymersomes-based.
Collapse
Affiliation(s)
- Vidiksha Bhushan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mark P Heitz
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, New York, New York 14420, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
32
|
Siddiqui N, Kishori B, Rao S, Anjum M, Hemanth V, Das S, Jabbari E. Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Mol Biotechnol 2021; 63:363-388. [PMID: 33689142 DOI: 10.1007/s12033-021-00311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 01/17/2023]
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India.
| | - Braja Kishori
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Saranya Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Mohammad Anjum
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Venkata Hemanth
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
| | - Swati Das
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
33
|
Diaz Ariza IL, Jérôme V, Pérez Pérez LD, Freitag R. Amphiphilic Graft Copolymers Capable of Mixed-Mode Interaction as Alternative Nonviral Transfection Agents. ACS APPLIED BIO MATERIALS 2021; 4:1268-1282. [DOI: 10.1021/acsabm.0c01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ivonne L. Diaz Ariza
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| | - León D. Pérez Pérez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C. 11001, Colombia
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
34
|
Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021; 144:104973. [PMID: 33497713 DOI: 10.1016/j.neuint.2021.104973] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) causes intractable disease and leads to inevitable physical, financial, and psychological burdens on patients and their families. SCI is commonly divided into primary and secondary injury. Primary injury occurs upon direct impact to the spinal cord, which leads to cell necrosis, axon disruption, and vascular loss. This triggers pathophysiological secondary injury, which has several phases: acute, subacute, intermediate, and chronic. These phases are dependent on post-injury time and pathophysiology and have various causes, such as the infiltration of inflammatory cells and release of cytokines that can act as a barrier to neural regeneration. Another unique feature of SCI is the glial scar produced from the reactive proliferation of astrocytes, which acts as a barrier to axonal regeneration. Interdisciplinary research is investigating the use of biomaterials and tissue-engineered fabrication to overcome SCI. In this review, we discuss representative biomaterials, including natural and synthetic polymers and nanomaterials. In addition, we describe several strategies to repair spinal cord injuries, such as fabrication and the delivery of therapeutic biocomponents. These biomaterials and strategies may offer beneficial information to enhance the repair of spinal cord lesions.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea; Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea.
| |
Collapse
|
35
|
Wan X, Jiang J, Tu Y, Xu S, Li J, Lu H, Li Z, Xiong L, Li X, Zhao Y, Tu Y. A cascade strategy towards the direct synthesis of green polyesters with versatile functional groups. Polym Chem 2021. [DOI: 10.1039/d1py01124c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cascade coupling of ROP and CP enables the facile synthesis of high functional group content biodegradable polyesters.
Collapse
Affiliation(s)
- Xueting Wan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanyan Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyuan Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhikai Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lianhu Xiong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Chountoulesi M, Perinelli DR, Forys A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. Eur J Pharm Biopharm 2020; 158:21-34. [PMID: 33098976 DOI: 10.1016/j.ejpb.2020.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/23/2022]
Abstract
Amphiphilic polymers represent one of the main class of stabilizers for non-lamellar lyotropic liquid crystalline nanoparticles, being essential for their formation and stability. In the present study, poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) block copolymers and poly(2-methyl-2-oxazoline)-grad-poly(2-phenyl-2-oxazoline) (MPOx) gradient copolymers were incorporated as stabilizers in liquid crystalline nanoparticles prepared from glyceryl monooleate. The polymers were chosen according to their high biocompatibility and promising stealth properties, in order to develop safe and efficient drug delivery nanosystems. The physicochemical characteristics and fractal dimension of the resultant nanosystems were obtained from light scattering techniques, while their micropolarity and microfluidity from fluorescence spectroscopy. The effect of temperature, serum proteins and ionic strength on the physicochemical behavior was monitored. Their morphology was assessed by cryo-TEM, while their thermal behavior by microcalorimetry and high-resolution ultrasound spectroscopy. Their properties were dependent on the stabilizer chemistry and topology (block/gradient copolymer) and its concentration. Subsequently, resveratrol, as model hydrophobic drug, was loaded into the nanosystems, the entrapment efficiency was calculated and in vitro release studies were carried out, highlighting how the different stabilizer can differentiate the drug release profile. In conclusion, the proposed copolymers broaden the toolbox of polymeric stabilizers for the development of liquid crystalline nanoparticles intended for drug delivery applications.
