1
|
de Luna Rocha TC, Dos Santos Lima MJ, Nunes do Nascimento JL, Ferreira de Oliveira J, de Oliveira Silva E, Barbosa Dos Santos VH, de Lima Aires A, de Albuquerque Wanderley Sales V, Atanazio Rosa T, Rolim Neto PJ, Camelo Pessôa de Azevedo Albuquerque M, Alves de Lima MDC, Ferreira da Silva RM. Development and evaluation of the in vitro schistosomicidal activity of solid dispersions based on 2-(-5-bromo-1-H-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide. Exp Parasitol 2024; 256:108626. [PMID: 37972848 DOI: 10.1016/j.exppara.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.
Collapse
Affiliation(s)
| | | | | | - Jamerson Ferreira de Oliveira
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | | | | | - André de Lima Aires
- Department of Tropical Medicine, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Talita Atanazio Rosa
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro José Rolim Neto
- Department of Pharmacy, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
2
|
Telli FC, Yavuz M, Denizaltı S, Salman Y. Study of Radiotherapy Properties and Antimicrobial Activity of Glyconanoparticles (GNPs) Generated from Imidazolium Salts. ChemistrySelect 2023. [DOI: 10.1002/slct.202203810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Fatma Cetin Telli
- Chemistry Department Ege University Faculty of Science 35100 Bornova Izmir Turkey
| | - Murat Yavuz
- Chemistry Department Dicle University Faculty of Science 21280 Sur Diyarbakir Turkey
| | - Serpil Denizaltı
- Chemistry Department Ege University Faculty of Science 35100 Bornova Izmir Turkey
| | - Yesim Salman
- Chemistry Department Ege University Faculty of Science 35100 Bornova Izmir Turkey
| |
Collapse
|
3
|
Desiatkina O, Boubaker G, Anghel N, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Synthesis, Photophysical Properties and Biological Evaluation of New Conjugates BODIPY: Dinuclear Trithiolato-Bridged Ruthenium(II)-Arene Complexes. Chembiochem 2022; 23:e202200536. [PMID: 36219484 DOI: 10.1002/cbic.202200536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Indexed: 01/25/2023]
Abstract
The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii β-gal (RH strain tachyzoites expressing β-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs. aryl) of the spacer between the dye and the diruthenium(II) complex moiety, on fluorescence and biological activity were evaluated. The assessed photophysical properties revealed that despite an important fluorescence quenching effect observed after conjugating the BODIPY to the diruthenium unit, the hybrids could nevertheless be used as fluorescent tracers. Although the antiparasitic activity of this series of conjugates appears limited, the compounds demonstrate potential as fluorescent probes for investigating the intracellular trafficking of trithiolato-bridged dinuclear Ru(II)-arene complexes in vitro.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Laboratoire de Parasitologie, Université de la Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
4
|
Maikoo S, Xulu B, Mambanda A, Mkhwanazi N, Davison C, de la Mare J, Booysen IN. Biomolecular Interactions of Cytotoxic Ruthenium Compounds with Thiosemicarbazone or Benzothiazole Schiff Base Chelates. ChemMedChem 2022; 17:e202200444. [PMID: 36041073 PMCID: PMC9826503 DOI: 10.1002/cmdc.