1
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
2
|
Sathya TA, Viswanathan S, Kolar AB, Jahirhussain G, Alagumanian S, Sobana S, Arumugam N. Environmental profiling of gold nanoparticles by flavonoids fractionalization from carrica papaya leaf extract for photocatalytic debasement of organic contaminants and it's cyto-toxic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119445. [PMID: 38942259 DOI: 10.1016/j.envres.2024.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In present investigation, Carica papaya leaf extract has been employed as a bio-reductant agent in order to synthesize ecologically sustainable bio-coupled gold nanoparticles. The formation of gold nanoparticles was confirmed based on colour change of solution and its surface plasmon resonance peak measured using UV-Vis Spectrophotometer (UV-Vis). The Morphology and size of nanoparticles were determined using transmission electron microscope (SEM/TEM), and its crystalline structure by X-ray diffraction studies. Surface area was determined via BET isotherm analysis. The elemental composition of Au nanoparticles was developed using the technique of energy dispersive spectroscopy (EDS). Furthermore, FTIR analysis delineated the presence of functional groups present in the samples of the synthesized AuNPs. Thus, the efficiency of bio coupled Au nanoparticles in photo catalytically decomposing methylene blue was examined under the influence of visible light., the lethal MB colorant had been reduced to 95 % Within 90 min. And also 60% TOC removal was recorded after 5 min of degradation reaction, which increased to 99% after 90 min. Furthermore, cytotoxic experiments on Michigan Cancer Foundations-7 (MCF-7) cell lines showed that Au nanoparticles are effective anticancer agents with an IC50 of 87.2 g/mL on the top of the present work revealed the eco-safety and affordable production of Au nanoparticles from Carica papaya leaf extract, which displayed photocatalytic debasement of organic pollutants and cyto-toxicity effects was investigated.
Collapse
Affiliation(s)
- T A Sathya
- PG & Research Department of Microbiology, Vivekanandha College of Arts and Sciences (Autonomous) for Women, Elayampalayam, Tiruchencode, 637205, Tamil Nadu, India.
| | - S Viswanathan
- PG &Research Centre of Microbiology, Sri Paramakalyani College, Alwarkurichi, 627412, Tamil Nadu, India.
| | - Amzad Basha Kolar
- PG Department of Botany, The New College (Autonomous), Affiliated to University of Madras, Chennai, 600014, Tamil Nadu, India
| | - G Jahirhussain
- PG & Research Department of Botany, Government Arts College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Karur, 639005, Tamil Nadu, India
| | - S Alagumanian
- PG& Research Department of Botany, H.H The Rajah's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Pudukkottai, 622001, Tamil Nadu, India
| | - S Sobana
- PG& Research Department of Physics, H.H The Rajah's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli-24, Pudukkottai, 622001, Tamil Nadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Shayo GM, Elimbinzi E, Shao GN. Preparation methods, applications, toxicity and mechanisms of silver nanoparticles as bactericidal agent and superiority of green synthesis method. Heliyon 2024; 10:e36539. [PMID: 39263137 PMCID: PMC11385776 DOI: 10.1016/j.heliyon.2024.e36539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Silver nanoparticles (SNPs) are a type of nanomaterial with wide applications in water treatment, medicine, food packaging, and industrial processes. Their unique optical, electrical, thermal conductivity, and biological properties distinguish them from other metal ions and liken them to noble metals like gold and copper. The present review explores the diverse applications, preparation techniques, mechanism of action of SNPs, and properties of SNPs focusing on their bactericidal activities and potential impacts on human health. Different preparation methods, encompassing chemical, physical, and biological techniques, were reviewed and analyzed to comprehend their effect on the properties and applications of SNPs. Studies revealed that the SNPs exhibit excellent antibactericidal properties. Mechanisms underlying their antimicrobial effects were explored, primarily focusing on pathogen-scavenging activities. Despite the promising benefits of SNPs, their potential toxicity to human health must be carefully managed. Regulatory standards, such as those set by WHO and USEPA; establish a maximum tolerable limit of 0.1 mg/L to mitigate health risks associated with SNP exposure. It is recommended to continue research into safer applications and alternative formulations of SNPs to minimize potential health risks while maximizing their beneficial applications across different industries.
Collapse
Affiliation(s)
- Godfrey Michael Shayo
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Elianaso Elimbinzi
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Godlisten N Shao
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| |
Collapse
|
4
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
5
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Alex AM, Subburaman S, Chauhan S, Ahuja V, Abdi G, Tarighat MA. Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Sci Rep 2024; 14:11707. [PMID: 38777818 PMCID: PMC11111742 DOI: 10.1038/s41598-024-61946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.
Collapse
Affiliation(s)
- Asha Monica Alex
- Department of Biotechnology, St Joseph's College, (Autonomous) affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
| | | | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University Mohali (Punjab), Gharuan, India
| | - Vishal Ahuja
- University Institute of Biotechnology and University Centre for Research and Development Chandigarh University Mohali (Punjab), Gharuan, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
7
|
Zhang Y, Tang Y, Liao Q, Qian Y, Zhu L, Yu DG, Xu Y, Lu X, Kim I, Song W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B 2024; 12:2054-2069. [PMID: 38305698 DOI: 10.1039/d3tb02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Microporous organic polymers (MOPs) and metal oxide hybrid composites are considered valuable coating materials because of their versatility derived from the synergistic combination of MOPs' inherent dispersibility and the distinctive properties of metal oxides. In this study, we present the synthesis of sea-urchin-like MOPs hybridised with silver oxide nanoparticles (Ag2O NPs) to fabricate antibacterial composites suitable for potential antibacterial coating applications. Ag2O NP-decorated urchin-like MOPs (Ag2O@UMOPs) were synthesised by employing a combination of two methods: a one-pot Lewis acid-base interaction-mediated self-assembly and a straightforward impregnation process. The as-prepared Ag2O@UMOPs demonstrated high antibacterial efficacy against both E. coli (G-) and S. aureus (G+). The antibacterial mechanism of Ag2O@UMOPs mainly involved the synergistic effects of accumulation of Ag2O@UMOPs, the release of Ag+ ions, and the generation of reactive oxygen species. The exceptional processability and biosafety of Ag2O@UMOPs make them ideal organic coating materials for convenient application on various substrates. These remarkable features of Ag2O@UMOPs provide an effective platform for potential antibacterial applications in biological sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, No. 139 Yan An Xi Road, Shanghai, 200040, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
8
|
Bansal S, Singh A, Poddar D, Thakur S, Jain P. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications. Prep Biochem Biotechnol 2024; 54:127-149. [PMID: 37530797 DOI: 10.1080/10826068.2023.2214916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In the modern era, inorganic nanoparticles have received profound attention as they possess boundless applications in various fields. Among these, vanadium-based nanoparticles (VNPs) are highly remarkable due to their inherent physiological and biological properties with many therapeutic and other applications, such as drug delivery systems for diseases like cancer, environmental remediation, energy storage, energy conversion, and photocatalysis. Moreover, physically, and chemically synthesized VNPs are very versatile, however, these synthesis routes cause concern to health and the environment due to the highly savage reaction conditions, using highly toxic and harsh chemicals, which compel the researchers to develop an eco-friendly, greener, and sustainable route for synthesis. In this outlook, to avoid the innumerable limitations, a bio approach is used over chemical and physical methods. This present review emphasis on the role of various biological components in the synthesis, especially Phyto-molecules that acts as capping and reducing agent, and solvent system for the nanoparticles synthesis. Furthermore, the influence of various factors on the biogenic synthesized nanoparticles has also been discussed. Finally, potential applications of as-synthesized VNPs, principally as an antimicrobial agent and their role as a nanomedicine, energy applications as a supercapacitor, and photocatalytic agents, have been discussed.
Collapse
Affiliation(s)
- Smriti Bansal
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Deepak Poddar
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology (N.S.U.T), Dwarka, New Delhi, India
| |
Collapse
|
9
|
Akhi A, Hasan A, Saha N, Howlader S, Bhattacharjee S, Dey K, Atique Ullah AKM, Bhuiyan FR, Chakraborty AK, Akhtar US, Shaikh MAA, Dey BK, Bhattacharjee S, Ganguli S. Ophiorrhiza mungos-Mediated Silver Nanoparticles as Effective and Reusable Adsorbents for the Removal of Methylene Blue from Water. ACS OMEGA 2024; 9:4324-4338. [PMID: 38313493 PMCID: PMC10831830 DOI: 10.1021/acsomega.3c05992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.