Collapse
Affiliation(s)
- Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, Zabrze, Poland
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
37
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
38
|
Yang S, Jiang X, Xiao X, Niu C, Xu Y, Huang Z, Kang YJ, Feng L. Controlling the Poly(ε-caprolactone) Degradation to Maintain the Stemness and Function of Adipose-Derived Mesenchymal Stem Cells in Vascular Regeneration Application. Macromol Biosci 2020; 21:e2000226. [PMID: 33094556 DOI: 10.1002/mabi.202000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) scaffolds with adipose-derived mesenchymal stem cells (ADSCs) have been used in vascular regeneration studies. An evaluation method of the effect of PCL degradation products (DP) on the viability, stemness, and differentiation capacities of ADSCs is established. ADSCs are cultured in medium containing different concentrations of PCL DP before evaluating the effect of PCL DP on the cell apoptosis and proliferation, cell surface antigens, adipogenic and osteogenic differentiation capacities, and capacities to differentiate into endothelial cells and smooth muscle cells. The results demonstrate that PCL DP exceed 0.05 mg mL-1 may change the stemness and differentiation capacities of ADSCs. Therefore, to control the proper concentration of PCL DP is essential for ADSCs in vascular regeneration application.
Collapse
Affiliation(s)
- Shaojie Yang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xia Jiang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Xiong Xiao
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Chuan Niu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Yue Xu
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Ziwei Huang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Y James Kang
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| | - Li Feng
- S. Yang, Dr. X. Jiang, X. Xiao, C. Niu, Y. Xu, Z. Huang, Prof. Y. J. Kang, Prof. L. Feng, Regenerative Medicine Research Center, Sichuan University West China Hospital, No. 4 Keyuan Road, Wuhou District, Chengdu, 610041, China
| |
Collapse
|
39
|
Mandal P, Shunmugam R. Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1831392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Piyali Mandal
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
40
|
Madry H, Venkatesan JK, Carballo-Pedrares N, Rey-Rico A, Cucchiarini M. Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics 2020; 12:pharmaceutics12100930. [PMID: 33003607 PMCID: PMC7601511 DOI: 10.3390/pharmaceutics12100930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
- Correspondence: ; Tel.: +49-684-1162-4987; Fax: +49-684-1162-4988
| |
Collapse
|
41
|
Chandrasiri I, Abebe DG, Loku Yaddehige M, Williams JSD, Zia MF, Dorris A, Barker A, Simms BL, Parker A, Vinjamuri BP, Le N, Gayton JN, Chougule MB, Hammer NI, Flynt A, Delcamp JH, Watkins DL. Self-Assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for Bioimaging and Phototherapeutic Applications. ACS APPLIED BIO MATERIALS 2020; 3:5664-5677. [DOI: 10.1021/acsabm.0c00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Indika Chandrasiri
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Daniel G. Abebe
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mahesh Loku Yaddehige
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Jon Steven Dal Williams
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mohammad Farid Zia
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Austin Dorris
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Abigail Barker
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Briana L. Simms
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Azaziah Parker
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Bhavani Prasad Vinjamuri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ngoc Le
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Jacqueline N. Gayton
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Nathan I. Hammer
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Alex Flynt
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Davita L. Watkins
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
42
|
Sarker DK. Architectures and Mechanical Properties of Drugs and Complexes of Surface-Active Compounds at Air-Water and Oil-Water Interfaces. Curr Drug Discov Technol 2020; 16:11-29. [PMID: 29149812 DOI: 10.2174/1570163814666171117132202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drugs can represent a multitude of compounds from proteins and peptides, such as growth hormones and insulin and on to simple organic molecules such as flurbiprofen, ibuprofen and lidocaine. Given the chemical nature of these compounds two features are always present. A portion or portions of the molecule that has little affinity for apolar surfaces and media and on the contrary a series of part or one large part that has considerable affinity for hydrophilic, polar or charged media and surfaces. A series of techniques are routinely used