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Herein we illustrate the formation and characterization of new paramagnetic ruthenium compounds, trans-P-[RuCl(PPh3 )2 (pmt)]Cl (1) (Hpmt=1-((pyridin-2-yl)methylene)thiosemicarbazide), trans-P-[RuCl(PPh3 )2 (tmc)]Cl (2) (Htmc=1-((thiophen-2-yl)methylene)thiosemicarbazide) and a diamagnetic ruthenium complex, cis-Cl, trans-P-[RuCl2 (PPh3 )2 (btm)] (3) (btm=2-((5-hydroxypentylimino)methyl)benzothiazole). Agarose gel electrophoresis experiments of the metal compounds illustrated dose-dependent binding to gDNA by 1-3, while methylene blue competition assays suggested that 1 and 2 are also DNA intercalators. Assessment of the effects of the compounds on topoisomerase function indicated that 1-3 are capable of inhibiting topoisomerase I activity in terms of the ability to nick supercoiled plasmid DNA. The cytotoxic activities of the metal complexes were determined against a range of cancer cell lines versus a non-tumorigenic control cell line, and the complexes were, in general, more cytotoxic towards the cancer cells, displaying IC50 values in the low micromolar range. Time-dependent stability studies showed that in the presence of strong nucleophilic species (such as DMSO), the chloride co-ligands of 1-3 are rapidly substituted by the former as proven by the suppression of the substitution reactions in the presence of an excess amount of chloride ions. The metal complexes are significantly stable in both DCM and an aqueous phosphate buffer containing 2 % DMSO.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Bheki Xulu
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Allen Mambanda
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Ntando Mkhwanazi
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Candace Davison
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Jo‐Anne de la Mare
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Irvin Noel Booysen
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| |
Collapse
|
5
|
Guler S, Kayali HA, Sadan EO, Sen B, Subasi E. Half-Sandwich Arene Ruthenium(II) Thiosemicarbazone Complexes: Evaluation of Anticancer Effect on Primary and Metastatic Ovarian Cancer Cell Lines. Front Pharmacol 2022; 13:882756. [PMID: 35620291 PMCID: PMC9128756 DOI: 10.3389/fphar.2022.882756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe the synthesis, characterization and antiproliferative activity of three organo-ruthenium(II) half-sandwich complexes [RuCl(η6-p-cym)(N,S-L)]Cl (I, II, and III). To form these complexes, three thiosemicarbazone ligands (TSCs) were synthesized; L = 5-nitro-2-carboxyaldehyde-thiophen-N-methyl-thiosemicarbazone, (L1); 2-acetyl-5-bromo-thiophen-N-methyl-thiosemicarbazone, (L2) and 2-acetyl-5-bromo-thiophen-N,N-dimethyl-thiosemicarbazone, (L3). The isolated compounds were analyzed using spectroscopic techniques such as elemental analysis, conductance measurements, FT-IR, 1H NMR spectroscopy, MALDI-TOF mass spectrometry, and single-crystal XRD. Our results demonstrated that the synthesized thiosemicarbazone ligands (TSCs) are bound to the metal ion as a bidentate ligand that coordinates through the thiocarbonyl sulfur and azomethine nitrogen atoms in all complexes (I, II, and III). The X-ray crystal structures of L1 and L2 revealed that both compounds are crystallized in the triclinic crystal system with space group P-1. The biological potency of newly synthesized TSC ligands (L1, L2, and L3) and their corresponding ruthenium complexes (I, II, and III) were investigated on human primary ovarian (A2780) and human metastatic ovarian (OVCAR-3) cell lines. To get detailed information respecting antitumor properties, cytotoxicity, DNA/BSA binding affinity, cellular uptake, DNA binding competition, and trans-epithelial resistance measurement assays were performed. Our results demonstrate that newly synthesized ruthenium(II) complexes possess potential biological activity. Moreover, we observe that the ruthenium complexes reported here show anticancer activity on primary (A2780) and metastatic (OVCAR-3) ovarian cancer cells.