Collapse
Affiliation(s)
- Aklima
A Akhi
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abid Hasan
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Nakshi Saha
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabbir Howlader
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabonty Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Kamol Dey
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - A. K. M. Atique Ullah
- Nanoscience
and Technology Research Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory
of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department
of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Umme Sarmeen Akhtar
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Benu Kumar Dey
- Department
of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram 4331, Bangladesh
| | - Samiran Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumon Ganguli
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
10
|
Șuică-Bunghez IR, Senin RM, Sorescu AA, Ganciarov M, Răut I, Firincă C, Constantin M, Gifu IC, Stoica R, Fierăscu I, Fierăscu RC. Application of Lavandula angustifolia Mill. Extracts for the Phytosynthesis of Silver Nanoparticles: Characterization and Biomedical Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:333. [PMID: 38337867 PMCID: PMC10857192 DOI: 10.3390/plants13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Nanotechnology can offer a series of new "green" and eco-friendly methods for developing different types of nanoparticles, among which the development of nanomaterials using plant extracts (phytosynthesis) represents one of the most promising areas of research. This present study details the use of lavender flowers (Lavandula angustifolia Mill., well-known for their use in homeopathic applications) for the biosynthesis of silver nanoparticles with enhanced antioxidant and antibacterial properties. Several qualitative and quantitative assays were carried out in order to offer an image of the extracts' composition (the recorded total phenolics content varied between 21.0 to 40.9 mg GAE (gallic acid equivalents)/g dry weight (d.w.), while the total flavonoids content ranged between 3.57 and 16.8 mg CE (catechin equivalents)/g d.w.), alongside modern analytical methods (such as gas chromatography-mass spectrometry-GC-MS, quantifying 12 phytoconstituents present in the extracts). The formation of silver nanoparticles (AgNPs) using lavender extract was studied by UV-Vis spectroscopy, Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)/zeta potential, with the selected nanoparticles having crystallite sizes of approx. 14.55 nm (AgNP-L2) and 4.61 nm, respectively (for AgNP-L4), and hydrodynamic diameters of 392.4 nm (for AgNP-L2) and 391.6 nm (for AgNP-L4), determined by DLS. A zeta potential of around -6.4 mV was displayed for both samples while presenting as large aggregates, in which nanoparticle clusters with dimensions of around 130-200 nm can be observed. The biomedical applications of the extracts and the corresponding phytosynthesized nanoparticles were evaluated using antioxidant and antimicrobial assays. The obtained results confirmed the phytosynthesis of the silver nanoparticles using Lavandula angustifolia Mill. extracts, as well as their antioxidant and antimicrobial potential.
Collapse
Affiliation(s)
- Ioana Raluca Șuică-Bunghez
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Raluca Mădălina Senin
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Ana Alexandra Sorescu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Mihaela Ganciarov
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Iuliana Răut
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Cristina Firincă
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Biology, University of Bucharest, 91 Splaiul Independenței, 050104 Bucharest, Romania
| | - Mariana Constantin
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Pharmacy, “Titu Maiorescu” University, 187 Calea Vacaresti, 040051 Bucharest, Romania
| | - Ioana Cătălina Gifu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Rusăndica Stoica
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
| | - Irina Fierăscu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Radu Claudiu Fierăscu
- The National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Splaiul Independentei, 060021 Bucharest, Romania; (I.R.Ș.-B.); (A.A.S.); (M.G.); (I.R.); (C.F.); (M.C.); (I.C.G.); (R.S.); (I.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| |
Collapse
|
11
|
Easmin S, Bhattacharyya M, Pal K, Das P, Sahu R, Nandi G, Dewanjee S, Paul P, Haydar MS, Roy S, Dua TK. Papaya peel extract-mediated green synthesis of zinc oxide nanoparticles and determination of their antioxidant, antibacterial, and photocatalytic properties. Bioprocess Biosyst Eng 2024; 47:65-74. [PMID: 38086975 DOI: 10.1007/s00449-023-02945-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024]
Abstract
This study describes an effective and eco-friendly approach to the synthesis of zinc oxide nanoparticles (ZnONPs) utilizing papaya fruit peel extract (PPE). The structural evaluation and morphological features of synthesized ZnONPs were examined using various physicochemical analyses. The formulated ZnONPs were spherical to hexagonal in shape with ⁓ 170 nm in diameter. ZnONPs exhibited improved antioxidant potential in terms of DPPH radical scavenging activity (IC50 = 98.74 µg/ml) and ferric-reducing potential compared with PPE. The antibacterial activity of ZnONPs was measured against pathogenic strains of Salmonella typhi, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The biosynthesized ZnONPs showed potential antibacterial efficacy against all microbes. In addition, ZnONPs exhibited potential photocatalytic activity in rhodamine B degradation in the presence of sunlight. The results indicated that papaya peels, which are these fruit wastes, could be helpful for the green synthesis of ZnONPs with good dose-responsive antioxidant, antibacterial, and photocatalytic activities.
Collapse
Affiliation(s)
- Serina Easmin
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Moulik Bhattacharyya
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Krishna Pal
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India
| | - Md Salman Haydar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, P.O. NBU, Siliguri, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, P.O. NBU, Siliguri, West Bengal, 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.-NBU, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
12
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
13
|
Moorthy K, Chang KC, Huang HC, Wu WJ, Chiang CK. Evaluating Antioxidant Performance, Biosafety, and Antimicrobial Efficacy of Houttuynia cordata Extract and Microwave-Assisted Synthesis of Biogenic Silver Nano-Antibiotics. Antioxidants (Basel) 2023; 13:32. [PMID: 38247457 PMCID: PMC10812406 DOI: 10.3390/antiox13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
From the traditional Chinese medicine point of view, although Houttuynia cordata extract (HCE) possesses an incredible amount of phytonutrients and exhibits antioxidant activities, excessive doses of HCE can cause danger to organisms and lead to death. In this study, we first examine HCE's overall phenolic and flavonoid content, antioxidant efficacy, and antibacterial activity. Results show that HCE is suitable as a bio-reducing agent for the microwave-assisted synthesis of silver nanoparticles (HCE-AgNPs) with enhanced antioxidant and antimicrobial performance. Under an optimized microwave condition (i.e., 100 °C for 10 min), the HCE-stabilized AgNPs were confirmed with a UV-visible peak at 430 nm and 19.7 ± 4.2 nm in size. Physicochemical properties of HCE-AgNPs were extensively characterized by zeta-potential, FT-IR, XRD, and XPS measurements. Compared to the HC extract counterpart, HCE-AgNPs display superior antioxidant activity, higher DPPH scavenging efficiency, and enhanced broad-spectrum bactericidal activity to inhibit the growth of all tested bacterial strains at doses of 2 μg/mL. Biosafety evaluation indicated that HCE-AgNPs are noncytotoxic on human red blood cells. These data show that the microwave synthesis of AgNPs exhibits a great antioxidant ability, superior antibacterial activity, and a trivial hemolytic effect, providing another bactericidal therapy strategy to address the increasing healthcare-associated infections.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Hsiao-Chi Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (H.-C.H.); (W.-J.W.)
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng 97401, Taiwan;
| |
Collapse
|
14
|
Mishra S, Sundaram S, Srivastava S, Dhar R. Phytosynthesis of Silver Nanoparticles Using Oscimum sanctum Leaf Extract and Studies on Its Antidiabetic, Antioxidant, and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2023; 6:4127-4137. [PMID: 37751403 DOI: 10.1021/acsabm.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The green synthesis of plasmonic metal nanoparticles (NPs) has gained considerable attention among researchers as it is cost-effective, environmentally friendly, energy-saving, and nontoxic. We have synthesized silver NPs (Ag NPs) with Oscimum sanctum (holy Tulsi) medicinal plant leaf extract by green synthesis methods. Further, we investigate the antibacterial, antioxidant, and antidiabetic activities of the synthesized Ag NPs. Oscimum sanctum leaf extract has secondary metabolites such as phenolic and flavonoid compounds, which play a significant role in the synthesis of Ag NPs. Subsequently, these bioactive molecules get adsorbed on the large surfaces of the synthesized NPs. Spectroscopic techniques such as X-ray diffraction (XRD), UV-visible absorption, Fourier-transform infrared, and scanning electron microscopy have been used to study and characterize the phytosynthesized Ag NPs. The XRD pattern confirms the formation of crystalline Ag NPs with a high degree of intensity. UV-visible absorption spectra confirm the surface plasmon resonance peak in the range of 440-450 nm. A scanning electron microscopy picture reveals homogeneous growth of Ag NPs with particle sizes of 200-400 nm; however, crystallite size along different planes has been estimated in the range of 18-23 nm. We have found that these Ag NPs synthesized with Oscimum sanctum leaf extract show inhibitory activity against α-amylase and α-glucosidase enzymes in vitro. Our findings further reveal that these Ag NPs are more effective in inhibiting the growth of Salmonella typhi bacteria as compared to other bacterial strains.