to probe the molecular interactions that can arise between components, such as the drug, a range of surface- active excipients and flavor compounds, for example terpenoids and the solvent or dispersion medium. RESULTS Fifty-eight papers were included in the review, a large number (16) being of theoretical nature and an equally large number (14) directly pertaining to medicine and pharmacy; alongside experimental data and phenomenological modelling. The review therefore simultaneously represents an amalgam of review article and research paper with routinely used or established (10) and well-reported methodologies (also included in the citations within the review). Experimental data included from various sources as diverse as foam micro-conductivity, interferometric measurements of surface adsorbates and laser fluorescence spectroscopy (FRAP) are used to indicate the complexity and utility of foams and surface soft matter structures for a range of purposes but specifically, here for encapsulation and incorporation of therapeutics actives (pharmaceutical molecules, vaccines and excipients used in medicaments). Techniques such as interfacial tensiometry, interfacial rheology (viscosity, elasticity and visco-elasticity) and nanoparticle particle size (hydrodynamic diameter) and charge measurements (zeta potential), in addition to atomic force and scanning electron microscopy have proven to be very useful in understanding how such elemental components combine, link or replace one another (competitive displacement). They have also proven to be both beneficial and worthwhile in the sense of quantifying the unseen actions and interplay of adsorbed molecules and the macroscopic effects, such as froth formation, creaming or sedimentation that can occur as a result of these interactions. CONCLUSION The disclosures and evaluations presented in this review confirm the importance of a theoretical understanding of a complex model of the molecular interactions, network and present a framework for the understanding of really very complex physical forms. Future therapeutic developers rely on an understanding of such complexity to garner a route to a more successful administration and formulation of a new generation of therapeutic delivery systems for use in medicine.
Collapse
Affiliation(s)
- Dipak K Sarker
- Interfacial Nanotechnology Group, School of Pharmacy and Biomolecular Sciences, The University of Brighton, Moulsecoomb Campus, Lewes Road, Brighton, BN2 4GJ, United Kingdom
| |
Collapse
|
43
|
Wu X, Jia Y, Sun X, Wang J. Tissue engineering in female pelvic floor reconstruction. Eng Life Sci 2020; 20:275-286. [PMID: 32647506 PMCID: PMC7336160 DOI: 10.1002/elsc.202000003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged and elderly women. Mesh implantation is an ideal surgical treatment. The polypropylene mesh commonly used in clinical practice has good mechanical properties, but there are long-term complications. The application of tissue engineering technology in the treatment of pelvic organ prolapse disease can not only meet the mechanical requirements of pelvic floor support, but also be more biocompatible than traditional polypropylene mesh, and can promote tissue repair to a certain extent. In this paper, the progress of tissue engineering was summarized to understand the application of tissue engineering in the treatment of pelvic organ prolapse disease and will help in research.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - YuanYuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Xiuli Sun
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| |
Collapse
|
44
|
Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111048. [PMID: 32600683 DOI: 10.1016/j.msec.2020.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Drug release synchronized with tissue motion is attractive to cutaneous or musculoskeletal tissue injury repair. Here, we have developed a method of regulating drug release by mechanical on-off gates for potential treatment of repeated injury in these tissues. The mechanical gates consisted of a multilayer structure: A brittle outmost layer adhered to an elastic middle layer, which wrapped an inmost drug carrier to form the composite multilayer structure. When it was stretched, cracks appeared as mechanical gates due to mechanical performance difference between the outmost layer and the middle layer, leading to the drug release. When the external force disappeared, it recovered to stop the drug release. The controlled drug release would therefore be achieved by changing the status (opening or closure) of mechanical gates through applying this on-off mechanical stretching. A prototype based on the composite multilayer structure of adhesive coating and electrospinning technique realized the controlled release of drug and effectively repaired the incision. More types of composite multilayer structures for mechanical drug release were expected to meet curing requirement in cutaneous or musculoskeletal tissues.