Collapse
Affiliation(s)
- Seminay Guler
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| | - Egemen Orkun Sadan
- Institute of Science and Technology, Dokuz Eylul University, Izmir, Turkey
| | - Betul Sen
- Department of Physics, Faculty of Science, Dokuz Eylul University, Izmir, Turkey
| | - Elif Subasi
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
6
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
7
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
8
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
9
|
Nongpiur CGL, Ghate MM, Tripathi DK, Poluri KM, Kaminsky W, Kollipara MR. Study of versatile coordination modes, antibacterial and radical scavenging activities of arene ruthenium, rhodium and iridium complexes containing fluorenone based thiosemicarbazones. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Lavanya M, Haribabu J, Ramaiah K, Suresh Yadav C, Kumar Chitumalla R, Jang J, Karvembu R, Varada Reddy A, Jagadeesh M. 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Lin Y, Betts H, Keller S, Cariou K, Gasser G. Recent developments of metal-based compounds against fungal pathogens. Chem Soc Rev 2021; 50:10346-10402. [PMID: 34313264 DOI: 10.1039/d0cs00945h] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides insight into the rapidly expanding field of metal-based antifungal agents. In recent decades, the antibacterial resistance crisis has caused reflection on many aspects of public health where weaknesses in our medicinal arsenal may potentially be present - including in the treatment of fungal infections, particularly in the immunocompromised and those with underlying health conditions where mortality rates can exceed 50%. Combination of organic moieties with known antifungal properties and metal ions can lead to increased bioavailability, uptake and efficacy. Development of such organometallic drugs may alleviate pressure on existing antifungal medications. Prodigious antimicrobial moieties such as azoles, Schiff bases, thiosemicarbazones and others reported herein lend themselves easily to the coordination of a host of metal ions, which can vastly improve the biocidal activity of the parent ligand, thereby extending the library of antifungal drugs available to medical professionals for treatment of an increasing incidence of fungal infections. Overall, this review shows the impressive but somewhat unexploited potential of metal-based compounds to treat fungal infections.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Harley Betts
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Sarah Keller
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
12
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
13
|
İLHAN CEYLAN B. Oxovanadium(IV) template derived from benzophenone S-allyl thiosemicarbazone: Synthesis, crystal structure, antioxidant activity and electrochemistry. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.911318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Şen Yüksel B. Spectroscopic characterization (IR and NMR), structural investigation, DFT study, and Hirshfeld surface analysis of two zinc(II) 2-acetylthiophenyl-thiosemicarbazone complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
The interaction of a thiosemicarbazone derived from R - (+) - limonene with lipid membranes. Chem Phys Lipids 2020; 234:105018. [PMID: 33232725 DOI: 10.1016/j.chemphyslip.2020.105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/21/2022]
Abstract
As a potential drug, 2-nitrobenzaldehyde-thiosemicarbazone (2-TSC), a thiosemicarbazone derived from the terpene R-(+)-limonene, was studied through calorimetric and spectroscopic techniques. Differential Scanning Calorimetry (DSC) data showed that 2-TSC causes structural changes in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DMPC) membrane, strongly decreasing the cooperativity of the bilayer gel-fluid thermal transition. Optical absorption spectroscopy showed that 2-TSC is more soluble in ethanol and lipids than in water medium, and that the drug displays different structures in the different environments. Though 2-TSC displays no fluorescence, time resolved fluorescence showed that the drug is an effective quencher of the fluorescent probe 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan). As it is well accepted that Laurdan is positioned into the bilayer close to the membrane surface, that is possibly the localization of 2-TSC in a bilayer. Electron spin resonance (ESR) of the probe 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine (14-PCSL) revealed that 2-TSC is inserted into the hydrocarbon part of the bilayer, fluidizing the lipid bilayer gel phase and rigidifying or organizing the bilayer fluid phase. Similar effects are found for other lipophilic molecules, including cholesterol. These results are useful to improve the understanding of the processes that govern the interaction of thiosemicarbazones with cell membranes, related to the activity of the drugs and their cytotoxicity.