Collapse
Affiliation(s)
- Sonam Mishra
- Centre of Materials Sciences, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Shruti Srivastava
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Ravindra Dhar
- Centre of Materials Sciences, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| |
Collapse
|
15
|
Abdelrazik M, Elkotaby HH, Yousef A, El-Sayed AF, Khedr M. Green synthesis of silver nanoparticles derived from lemon and pomegranate peel extracts to combat multidrug-resistant bacterial isolates. J Genet Eng Biotechnol 2023; 21:97. [PMID: 37815647 PMCID: PMC10564695 DOI: 10.1186/s43141-023-00547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Multidrug-resistant (MDR) bacteria are acknowledged as one of the main factors contributing to chronic illnesses and fatalities globally. Numerous diseases, including bloodstream infections, pneumonia, urinary tract infections, and surgical site infections, can be brought on by MDR bacteria. Therefore, a crucial topic of continuing research is the development of a novel and different treatment for MDR microbial pathogens. This work is introduce an alternative method for elimination of MDR bacterial isolates which are causative agents of urinary tract infection among people in Egypt. In our study, we need a novel strategy to combat MDR bacteria by green-synthesized metal nanoparticles (MNPs). That is due to the ability of MNPs to penetrate the cell wall and the cell membrane of gram-positive and gram-negative bacteria. METHODS Clinical isolates of MDR bacteria had their antibiotic susceptibility assessed before being molecularly identified using 16 s rRNA, sequencing, and phylogenetic analysis. Also, genetic profiles of isolated strains were performed using ISSR and SDS-PAGE. Finally, characterized plant-mediated silver nanoparticles derived from lemon and pomegranate peel extracts were evaluated against isolated multidrug-resistant bacterial stains. RESULTS In our present trial, one-hundred urine samples were collected from 71 females and 29 males complaining of UTI (urinary tract infection) symptoms. One-hundred microbial isolates were isolated, including 88-g negative and only 8-g positive bacteria in addition to four yeast isolates (Candida species). A total of 72% of the isolated bacteria showed MDR activity. The most prevalent MDR bacterial isolates (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, and Klebsiella pneumoniae) were identified through 16S rDNA PCR sequencing as with accession numbers OP741103, OP741104, OP741105, OP741106, and OP741107, respectively. Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] were characterized by UV spectroscopy, FTIR, XRD, and TEM with average size 32 and 28 nm, respectively. Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] showed an inhibitory effect on the selected five MDR isolates at MIC 50 and 30 µg/mL, respectively. These common bacterial isolates were also genetically examined using ISSR PCR, and their total protein level was evaluated using SDS-PAGE, showing the presence of distinct genetic and protein bands for each bacterial species and emphasizing their general and protein composition as a crucial and essential tool in understanding and overcoming MDR behavior in UTI patients. CONCLUSIONS Lemon and pomegranate-mediated silver nanoparticles [Ag-NPs] were found to have an inhibitory effect on MDR isolates. Therefore, the study suggests that [Ag-NPs] could be a potential treatment for MDR UTI infections caused by the identified bacterial species.
Collapse
Affiliation(s)
- Mohamad Abdelrazik
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hassan H Elkotaby
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Abdullah Yousef
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, Cairo, 11884, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, Cairo, 11884, Egypt.
| |
Collapse
|
16
|
Ngungeni Y, A. Aboyewa J, Moabelo KL, Sibuyi NRS, Meyer S, Onani MO, Meyer M, Madiehe AM. Anticancer, Antioxidant, and Catalytic Activities of Green Synthesized Gold Nanoparticles Using Avocado Seed Aqueous Extract. ACS OMEGA 2023; 8:26088-26101. [PMID: 37521675 PMCID: PMC10373464 DOI: 10.1021/acsomega.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023]
Abstract
Disposal of agricultural waste has a negative impact on the environment and human health and may contribute to the greenhouse effect. The field of nanotechnology could provide alternative solutions to upcycle agricultural wastes in a safer manner into high-end value products. Organic waste from plants contain biomaterials that could serve as reducing and capping agents in the synthesis of nanomaterials with enhanced activities for use in biomedical and environmental applications. Persea americana (avocado) is a fruit with a high nutritional value; however, despite its rich phytochemical profile, its seed is often discarded as waste. Therefore, this study aimed to upcycle avocado seeds through the synthesis of gold nanoparticles (AuNPs) and evaluate their anticancer, antioxidant, and catalytic activities. The biosynthesis of avocado seed extract (AvoSE)-mediated AuNPs (AvoSE-AuNPs) was achieved following the optimization of various reaction parameters, including pH, temperature, extract, and gold salt concentrations. The AvoSE-AuNPs were poly-dispersed and anisotropic, with average core and hydrodynamic sizes of 14 ± 3.7 and 101.39 ± 1.4 nm, respectively. The AvoSE-AuNPs showed excellent antioxidant potential in terms of ferric reducing antioxidant power (343.88 ± 0.001 μmolAAE/L), 2,2-diphenyl-1-picrylhydrazyl (128.80 ± 0.0159 μmolTE/L), and oxygen radical absorbance capacity (1822.02 ± 12.6338 μmolTE/L); significantly reduced the viability of Caco-2 and PC-3 cells in a dose-dependent manner; and efficiently reduced 4-nitrophenol (4-NP) to 4-aminophenol. This study demonstrated how avocado seeds, an agricultural waste, can be used as sources of new bioactive materials for the synthesis of AuNPs, which have excellent antioxidant, anticancer, and catalytic activities, showing AvoSE-AuNPs' versatility in various applications. In addition, the AvoSE-AuNPs exhibited good stability and recyclability during the catalytic activity, which is significant because some of the primary issues with the use of metallic NPs as catalysts are around the cost-effectiveness, recovery, and reusability of the catalyst.
Collapse
Affiliation(s)
- Yonela Ngungeni
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Jumoke A. Aboyewa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Koena L. Moabelo
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole R. S. Sibuyi
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department
of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Martin O. Onani
- Organometallics
and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram M. Madiehe
- Nanobiotechnology
Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- DSI/Mintek
Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
17
|
Chakraborty B, Bhat MP, Basavarajappa DS, Rudrappa M, Nayaka S, Kumar RS, Almansour AI, Perumal K. Biosynthesis and characterization of polysaccharide-capped silver nanoparticles from Acalypha indica L. and evaluation of their biological activities. ENVIRONMENTAL RESEARCH 2023; 225:115614. [PMID: 36889569 DOI: 10.1016/j.envres.2023.115614] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Biosynthesized silver nanoparticles (AgNPs) are gaining popularity due to their distinctive biological applications. In this research work, an eco-friendly method of synthesizing AgNPs from the leaf polysaccharide (PS) of Acalypha indica L. ( A. indica) was carried out. Synthesis of polysaccharide-AgNPs (PS-AgNPs) was indicated by visual detection of colour change from pale yellow to light brown. The PS-AgNPs were characterized with different techniques and further evaluated for biological activities. The Ultra violet-visible (UV-Vis.) spectroscopy expressed a sharp absorption peak at 415 nm confirmed the synthesis. Atomic force microscopy (AFM) analysis revealed the size range of particles from 14 nm to 85 nm. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The cubic crystalline structure of PS-AgNPs was confirmed by X-ray diffraction (XRD) and the particles were found to be oval to polymorphic shaped through transmission electron microscopy (TEM) with sizes from 7.25 nm to 92.51 nm. Energy dispersive X-ray (EDX) determined the presence of silver in PS-AgNPs. The zeta potential was -28.0 mV, which confirmed the stability and an average particle size of 62.2 nm was calculated through dynamic light scattering (DLS). Lastly, the thermo gravimetric analysis (TGA) showed the PS-AgNPs were resistant to high temperature. The PS-AgNPs exhibited significant free radical scavenging activity with an IC50 value of 112.91 μg/ml. They were highly capable of inhibiting the growth of different bacterial and plant fungal pathogens and also active to reduce the cell viability of prostate cancer (PC-3) cell line. The IC50 value was 101.43 μg/ml. The flow cytometric apoptosis analysis revealed the percentage of viable, apoptotic and necrotic cells of PC-3 cell line. According to this evaluation, it can be concluded that these biosynthesized and environmentally friendly PS-AgNPs are helpful to improve therapeutics because of significant antibacterial, antifungal, antioxidant, and cytotoxic properties to open up new possibilities for euthenics.