Collapse
|
45
|
Venkatesan JK, Falentin-Daudré C, Leroux A, Migonney V, Cucchiarini M. Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene Sulfonate)-Grafted Poly(ɛ-Caprolactone) Films to Target Human Bone Marrow Aspirates. Tissue Eng Part A 2020; 26:450-459. [DOI: 10.1089/ten.tea.2019.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Amélie Leroux
- Université Paris 13-UMR CNRS 7244-CSPBAT-LBPS-UFR SMBH, Bobigny, France
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
46
|
Jeong HJ, Nam H, Jang J, Lee SJ. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering (Basel) 2020; 7:E32. [PMID: 32244491 PMCID: PMC7357036 DOI: 10.3390/bioengineering7020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023] Open
Abstract
It is difficult to fabricate tubular-shaped tissues and organs (e.g., trachea, blood vessel, and esophagus tissue) with traditional biofabrication techniques (e.g., electrospinning, cell-sheet engineering, and mold-casting) because these have complicated multiple processes. In addition, the tubular-shaped tissues and organs have their own design with target-specific mechanical and biological properties. Therefore, the customized geometrical and physiological environment is required as one of the most critical factors for functional tissue regeneration. 3D bioprinting technology has been receiving attention for the fabrication of patient-tailored and complex-shaped free-form architecture with high reproducibility and versatility. Printable biocomposite inks that can facilitate to build tissue constructs with polymeric frameworks and biochemical microenvironmental cues are also being actively developed for the reconstruction of functional tissue. In this review, we delineated the state-of-the-art of 3D bioprinting techniques specifically for tubular tissue and organ regeneration. In addition, this review described biocomposite inks, such as natural and synthetic polymers. Several described engineering approaches using 3D bioprinting techniques and biocomposite inks may offer beneficial characteristics for the physiological mimicry of human tubular tissues and organs.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
| | - Hyoryung Nam
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea;
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Institute of Convergence Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea;
- Department of Mechanical and Design Engineering, Wonkwang University, 460, Iksan-daero, Iksan-si, Jeollabuk-do 54538, Korea
| |
Collapse
|
47
|
Venkatesan JK, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9 Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics 2020; 12:pharmaceutics12030280. [PMID: 32245159 PMCID: PMC7151167 DOI: 10.3390/pharmaceutics12030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.
Collapse
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Céline Falentin-Daudré
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
48
|
Zhang J, Zhou ZH, Li L, Luo YL, Xu F, Chen Y. Dual Stimuli-Responsive Supramolecular Self-Assemblies Based on the Host–Guest Interaction between β-Cyclodextrin and Azobenzene for Cellular Drug Release. Mol Pharm 2020; 17:1100-1113. [DOI: 10.1021/acs.molpharmaceut.9b01142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- JianGuo Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Zi-Hao Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Lin Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yashao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
49
|
Li X, Cai S, Hu X, He X. Thermosensitive self-assembled behavior of poly (acrylamide-co-acrylonitrile)/polystyrene triblock copolymer and application in drug loading. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xian Li
- School of Materials Science and Engineering, Southwest Petroleum University, Chendu, People’s Republic of China
| | - Shuwei Cai
- School of Materials Science and Engineering, Southwest Petroleum University, Chendu, People’s Republic of China
| | - Xiaolei Hu
- School of Materials Science and Engineering, Southwest Petroleum University, Chendu, People’s Republic of China
| | - Xianru He
- School of Materials Science and Engineering, Southwest Petroleum University, Chendu, People’s Republic of China
| |
Collapse
|
50
|
Evaluation of Polycaprolactone/Gelatin/Chitosan Electrospun Membrane for Peritoneal Adhesion Reduction. Ann Plast Surg 2020; 84:S116-S122. [DOI: 10.1097/sap.0000000000002199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|