Collapse
|
16
|
Desiatkina O, Păunescu E, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J. Coumarin-Tagged Dinuclear Trithiolato-Bridged Ruthenium(II)⋅Arene Complexes: Photophysical Properties and Antiparasitic Activity. Chembiochem 2020; 21:2818-2835. [PMID: 32347622 PMCID: PMC7586963 DOI: 10.1002/cbic.202000174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022]
Abstract
The synthesis, characterization, photophysical and biological properties of 13 new conjugate coumarin-diruthenium(II)⋅arene complexes against Toxoplasma gondii are presented. For all conjugate organometallic unit/coumarins, an almost complete loss of fluorescence efficacy was observed. However, the nature of the fluorophore, the type of bonding, the presence and length of a linker between the coumarin dye and the ruthenium(II) moiety, and the number of dye units influenced their biological properties. The in vitro activity against a transgenic T. gondii strain grown in human foreskin fibroblasts (HFF) leads to IC50 values for T. gondii β-gal from 105 to 735 nM. Of note is that nine compounds displayed lower IC50 than the standard drug pyrimethamine. One compound applied at its IC50 did not affect B-cell proliferation but had an impact on T-cell proliferation in murine splenocyte cultures. Transmission electron microscopy of T. gondii β-gal-infected HFF showed that treatment predominantly affected the parasites' mitochondrion.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Emilia Păunescu
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Martin Mösching
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Yosra Amdouni
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Julien Furrer
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
17
|
Gichumbi JM, Friedrich HB, Omondi B, Chenia HY. Synthesis, characterization, and antimicrobial studies of half-sandwich η 6-toluene ruthenium complexes with N,N′-bidentate ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1795146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Holger B. Friedrich
- School of Chemistry, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Scottsville, South Africa
| | - Hafizah Y. Chenia
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Jarestan M, Khalatbari K, Pouraei A, Sadat Shandiz SA, Beigi S, Hedayati M, Majlesi A, Akbari F, Salehzadeh A. Preparation, characterization, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. 3 Biotech 2020; 10:230. [PMID: 32399380 DOI: 10.1007/s13205-020-02230-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/26/2020] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer is one of the most common cancers in modern societies. Previous studies have shown that the use of nanoparticle complexes is effective in the treatment of cancer. The aim of this study was to investigate the cytotoxicity and anticancer properties of cobalt oxide (Co3O4) nanoparticles (NPs) functionalized by glutamic acid (Glu) and conjugated with thiosemicarbazide (TSC) on gastric cancer (AGS) cell line. First, the Co3O4@Glu/TSC nanoparticles were synthesized via co-condensation reaction. Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) tests were performed for identifying the morphology, structure, size and functional groups of produced nanoparticles. MTT assay was also performed to evaluate cytotoxicity effect. Moreover, Annexin V/PI staining with flow cytometry analysis, caspase-3 activation assay, and Hoechst 33258 staining was carried out for evaluating apoptosis. The FTIR results showed that the components of Co3O4@Glu/TSC NPs complex were successfully fabricated. Crystallographic structure of Co3O4@Glu/TSC NPs was confirmed by XRD patterns. SEM results indicated that the size of the nanoparticles was in the range of 16-40 nm. An EDX spectrum was determined and data explained the existence of cobalt as the prominent element. MTT test results showed that AGS cell life was significantly decreased compared to the control group with increasing concentration of nanoparticles (dose-dependent) (P < 0.05), IC50 = 107.5 μg/mL. The results of flow cytometry assay and caspase-3 activity showed that fabricated Co3O4@Glu/TSC NPs induced apoptosis in the treated group. Moreover, Co3O4@Glu/TSC NPs treated AGS cells indicate an increase in the apoptotic characteristics including nuclear fragmentation. In the current work, the promising cytotoxicity and anti-cancer activities of Co3O4@Glu/TSC NPs complex toward gastric cancer (AGS) cell line were showed and it can be suggested for the drug delivery system.