Collapse
Affiliation(s)
- Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | | | | | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol 2023; 14:1155622. [PMID: 37180257 PMCID: PMC10168541 DOI: 10.3389/fmicb.2023.1155622] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
The significance of nanoparticles (NPs) in technological advancements is due to their adaptable characteristics and enhanced performance over their parent material. They are frequently synthesized by reducing metal ions into uncharged nanoparticles using hazardous reducing agents. However, there have been several initiatives in recent years to create green technology that uses natural resources instead of dangerous chemicals to produce nanoparticles. In green synthesis, biological methods are used for the synthesis of NPs because biological methods are eco-friendly, clean, safe, cost-effective, uncomplicated, and highly productive. Numerous biological organisms, such as bacteria, actinomycetes, fungi, algae, yeast, and plants, are used for the green synthesis of NPs. Additionally, this paper will discuss nanoparticles, including their types, traits, synthesis methods, applications, and prospects.
Collapse
Affiliation(s)
- Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al-Batin, Saudi Arabia
| |
Collapse
|
19
|
Dyrda-Terniuk T, Pryshchepa O, Rafińska K, Kolankowski M, Gołębiowski A, Gloc M, Dobrucka R, Kurzydłowski K, Pomastowski P. Immobilization Of Silver Ions Onto Casein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
Rotheca serrata Flower Bud Extract Mediated Bio-Friendly Preparation of Silver Nanoparticles: Their Characterizations, Anticancer, and Apoptosis Inducing Ability against Pancreatic Ductal Adenocarcinoma Cell Line. Processes (Basel) 2023. [DOI: 10.3390/pr11030893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Over past decades, the green method of synthesizing metal nanoparticles has acquired more attentiveness by scientific consensus because of its industrial and biomedical applications. This study focuses on the anti-proliferative effectiveness of AgNPs synthesized from Rotheca serrata (L.) Steane & Mabb. flower bud extract against the PANC-1 cell line in vitro. Various analytical instruments were utilized to visualize the formation of RsFb-AgNPs, such as UV-Vis spectroscopy, FT-IR, SEM, EDS, TEM, XRD, Zeta potential, and DLS analysis. The biosynthesis of RsFb-AgNPs was observed by a change in color and UV-Vis spectroscopy (415 nm). The FT-IR spectra exhibited the existence of many functional groups. XRD confirmed the crystallinity of the AgNPs. Morphology and elemental mapping were assessed by SEM and EDS analysis. The TEM micrograph revealed spherical-shaped particles with sizes ranging from 12 to 40 nm. Zeta potential and DLS analysis were used to measure surface charge and particle size. Biological properties, including the antioxidant, antimicrobial, and anticancer properties of synthesized RsFb-AgNPs, exhibited dose-dependent activities. In DPPH assay, synthesized RsFb-AgNPs inhibited the scavenging of free radicals in a dose-dependent manner. In addition, the resultant RsFb-AgNPs displayed moderate antimicrobial activity against tested pathogens. Further, the anti-proliferative efficacy of biosynthesized RsFb-AgNPs was determined against the PANC-1 cell line using the MTT assay. The results revealed a dose-dependent decrease in viability of cancer cells with an IC50 value of 36.01 µg/mL. Flow cytometry was then used to confirm the apoptotic effects by double staining with annexin V/PI. In response to the pancreatic ductal adenocarinoma cell line, the results showed notable early and late apoptosis cell population percentages. In conclusion, the synthesized RsFb-AgNPs revealed a potential anticancer agent that can induce apoptosis in the PANC-1 cells.
Collapse
|
21
|
Angamuthu S, Thangaswamy S, Raju A, Husain FM, Ahmed B, Al-Shabib NA, Hakeem MJ, Shahzad SA, Abudujayn SA, Alomar SY. Biogenic Preparation and Characterization of Silver Nanoparticles from Seed Kernel of Mangifera indica and Their Antibacterial Potential against Shigella spp. Molecules 2023; 28:molecules28062468. [PMID: 36985439 PMCID: PMC10054846 DOI: 10.3390/molecules28062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Shigellosis is a serious foodborne diarrheal disease caused by the Shigella species. It is a critical global health issue. In developing countries, shigellosis causes most of the mortality in children below 5 years of age. Globally, around 165 million cases of diarrhea caused by Shigella are reported, which accounts for almost 1 million deaths, in which the majority are recorded in Third World nations. In this study, silver nanoparticles were synthesized using Mangifera indica kernel (MK-AgNPs) seed extracts. The biosynthesized M. indica silver nanoparticles (MK-AgNPs) were characterized using an array of spectroscopic and microscopic tools, such as UV–Vis, scanning electron microscopy, particle size analyzer, Fourier transform infrared spectroscopy, and X-ray diffractometer. The nanoparticles were spherical in shape and the average size was found to be 42.7 nm. The MK-AgNPs exhibited remarkable antibacterial activity against antibiotic-resistant clinical Shigella sp. The minimum inhibitory concentration (MIC) value of the MK-AgNPs was found to be 20 μg/mL against the multi-drug-resistant strain Shigella flexneri. The results clearly demonstrate that MK-AgNPs prepared using M. indica kernel seed extract exhibited significant bactericidal action against pathogenic Shigella species. The biosynthesized nanoparticles from mango kernel could possibly prove therapeutically useful and effective in combating the threat of shigellosis after careful investigation of its toxicity and in vivo efficacy.
Collapse
Affiliation(s)
- Sudha Angamuthu
- Bon Secours Arts & Science College for Women, Department of Biotechnology, Sowthapuram (PO), Near Veppadai, Namakkal 638008, Tamil Nadu, India;
| | - Selvankumar Thangaswamy
- Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Namakkal 637501, Tamil Nadu, India;
| | - Amutha Raju
- Centre for Post Graduate and Research Studies, Periyar University, Salem 636001, Tamil Nadu, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11495, Saudi Arabia; (N.A.A.-S.); (M.J.H.); (S.A.S.); (S.A.A.)
- Correspondence: (F.M.H.); (B.A.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (F.M.H.); (B.A.)
| | - Nasser A. Al-Shabib
- Department of Food Science and Nutrition, King Saud University, Riyadh 11495, Saudi Arabia; (N.A.A.-S.); (M.J.H.); (S.A.S.); (S.A.A.)
| | - Mohammed Jamal Hakeem
- Department of Food Science and Nutrition, King Saud University, Riyadh 11495, Saudi Arabia; (N.A.A.-S.); (M.J.H.); (S.A.S.); (S.A.A.)
| | - Syed Ali Shahzad
- Department of Food Science and Nutrition, King Saud University, Riyadh 11495, Saudi Arabia; (N.A.A.-S.); (M.J.H.); (S.A.S.); (S.A.A.)
| | - Saud A. Abudujayn
- Department of Food Science and Nutrition, King Saud University, Riyadh 11495, Saudi Arabia; (N.A.A.-S.); (M.J.H.); (S.A.S.); (S.A.A.)
| | - Suliman Y. Alomar
- Department of Zoology, King Saud University, Riyadh 11495, Saudi Arabia;
| |
Collapse
|
22
|
Attri P, Garg S, Ratan JK, Giri AS. Silver nanoparticles from Tabernaemontana divaricate leaf extract: mechanism of action and bio-application for photo degradation of 4-aminopyridine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24856-24875. [PMID: 35013966 DOI: 10.1007/s11356-021-18269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (Ag NPs) were synthesised by the reduction of Ag+ to Ag0 in the presence of enol form of flavonoids present in plant extract of Tabernaemontana divaricate (T. divaricate). Prepared Ag NPs were characterised using UV-Vis, XRD, HR-TEM with EDX and XPS techniques. XPS spectra exhibited peaks at 366 eV and 373 eV, which specified spin orbits for Ag 3d3/2, and Ag 3d5/2 that confirmed the formation of Ag NPs. Ag NPs were spherical in shape with an average size of 30 nm as revealed by HR-TEM and FE-SEM techniques. EDX studies verified the high purity of Ag NPs with silver 46.96%, carbon 16.35%, oxygen 16.22%, nitrogen 20.25% and sulphur 0.21%. LC-MS analysis of plant extract confirmed the qualitative presence of alkaloids, tannins, flavonoids, phenols, and carbohydrates. Prepared Ag NPs showed good photocatalytic activity towards degradation of 4-Amniopyridine with 61% degradation efficiency at optimum conditions in 2 h of reaction time under visible light. The ten intermediates were found within the mass number of 0-450. Ag NPs synthesised using bio-extract have also shown good inactivation against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria due to the availability of free radicals.
Collapse
Affiliation(s)
- Pratibha Attri
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Sangeeta Garg
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India.
| | - Jatinder Kumar Ratan
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Ardhendu Sekhar Giri
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
23
|
Green Synthesis and Antimicrobial Study on Functionalized Chestnut-Shell-Extract Ag Nanoparticles. Antibiotics (Basel) 2023; 12:antibiotics12020201. [PMID: 36830111 PMCID: PMC9952261 DOI: 10.3390/antibiotics12020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The chestnut shell is usually discarded as agricultural waste and the random deposition of it can cause environmental problems. In this study, monodisperse crystalline Ag nanoparticles (AgNPs) were synthesized by a hydrothermal approach, in which the chestnut shell extract served as both reducing agent and stabilizer. The synthesized Ag nanoparticles were characterized by ultraviolet-visible (UV) spectrophotometry, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. The TEM, XRD and XPS results revealed that the synthesized product was spherical Ag nanoparticles with a face-centered cubic crystal structure. The antimicrobial activity test indicated that the Ag nanoparticles modified by the chestnut shell extract had an obvious inhibitory effect on Escherichia coli, Staphylococcus aureus and Candida albicans. The measured MIC and MBC of functionalized chestnut-shell-extract AgNPs against E. coli, S. aureus and C. albicans is relatively low, which indicated that the present functionalized chestnut-shell-extract AgNPs are an efficient antimicrobial agent.
Collapse
|
24
|
Gondwal M, Sharma N, Joshi nee Pant G, Pratap Singh Gautam B, Singh S, Tumba K, Bahadur I. Bioactivity and Catalytic Reduction of Aryl Nitro‐Compounds by Biosynthesized Silver Nanoparticles using
Skimmiaanquetilia. ChemistrySelect 2023. [DOI: 10.1002/slct.202203782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Manjul Gondwal
- Department of Chemistry Laxman Singh Mahar Government Post Graduate College Pithoragarh 262502 Uttarakhand India
| | - Nidhi Sharma
- School of Applied and Life Sciences Uttaranchal University Dehradun 248007, Uttarakhand India
| | - Geeta Joshi nee Pant
- Department of Chemistry H.N.B. Garhwal University (A Central University) Srinagar (Garhwal) 246174, Uttarakhand India
| | - Bhanu Pratap Singh Gautam
- Department of Chemistry Laxman Singh Mahar Government Post Graduate College Pithoragarh 262502 Uttarakhand India
| | - Sangeeta Singh
- Thermodynamics-Materials-Separations Research Group Department of Chemical Engineering Mangosuthu University of Technology Durban 4031, uMlazi South Africa
| | - Kaniki Tumba
- Thermodynamics-Materials-Separations Research Group Department of Chemical Engineering Mangosuthu University of Technology Durban 4031, uMlazi South Africa
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus), Private Bag X2046 Mmabatho 2735 South Africa
| |
Collapse
|
25
|
Sibanda S, Shoko R, Chishaya K, Chimwanda P, Nyoni S, Ndlovu J. Antimicrobial effect of Brachystegia boehmii extracts and their green synthesised silver zero-valent derivatives on burn wound infectious bacteria. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sipho Sibanda
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Kudzayi Chishaya
- Medical Laboratory Science-Medical Microbiology, Kariba District Hospital, Kariba, Zimbabwe
| | - Peter Chimwanda
- Department of Mathematics, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Stephen Nyoni
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
26
|
Jobe MC, Mthiyane DM, Mwanza M, Onwudiwe DC. Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon 2022; 8:e12243. [PMID: 36593860 PMCID: PMC9803788 DOI: 10.1016/j.heliyon.2022.e12243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Zinc oxide (ZnO) and silver-zinc oxide (Ag/ZnO) nanocomposite were synthesized by a green method using Zn(CH3COO)2 and AgNO3 as precursors for zinc and silver respectively; and Urginea epigea bulb extract as a reducing/capping agent. The nanomaterials were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectrophotometer (FTIR), ultraviolet-visible spectrophotometer, scanning, and transmission electron microscopy (SEM and TEM). Their elemental composition was studied using EDX analysis, while elementary mapping was used to show the distribution of the constituent elements. The powder X-ray diffraction confirmed hexagonal phase ZnO, while the Ag/ZnO nanocomposites identified additional planes due to cubic phase Ag nanoparticles. The absorption spectrum of the nanocomposite indicated a red shifting of the absorption band of the metallic ZnO and a surface plasmon resonance (SPR) band's appearance in the visible region due to the metallic Ag nanoparticles. The analysis from the TEM image showed the particles were of spherical morphology with a mean size of 35 nm (ZnO) and 33.50 nm (Ag/ZnO). The biological activity of the nanoparticles was studied for their antibacterial and antioxidant capacity so as to assess their ability to hinder bacterial growth and capture radical species respectively. The results demonstrated that the modification of ZnO with silver nanoparticles enhanced the antibacterial potency but reduced the antioxidant activity. This biogenic method offers a facile approach to nanoparticles for biological purposes, and the strategy may be extended to other metal oxide and their composites with metallic silver nanoparticles as a more effective approach compared to the physical and chemical routes.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Doctor M.N. Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Food Security and Safety Focus Area, North-West University (Mahikeng Campus), Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, North-West University (Mahikeng Campus), Mmabatho 2735, South Africa,Department of Animal Health, School of Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Corresponding author.
| |
Collapse
|
27
|
Jayarambabu N, Velupla S, Akshaykranth A, Anitha N, Rao TV. Bambusa arundinacea leaves extract-derived Ag NPs: evaluation of the photocatalytic, antioxidant, antibacterial, and anticancer activities. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2022; 129:13. [PMID: 36531186 PMCID: PMC9734976 DOI: 10.1007/s00339-022-06279-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/25/2022] [Indexed: 06/01/2023]
Abstract
Bio-fabrication has become a safe approach for silver nanoparticles (Ag NPs). The plant-mediated biosynthesized Ag NPs have emerged as a potential substitute for conventional chemical formation. The biosynthesized Ag NPs were analyzed in terms of crystalline nature, morphology, chemical composition, particle size, stability, size, and shape of the particles. The XRD, FTIR, and TEM analysis indicate the presence of the bioactive secondary metabolites compounds. The bamboo-mediated Ag NPs demonstrated a notable antibacterial efficacy against Gram-positive and Gram-negative pathogenic microorganisms and showed significant antioxidant activity against DPPH free radicals. The degradation of methylene blue at various intervals under solar light irradiation was used to evaluate the photocatalytic performance of Ag NPs. Further, Ag NPs conveyed potent anticancer activity against MCF-7 cell lines with a significant value IC50. The bamboo leaves-mediated Ag NPs synthesized Ag NPs signified strong antibacterial, antioxidant, and anticancer activity; hence, it can be used in various biomedical applications and face mask coating to prevent the coronavirus after successful clinical trials in research laboratories.