Collapse
Affiliation(s)
- Mahsa Jarestan
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Kimia Khalatbari
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ayda Pouraei
- 2Department of Medical Sciences, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sadaf Beigi
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad Hedayati
- 4Department of Cell and Molecular Biology, University of Guilan, Rasht, Iran
| | - Amitis Majlesi
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fatemeh Akbari
- Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Salehzadeh
- 1Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
19
|
Namiecińska E, Sobiesiak M, Małecka M, Guga P, Rozalska B, Budzisz E. Antimicrobial and Structural Properties of Metal Ions Complexes with Thiosemicarbazide Motif and Related Heterocyclic Compounds. Curr Med Chem 2019; 26:664-693. [PMID: 29493443 DOI: 10.2174/0929867325666180228164656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 01/25/2023]
Abstract
Antibiotic resistance acquired by various bacterial fungal and viral pathogens poses therapeutic problems of increasing severity. Among the infections that are very difficult to treat, biofilm-associated cases are one of the most hazardous. Complex structure of a biofilm and unique physiology of the biofilm cells contribute to their extremely high resistance to environmental conditions, antimicrobial agents and the mechanisms of host immune response. Therefore, the biofilm formation, especially by multidrugresistant pathogens, is a serious medical problem, playing a pivotal role in the development of chronic and recurrent infections. These factors create a limitation for using traditional chemiotherapeutics and contribute to a request for development of new approaches for treatment of infectious diseases. Therefore, early reports on antimicrobial activity of several complexes of metal ions, bearing thiosemicarbazide or thiosemicarbazones as the ligands, gave a boost to worldwide search for new, more efficient compounds of this class, to be used as alternatives to commonly known drugs. In general, depending on the presence of other heteroatoms, these ligands may function in a di-, tri- or tetradentate forms (e.g., of N,S,-, N,N,S-, N,N,N,S-, N,N,S,S-, or N,S,O-type), which impose different coordination geometries to the resultant complexes. In the first part of this review, we describe the ways of synthesis and the structures of the ligands based on the thiosemicarbazone motif, while the second part deals with the antimicrobial activity of their complexes with selected metal ions.
Collapse
Affiliation(s)
- Ewelina Namiecińska
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marta Sobiesiak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, 85-094 Bydgoszcz, Poland
| | - Magdalena Małecka
- Department of Theoretical and Structural Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Rozalska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Elzbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
20
|
Şen B, Kalhan HK, Demir V, Güler EE, Kayalı HA, Subaşı E. Crystal structures, spectroscopic properties of new cobalt(II), nickel(II), zinc(II) and palladium(II) complexes derived from 2-acetyl-5-chloro thiophene thiosemicarbazone: Anticancer evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:550-559. [PMID: 30813058 DOI: 10.1016/j.msec.2018.12.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/30/2022]
Abstract
The reactions of cobalt(II), nickel(II), zinc(II) chlorides and [Pd(DMSO)2Cl2] with 2-acetyl-5-chloro-thiophene thiosemicarbazone (HL) leads to the formation of a series of new complexes: [CoCl2(S-HL)2], 1; [Ni(N,S-L)2], 2 [ZnCl2(S-HL)2], 3 and [PdCl2(N,S-HL)], 4. All the complexes have been characterized by elemental analysis, IR, LC-MS. 1H and 13C NMR spectroscopy have been performed for Zn(II) and Pd(II) complexes. The crystal structures of the complexes 1-3 have been determined by single-crystal X-ray diffraction methods. The compounds, (1) and (3), crystallized in the monoclinic crystal system with C2/c space group. In both complexes, the metal centers are four-coordinated in a distorted tetrahedral configuration by two sulfur atoms from two thiosemicarbazone ligands and two Cl anions. The crystal structure of (2) consists of monomeric entities where the nickel(II) ion exhibit distorted square planar geometry. The coordination geometry around nickel ion is four-coordinate with four atoms of the two chelating thiosemicarbazone ligands which are in cis position. The τ4 value of 0.255 obtained from the τ4 analysis of complex (2) shows that the four-coordinate geometry around the central nickel ion is close to square planar. Complex (4) is mononuclear, the central ion is coordinated through the sulfur and the azomethine nitrogen atom of neutral ligand. The cytotoxic effects of all complexes were analyzed for three cancer cell lines, Caco-2, DLD-1, and SW620 compared to normal colon epithelial cell line, CCD18Co. Complex (4) is more active against DLD-1, SW620 and Caco-2 than CCD18Co. The efficiency of complex (4) is more effective in aggressive cancer cell lines. Therefore, it can be used as a new chemotherapeutic, especially in the treatment of resistant cancer types caused by long-term use of platinum-based drugs.
Collapse
Affiliation(s)
- Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Hatice Kübra Kalhan
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Volkan Demir
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Egemen Erdem Güler
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey
| | - Hülya Ayar Kayalı
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey; Izmir Biomedicine and Genome Center, 35340 Izmir, Turkey.
| | - Elif Subaşı
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey.
| |
Collapse
|
21
|
Synthesis, characterization and biological application of dinuclear Cu(II) complexes of Schiff base ligands of galactochloralose and α-chloralose. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Gatti A, Habtemariam A, Romero-Canelón I, Song JI, Heer B, Clarkson GJ, Rogolino D, Sadler PJ, Carcelli M. Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity. Organometallics 2018; 37:891-899. [PMID: 29681675 PMCID: PMC5908187 DOI: 10.1021/acs.organomet.7b00875] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/29/2022]
Abstract
We report the synthesis, characterization, and antiproliferative activity of organo-osmium(II) and organo-ruthenium(II) half-sandwich complexes [(η6-p-cym)Os(L)Cl]Cl (1 and 2) and [(η6-p-cym)Ru(L)Cl]Cl (3 and 4), where L = N-(2-hydroxy)-3-methoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively. X-ray crystallography showed that all four complexes possess half-sandwich pseudo-octahedral "three-legged piano-stool" structures, with a neutral N,S-chelating thiosemicarbazone ligand and a terminal chloride occupying three coordination positions. In methanol, E/Z isomerization of the coordinated thiosemicarbazone ligand was observed, while in an aprotic solvent like acetone, partial dissociation of the ligand occurs, reaching complete displacement in a more coordinating solvent like DMSO. In general, the complexes exhibited good activity toward A2780 ovarian, A2780Cis cisplatin-resistant ovarian, A549 lung, HCT116 colon, and PC3 prostate cancer cells. In particular, ruthenium complex 3 does not present cross-resistance with the clinical drug cisplatin in the A2780 human ovarian cancer cell line. The complexes were more active than the free thiosemicarbazone ligands, especially in A549 and HCT116 cells with potency improvements of up to 20-fold between organic ligand L1 and ruthenium complex 1.
Collapse
Affiliation(s)
- Anna Gatti
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ji-Inn Song
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Bindy Heer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Guy J. Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Dominga Rogolino
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mauro Carcelli
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei
Metalli nei Sistemi Biologici), University
of Parma, Parco Area
delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
23
|
Tavsan Z, Yaman PK, Subasi E, Kayali HA. Screening organometallic thiophene containing thiosemicarbazone ruthenium (II/III) complexes as potential anti-tumour agents. J Biol Inorg Chem 2018; 23:425-435. [PMID: 29569084 DOI: 10.1007/s00775-018-1549-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
The new ruthenium (III) complex has been synthesized and characterized by elemental analysis, FT-IR, UV-Vis, EI-Mass, EPR spectroscopy, and magnetic susceptibility measurement. Cytotoxic effects of organoruthenium (II/III) complexes 1a, 1b, and 2a, and their ligands (TSC1 and TSC2) in cultured human ovarian (A2780, SKOV-3, and OVCAR-3) and colon (DLD, CCD18Co, and Caco-2) cells have been investigated comparing reactivity of the Ru (II/III) complexes and their free TSC ligands. The complexes exhibit higher cytotoxicity in three cancer cell lines than in normal cells. The binding with CT-DNA and BSA of the all complexes were weak compared with their ligand in spite of the cellular uptake of these complexes into the cytoplasm and then nucleus while their cytotoxic effects were vice versa. All the results showed that Complex 1b has more efficient cytotoxicity on the colon cancer cells than ovarian cancer cells. However, Complex 2a is a better drug candidate especially for antitumor therapy of metastasized ovarian cancer.