Collapse
Affiliation(s)
- N. Jayarambabu
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - Suresh Velupla
- Department of Biochemistry, Osmania University, Hyderabad, 500007 India
| | - A. Akshaykranth
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - N. Anitha
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| | - T. Venkatappa Rao
- Department of Physics, National Institute of Technology, Warangal, 506004 India
| |
Collapse
|
28
|
Yousef A, Abu-Elghait M, Barghoth MG, Elazzazy AM, Desouky SE. Fighting multidrug-resistant Enterococcus faecalis via interfering with virulence factors using green synthesized nanoparticles. Microb Pathog 2022; 173:105842. [DOI: 10.1016/j.micpath.2022.105842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
29
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
31
|
Xu XY, Moon SK, Kim JK, Kim WJ, Kim YJ, Kim H. Structural properties and anti-dermatitis effects of flavonoids-loaded gold nanoparticles prepared by Eupatorium japonicum. Front Pharmacol 2022; 13:1055378. [PMID: 36386212 PMCID: PMC9659597 DOI: 10.3389/fphar.2022.1055378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 02/13/2024] Open
Abstract
Recently, green synthesis-based nanoformulations using plants or microorganisms have attracted great interest because of their several advantages. Nanotechnology-based biological macromolecules are emerging materials with potential applications in cosmetics and medications for ameliorating and treating inflammatory skin diseases (ISDs). Eupatorium japonicum (EJ), a native Korean medicinal plant belonging to the family Asteraceae, has been traditionally used to prepare prescriptions for the treatment of various inflammatory diseases. EJ-based gold nanoparticles (EJ-AuNPs) were biosynthesized under optimal conditions and characterized their physicochemical properties using various microscopic and spectrometric techniques. Additionally, the effects of EJ-AuNPs on ISDs as well as their underlying mechanisms were investigated in the tumor necrosis factor-α/interferon-γ (T+I)-induced skin HaCaT keratinocytes. The MTT and live/dead cell staining assays showed that EJ-AuNP treatment was considerably safer than EJ treatment alone in HaCaT cells. Moreover, EJ-AuNP treatment effectively suppressed the production of T+I-stimulated inflammatory cytokines (RANTES, TARC, CTACK, IL-6, and IL-8) and intracellular reactive oxygen species, and such EJ-driven anti-inflammatory effects were shown to be associated with the downregulation of intracellular mitogen-activated protein kinase and nuclear factor-κB signaling pathways. The present study provides preliminary results and a valuable strategy for developing novel anti-skin dermatitis drug candidates using plant extract-based gold nanoparticles.
Collapse
Affiliation(s)
- Xing Yue Xu
- Graduate School of Biotechnology, And College of Life Science, Kyung Hee University, Yongin, South Korea
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
| | - Jin-Kyu Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, And College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
| |
Collapse
|
32
|
Ryu S, Nam SH, Baek JS. Green Synthesis of Silver Nanoparticles (AgNPs) of Angelica Gigas Fabricated by Hot-Melt Extrusion Technology for Enhanced Antifungal Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7231. [PMID: 36295297 PMCID: PMC9606926 DOI: 10.3390/ma15207231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Green synthesis for synthesizing silver nanoparticles (AgNPs) has been suggested as an environmentally friendly alternative to conventional physical/chemical methods. In this study, we report the green synthesis of AgNPs using a hot-melt extrusion-processed Angelica gigas Nakai (AGN) (HME-AGN) extract as a reducing agent to increase the water solubility of the active ingredient compared to the existing AGN. The mixture of the AGN extract and AgNO3 at about 420 nm could not confirm the formation of AgNPs. The synthesis of AgNPs was found to be most advantageous at 60 °C when the mixing ratio of the HME-AGN extract was 9:1 (AgNO3-extract, v/v) using 3 mM AgNO3. The physicochemical properties of the optimized AgNPs were characterized by UV-Vis spectrophotometer, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffractometer (XRD). DLS showed the particle size average of 102.3 ± 1.35 nm and polydispersity index (PDI) value of 0.314 ± 0.01. The particle surface charge was -35 ± 0.79 mV, confirming the stability of the particles. The particle shape was spherical, as shown through TEM analysis, and the presence of silver ions was confirmed through the EDS results. FT-IR data showed functional groups of biomolecules of the extract involved in the synthesis of AgNPs. The face-centered cubic (FCC) lattice of AgNPs was confirmed in the XRD pattern. The AgNPs had an effective antifungal activity against Candida albicans (C. albicans) that was better than that of the HME-AGN extract. In conclusion, this study suggests that the synthesis of AgNPs was improved by using the HME-AGN extract with increased water solubility through HME. In addition, it was suggested that the synthesized AgNPs can be used as an improved antifungal agent compared with the HME-AGN extract with antifungal activity.
Collapse
Affiliation(s)
- Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea
| |
Collapse
|
33
|
Li X, Li S, Gan K, Bai X, Li S, Tang C, Li L, Qu Q. Bacterial-driven upcycling spent Ag into high-performance catalyst for toxic organics reduction. CHEMOSPHERE 2022; 305:135421. [PMID: 35750226 DOI: 10.1016/j.chemosphere.2022.135421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Achieving up-cycling and reusing of silver from the waste X-rays films is currently a huge challenge. Here, we designed a facile method that upcycles Ag+ extract efficiently from waste film into highly dispersed value-added biological Ag/AgO-AgCl nanoparticles (bio-Ag/AgO-AgCl NPs) using Bacillus thuringiensis-secreted extracellular polymeric substance without additional reductants and electron donors. The recovery efficiency of silver exceeded 99.8%. Surprisingly, the bio-Ag/AgO-AgCl NPs can well solve the bottleneck problem of slow Ag catalytic kinetics. When the amount of catalyst was 1.9 mg, the reduction efficiency and reduction rate of 10 ppm methyl orange were 97.9% and 7 min, and that of 30 ppm Congo red were 95.3% and 5 min respectively, which is superior to other chemically synthesized silver-base catalysts. This bioremediation methodology provides an effective and practical technical approach for precious metal remediation and sustainable energy development.
Collapse
Affiliation(s)
- Xiaohong Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kai Gan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiongfei Bai
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shuli Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Congkui Tang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
34
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
35
|
Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-Shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Express 2022; 12:108. [PMID: 35987838 PMCID: PMC9392670 DOI: 10.1186/s13568-022-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial alternatives such as nanoparticles are critically required to tackle bacterial infections, especially with the emerging threat of antibiotic resistance. Therefore, this study aimed to biosynthesize Au-Ag nanoparticles using propolis as a natural reducing agent and investigate their antibacterial activity against antibiotic-resistant Staphylococcus sciuri (S. sciuri), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella enterica Typhimurium (S. enterica), besides demonstrating their anticancer activity in cancer cell lines. The biosynthesized Au@AgNPs were characterized using UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transformation Infrared (FTIR), and Scanning Electron Microscopy (SEM). Moreover, the detection of antibacterial activity was assessed through disc diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), time-killing curve, and detection of cell membrane integrity via SEM. As a result, the UV-Vis spectrum revealed the formation of Au@AgNPs in a single peak between 533 and 555 nm. Furthermore, FTIR analysis confirmed nanoparticles' green synthesis due to the presence of carbon functional groups. The formulated Au@AgNPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. The MIC and the MBC of P. aeruginosa and S. sciuri were 31.25 µg/mL. However, nanoparticles were more effective on S. enterica with MIC of 7.5 µg/mL and MBC of 15.6 µg/mL. Furthermore, the time-killing curve of the three model bacteria with the treatment was effective at 50 µg/mL. Besides, SEM of the tested bacteria indicated unintegrated bacterial cell membranes and damage caused by Au@AgNPs. Regarding the anticancer activity, the results indicated that the biosynthesized Au@AgNPs have a cytotoxic effect on HEPG2 cell lines. In conclusion, this research revealed that the green synthesized Au@AgNPs could be effective antibacterial agents against S. sciuri, P. aeruginosa, and S. enterica and anticancer agents against HEPG2.
Collapse
Affiliation(s)
- Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Assmaa H Hussein
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511, Egypt.
| |
Collapse
|
36
|
Noorafsha, Kashyap AK, Kashyap A, Deshmukh L, Vishwakarma D. Biosynthesis and biophysical elucidation of CuO nanoparticle from Nyctanthes arbor-tristis Linn Leaf. Appl Microbiol Biotechnol 2022; 106:5823-5832. [PMID: 35941256 DOI: 10.1007/s00253-022-12105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/20/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
Copper oxide nanoparticles (CuO NPs) synthesis using an environmentally benign approach, as well as their antibacterial properties. Copper sulphate pentahydrate (CuSO4.5H2O) of different concentrations (2 mM, 5 mM and 10 mM) and aqueous Nyctanthes arbor-tristis leaf extract were used to make the CuO NPs. The synthesised CuO NPs are characterised by UV-vis spectroscopy, X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-vis spectroscopy confirmed the presence of CuO NPs. The functional groups of the active components were identified using the FTIR spectra of the control (leaf extract) and CuO NPs. SEM pictures revealed that the particles were rectangular, truncated triangle and spherical in shape, with sizes ranging between 4.9 nm, 18.4 nm and 23.8 nm determined using X-ray diffraction. The antibacterial activity of the produced CuO NPs was further evaluated using the well diffusion method. By observing inhibition zones around each well, the nanoparticles were revealed to have broad antibacterial action against human pathogenic bacterial strains Escherichia coli and Staphylococcus aureus withs the 7 ± 0.70-mm and 7 ± 0.21-mm inhibitory zone size respectively followed by 08 μg/mL and 2.5 μg/mL MIC respectively. Thus, these outputs concluded that the CuO NPs exhibited miraculous effect and it might be boon towards nanomedical science, pharmaceuticals and health industries. KEY POINTS: • Biosynthesis of CuO nanoparticle • Multifaceted utilization • Broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Noorafsha
- Govt. V.Y.T. P.G. Autonomous College, Durg, Chhattisgarh, 491001, India.
| | | | - Anupama Kashyap
- Govt. V.Y.T. P.G. Autonomous College, Durg, Chhattisgarh, 491001, India
| | | | | |
Collapse
|
37
|
Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2021.100080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Green synthesized Se–ZnO/attapulgite nanocomposites using Aloe vera leaf extract: Characterization, antibacterial and antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules 2022; 27:4754. [PMID: 35897928 PMCID: PMC9330430 DOI: 10.3390/molecules27154754] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Exploration of nanoparticles (NPs) for various biological and environmental applications has become one of the most important attributes of nanotechnology. Due to remarkable physicochemical properties, silver nanoparticles (AgNPs) are the most explored and used NPs in wide-ranging applications. Also, they have proven to be of high commercial use since they possess great chemical stability, conductivity, catalytic activity, and antimicrobial potential. Though several methods including chemical and physical methods have been devised, biological approaches using organisms such as bacteria, fungi, and plants have emerged as economical, safe, and effective alternatives for the biosynthesis of AgNPs. Recent studies highlight the potential of AgNPs in modern agricultural practices to control the growth and spread of infectious pathogenic microorganisms since the introduction of AgNPs effectively reduces plant diseases caused by a spectrum of bacteria and fungi. In this review, we highlight the biosynthesis of AgNPs and discuss their applications in plant disease management with recent examples. It is proposed that AgNPs are prospective NPs for the successful inhibition of pathogen growth and plant disease management. This review gives a better understanding of new biological approaches for AgNP synthesis and modes of their optimized applications that could contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Moh Tariq
- Department of Botany, Lords University, Alwar 301028, India
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Khan Nazima Mohammad
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mansoor A. Siddiqui
- Section of Plant Pathology and Nematology, Aligarh Muslim University, Aligarh 202002, India; (K.N.M.); (M.A.S.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
40
|
Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules 2022; 27:molecules27134226. [PMID: 35807470 PMCID: PMC9268287 DOI: 10.3390/molecules27134226] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs’ antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.
Collapse
|
41
|
M Fathil MA, Faris Taufeq FY, Suleman Ismail Abdalla S, Katas H. Roles of chitosan in synthesis, antibacterial and anti-biofilm properties of bionano silver and gold. RSC Adv 2022; 12:19297-19312. [PMID: 35865585 PMCID: PMC9248368 DOI: 10.1039/d2ra01734b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Antibiotic-resistance and bacterial bioburden on wound surfaces are the significant challenges to wound healing. Silver and gold nanoparticles (are termed as AgNPs and AuNPs) have been investigated as alternative antimicrobial agents to combat antibiotic-resistant bacterial infections owing to their antibacterial and anti-biofilm activities. Chitosan (CS) has largely been used in nanoparticle synthesis as a stabilizing or capping agent. In this study, AgNPs and AuNPs were synthesized using different concentrations of aqueous extract of tiger milk mushroom (Lignosus rhinocerotis) (WETMM) and CS as reducing and stabilizing agent, respectively. Particle size and morphology of both were determined by dynamic light scattering (DLS) method and transmission electron microscopic analysis (TEM). FTIR analysis was conducted to determine the interactions between nanoparticle precursors. The observed peaks at 450 nm and 534-565 nm using a spectrophotometer were corresponded to the surface Plasmon resonance of AgNPs and AuNPs respectively, indicating the formation of respective nanoparticles. FTIR analysis confirmed the role of WETMM as a reducing agent and CS as a stabilizer of AgNPs and AuNPs. Faster formation of nanoparticles was observed besides an increase in particle size when higher CS concentrations were used. TEM micrographs revealed the spherical shape of most nanoparticles with particle sizes in the range of 4 to 58 nm and 18 to 28 nm for AgNPs and AuNPs, respectively. Both nanoparticles exhibited antimicrobial activity against Gram-positive and -negative bacteria, with AgNPs showing a superior antibacterial efficacy than AuNPs. Both microbroth dilution and agar well diffusion assays indicated that CS was an important component to facilitate antibacterial activity for AuNPs. Contrarily, CS stabilization did not enhance the antibacterial efficacy of AgNPs. CS-stabilized AgNPs and AuNPs achieved biofilm inhibition of 53.21% and 79.39% for Pseudomonas aeruginosa and 48.71% and 48.16% for Staphylococcus aureus, respectively. Similarly, CS stabilization enhanced the anti-biofilm activity of AuNPs but no such effect was seen for AgNPs. In conclusion, CS-stabilized AgNPs and AuNPs possess both antimicrobial and anti-biofilm activities. However, CS acted differently when combined with AgNPs and AuNPs, needing further investigation and optimization to improve the antimicrobial activity of both nanoparticles.
Collapse
Affiliation(s)
- Mohammad Aqil M Fathil
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Farha Yasmin Faris Taufeq
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Sundos Suleman Ismail Abdalla
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia Jalan Raja Muda Abdul Aziz Kuala Lumpur 50300 Malaysia +60-3-26983271 +60-3-92897971
| |
Collapse
|
42
|
Awadelkareem AM, Al-Shammari E, Elkhalifa AO, Adnan M, Siddiqui AJ, Patel M, Khan MI, Mehmood K, Ashfaq F, Badraoui R, Ashraf SA. Biosynthesized Silver Nanoparticles from Eruca sativa Miller Leaf Extract Exhibits Antibacterial, Antioxidant, Anti-Quorum-Sensing, Antibiofilm, and Anti-Metastatic Activities. Antibiotics (Basel) 2022; 11:antibiotics11070853. [PMID: 35884107 PMCID: PMC9311509 DOI: 10.3390/antibiotics11070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Worldwide, the primary problem today is the proliferation of cancer and secondary bacterial infections caused by biofilms, as they are the principal causes of death due to the lack of effective drugs. A great deal of biological activities of silver nanoparticles (AgNPs) have made them a brilliant choice for the development of new drugs in recent years. The present study was conducted to evaluate the anticancer, antibacterial, anti-QS, and antibiofilm effects of AgNPs synthesized from Eruca sativa (E. sativa) leaf extract. The ultraviolet–visible (UV–Vis) spectra showed a peak of surface plasmon resonance at 424 nm λmax, which corresponded to AgNP formation. The Fourier transform infrared spectroscopy (FT-IR) confirmed that biological moieties are involved for the development of AgNPs. Moreover, transmission electron microscopy (TEM) analyses confirmed the spherical shape and uniform size (8.11 to 15 nm) of the AgNPs. In human lung cancer cells (A549), the anticancer potential of AgNPs was examined by the MTT [3-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scratch assay, and invasion assay. The results indicated that AgNPs inhibit the migration of A549 cells. The synthesized AgNPs showed MIC values of 12.5 µg/mL against Chromobacterium violaceum (C. violaceum) and 25 µg/mL against Pseudomonas aeruginosa (P. aeruginosa), which demonstrated their antibacterial abilities. Biological compounds that disable the QS system are being investigated as potential strategies for preventing bacterial infections. Thus, we analyzed the potential effectiveness of synthesized AgNPs in inhibiting QS-regulated virulence factors and biofilm formation in both strains of bacteria. In C. violaceum, the synthesized AgNPs significantly inhibited both violacein (85.18% at 1/2 × MIC) and acyl homoserine lactone (78.76% at 1/2 × MIC). QS inhibitory activity was also demonstrated in P. aeruginosa at a sub-MIC concentration (1/2 × MIC) by a reduction in pyocyanin activity (68.83%), total protease (68.50%), LasA activity (63.91%), and LasB activity (56.40%). Additionally, the exopolysaccharide production was significantly reduced in both C. violaceum (65.79% at 1/2 × MIC) and P. aeruginosa (57.65% at 1/2 × MIC). The formation of biofilm was also significantly inhibited at 1/2 × MIC in C. violaceum (76.49%) and in P. aeruginosa (65.31%). Moreover, a GC–MS analysis confirmed the presence of different classes of bioactive phytochemical constituents present in the leaf extract of E. sativa. On the basis of our results, we conclude that biologically synthesized AgNPs showed numerous multifunctional properties and have the potential to be used against human cancer and bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Eyad Al-Shammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - AbdElmoneim O. Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.A.); (A.J.S.); (R.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (E.A.-S.); (A.O.E.)