Collapse
Affiliation(s)
- Zehra Tavsan
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Pelin Köse Yaman
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, Izmir, Turkey
| | - Elif Subasi
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, Izmir, Turkey
| | - Hulya Ayar Kayali
- Department of Chemistry, Faculty of Science, Dokuz Eylül University, Izmir, Turkey. .,Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
24
|
Yavuz M, Yaman PK, Öztürk N, Timur S, Subaşı E. p-Cymene Based Organometallic Ruthenium(II)-Arene Complexes with Benzaldehyde Derived Thiosemicarbazones: Synthesis, Characterization and Antimicrobial Activity. DICLE MEDICAL JOURNAL 2017. [DOI: 10.5798/dicletip.362482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
El-Shafiy HF, Saif M, Mashaly MM, Halim SA, Eid MF, Nabeel A, Fouad R. New nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II) ions; spectroscopy, thermal, structural analysis, DFT calculations and antimicrobial activity application. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Sinniah SK, Sim KS, Ng SW, Tan KW. Structural and cytotoxic studies of cationic thiosemicarbazones. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Synthesis, characterization and in vitro biological activities of new water-soluble copper(II), zinc(II), and nickel(II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Half-sandwich ruthenium-arene complexes with thiophen containing thiosemicarbazones: Synthesis and structural characterization. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Singh HL, Singh J, Bhanuka S. Synthesis, spectral, DFT, and antimicrobial studies of tin(II) and lead(II) complexes with semicarbazone and thiosemicarbazones derived from (2-hydroxyphenyl)(pyrrolidin-1-yl)methanone. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1115485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Har Lal Singh
- Faculty of Engineering and Technology, Department of Chemistry, Mody University of Science and Technology, Sikar, India
| | - J.B. Singh
- Faculty of Engineering and Technology, Department of Chemistry, Mody University of Science and Technology, Sikar, India
| | - Sunita Bhanuka
- Faculty of Engineering and Technology, Department of Chemistry, Mody University of Science and Technology, Sikar, India
| |
Collapse
|
30
|
Raja N, Devika N, Gupta G, Nayak VL, Kamal A, Nagesh N, Therrien B. Biological activities of pyrenyl-derived thiosemicarbazone half-sandwich complexes. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Guler E, Akbulut H, Bozokalfa G, Demir B, Eyrilmez GO, Yavuz M, Demirkol DO, Coskunol H, Endo T, Yamada S, Timur S, Yagci Y. Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emine Guler
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Huseyin Akbulut
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Guliz Bozokalfa
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Bilal Demir
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Gizem Oyman Eyrilmez
- Department of Biotechnology; Graduate School of Natural and Applied Sciences; Ege University; 35100 Izmir Turkey
| | - Murat Yavuz
- Department of Chemistry; Faculty of Science; Dicle University; 21280 Diyarbakir Turkey
| | - Dilek Odaci Demirkol
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Hakan Coskunol
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
- Psychiatry Department; Faculty of Medicine; Ege University; 35100 Izmir Turkey
| | - Takeshi Endo
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Shuhei Yamada
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Suna Timur
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Yusuf Yagci
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department; Faculty of Science; King Abdulaziz University; PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
32
|
González B, del Valle M, Díaz F, Espinosa-Bustos C, Ramírez A, Hernández L. Synthesis and electrochemical characterization of new ruthenium–terthiophene complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Demir F, Demir B, Yalcinkaya EE, Cevik S, Odaci Demirkol D, Anik U, Timur S. Amino acid intercalated montmorillonite: electrochemical biosensing applications. RSC Adv 2014. [DOI: 10.1039/c4ra07026g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work is the first that includes the use of glycine (Gly), lysine (Lys) and glutamic acid (Glu) modified clay mineral matrices in the biosensors.
Collapse
Affiliation(s)
- Filiz Demir
- Ege University
- Faculty of Sciences
- Biochemistry Department
- 35100-Bornova, Turkey
| | - Bilal Demir
- Ege University
- Faculty of Sciences
- Biochemistry Department
- 35100-Bornova, Turkey
| | - Esra E. Yalcinkaya
- Ege University
- Faculty of Sciences
- Chemistry Department
- 35100-Bornova, Turkey
| | - Serdar Cevik
- Mugla Sitki Kocman University
- Faculty of Sciences
- Chemistry Department
- Mugla, Turkey
| | | | - Ulku Anik
- Mugla Sitki Kocman University
- Faculty of Sciences
- Chemistry Department
- Mugla, Turkey
| | - Suna Timur
- Ege University
- Faculty of Sciences
- Biochemistry Department
- 35100-Bornova, Turkey
| |
Collapse
|