- Correspondence:
| |
Collapse
|
43
|
Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol 2022; 214:568-582. [PMID: 35752342 DOI: 10.1016/j.ijbiomac.2022.06.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD), and its consequent effect primarily clinical dementia, Parkinson's disease dementia, etc. currently bring potential avenues for diagnosis centered on identification of beta-amyloid1-42 (Aβ1-42). Unfortunately, techniques engaged in AD core biomarker (Aβ1-42) detection are majorly suffering from poor sensitivity and selectivity. Thus, we fabricated graphene oxide (GO) surface decorated chitosan (CS) mediated layer-by-layer (LbL) assembly based surface plasmon resonance (SPR) biosensor for highly sensitive and selective recognition of Aβ1-42. Briefly, silver nanoparticles (AgNPs) and GO synthesis were achieved through a greener approach. LbL assembly was designed using CS and polystyrene sulphonate (PSS) on surface of AgNPs (AgNPs-CS-PSS-CS) and then antibodies of Aβ (anti-Aβ) were fixed on LbL assembly (AgNPs-CS-PSS-CS@anti-Aβ). Herein, amine functionality of CS offers a plethora of sites for anti-Aβ antibody immobilization that gives specific direction, high selectivity, and an adequate amount of antibody immobilization. For fabrication, synthesized GO was immobilized on an amine-modified gold-coated sensor chip via carbodiimide chemistry followed by AgNPs-CS-PSS-CS@anti-Aβ immobilization on an activated GO surface. Inimitable features of LbL assembly showed improved selectivity towards Aβ peptide whereas utilization of affinity biotransducer with a combination of plasmonic and non-plasmonic nanomaterial improved sensitivity and selectivity. Consequently, linearity range and limit of detection (LOD) of Aβ1-42 antigens were found to be 2 fg/mL to 400 ng/mL and 1.21 fg/mL, respectively. Moreover, analysis of Aβ1-42 in AD-induced rats confirmed the real-time-applicability of the designed SPR biosensor. Hence, GO surface decorated AgNPs-CS-PSS-CS@anti-Aβ mediated SPR biosensor would provide a novel approach for exceptionally sensitive and selective Aβ detection.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India.
| |
Collapse
|
44
|
A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Bergal A, Matar GH, Andaç M. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Karthik C, Punnaivalavan KA, Prabha SP, Caroline DG. Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. INTERNATIONAL NANO LETTERS 2022; 12:313-344. [PMID: 35194512 PMCID: PMC8853038 DOI: 10.1007/s40089-022-00367-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The progressive research into the nanoscale level upgrades the higher end modernized evolution with every field of science, engineering, and technology. Silver nanoparticles and their broader range of application from nanoelectronics to nano-drug delivery systems drive the futuristic direction of nanoengineering and technology in contemporary days. In this review, the green synthesis of silver nanoparticles is the cornerstone of interest over physical and chemical methods owing to its remarkable biocompatibility and idiosyncratic property engineering. The abundant primary and secondary plant metabolites collectively as multifarious phytochemicals which are more peculiar in the composition from root hair to aerial apex through various interspecies and intraspecies, capable of reduction, and capping with the synthesis of silver nanoparticles. Furthermore, the process by which intracellular, extracellular biological macromolecules of the microbiota reduce with the synthesis of silver nanoparticles from the precursor molecule is also discussed. Viruses are one of the predominant infectious agents that gets faster resistance to the antiviral therapies of traditional generations of medicine. We discuss the various stages of virus targeting of cells and viral target through drugs. Antiviral potential of silver nanoparticles against different classes and families of the past and their considerable candidate for up-to-the-minute need of complete addressing of the fulminant and opportunistic global pandemic of this millennium SARS-CoV2, illustrated through recent silver-based formulations under development and approval for countering the pandemic situation. Graphical abstract
Collapse
Affiliation(s)
- C. Karthik
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - K. A. Punnaivalavan
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| | - S. Pandi Prabha
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117 Tamil Nadu India
| | - D. G. Caroline
- Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai, 600119 Tamil Nadu India
| |
Collapse
|
47
|
Synthesis of Silver Nanoparticles Using Syzygium malaccense Fruit Extract and Evaluation of Their Catalytic Activity and Antibacterial Properties. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02210-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Afzal S, Qurashi AW, Sarfraz B, Liaqat I, Sadiqa A, Muhtaq M, Andleeb S, Ahsan F. A Comparative Analysis of Antimicrobial, Antibiofilm and Antioxidant Activity of Silver Nanoparticles Synthesized from <i>Erythrina Suberosa</i> Roxb. and <i>Ceiba Pentandra</i>. J Oleo Sci 2022; 71:523-533. [DOI: 10.5650/jos.ess21347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| | - Ayesha Sadiqa
- Department of Chemistry, University of Engineering and Technology
| | | | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir
| | - Fatima Ahsan
- Department of Microbiology, University of Veterinary and Animal Sciences
| |
Collapse
|
49
|
Biogenic Synthesis of Silver Nanoparticles, Characterization and Their Applications—A Review. SURFACES 2021. [DOI: 10.3390/surfaces5010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the growing awareness for the need of sustainable environment, the importance of synthesizing and the application of green nanoparticles has gained special focus. Among various metal nanoparticles, silver nanoparticles (AgNPs) have gain significant attention. AgNPs are synthesized conventionally by physical and chemical methods using chemicals such as reducing agents, which are hazardous to environment due to their toxic properties, provoking a serious concern to create and develop environment friendly methods. Thus, biological alternatives are emerging to fill gaps, such as green syntheses that use biological molecules taken from plant sources in the form of extracts, which have shown to be superior to chemical and physical approaches. These biological molecules derived from plants are assembled in a highly regulated manner to make them suitable for metal nanoparticle synthesis. The current review outlines the wide plant diversity that may be used to prepare a rapid and single-step procedure with a green path over the traditional ones, as well as their antifungal activity.
Collapse
|
50
|
Sellami H, Khan SA, Ahmad I, Alarfaj AA, Hirad AH, Al-Sabri AE. Green Synthesis of Silver Nanoparticles Using Olea europaea Leaf Extract for Their Enhanced Antibacterial, Antioxidant, Cytotoxic and Biocompatibility Applications. Int J Mol Sci 2021; 22:12562. [PMID: 34830442 PMCID: PMC8621457 DOI: 10.3390/ijms222212562] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we report the green synthesis of silver nanoparticles (OE-Ag NPs) by ecofriendly green processes using biological molecules of Olea europaea leaf extract. Green synthesized OE-Ag NPs were successfully characterized using different spectroscopic techniques. Antibacterial activity of OE-Ag NPs was assessed against four different bacteriological strains using the dilution serial method. The cytotoxic potential was determined against MCF-7 carcinoma cells using MTT assay in terms of cell viability percentage. Antioxidant properties were evaluated in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. Biocompatibility was further examined by incubating the synthesized NPs with hMSC cells for 24 h. The results were demonstrated that synthesized OE-Ag NPs presented excellent log10 reduction in the growth of all the tested bacterial strains, which as statistically equivalent (p > 0.05) to the standard antibiotic drug. Moreover, they also demonstrated excellent cytotoxic efficacy against the MCF-7 carcinoma cells compared to plant lead extract and Com-Ag NPs. Green synthesized OE-Ag NPs appeared more biocompatible to hMSC and 293T cells compared to Com-Ag NPs. Excellent biological results of the OE-Ag NPs might be attributed to the synergetic effect of NPs' properties and the adsorbed secondary metabolites of plant leaf extract. Hence, this study suggests that synthesized OE-Ag NPs can be a potential contender for their various biological and nutraceutical applications. Moreover, this study will open a new avenue to produce biocompatible nanoparticles with additional biological functionalities from the plants.
Collapse
Affiliation(s)
- Hanen Sellami
- Laboratory of Treatment and Valorization of Water Rejects, Water Research and Technologies Center (CERTE), Borj-Cedria Technopark, University of Carthage, Soliman 8020, Tunisia;
| | - Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Ishaq Ahmad
- Department of Physics, The University of Hong Kong, Hong Kong 999077, China;
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| | - Abdurahman H. Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| | - Ahmed E. Al-Sabri
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.H.H.); (A.E.A.-S.)
| |
Collapse
|