1
|
Pompei CME, Ruas G, Belasco GC, Mondin GA, Silva GHR. Total coliforms, E. coli, Enterococcus spp., and Staphylococcus spp. removal in vertical tubular photobioreactor with and without support medium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125605. [PMID: 39734041 DOI: 10.1016/j.envpol.2024.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Unsafe water has severe implications for human health. Among sanitary wastewater treatment technologies, those that treat effluent in the most natural way possible (avoiding chemicals) need to be employed to minimize environmental damage upon release. Microalgae-based systems are one of the more economical and sustainable methods. Some studies have suggested that the use of photobioreactors incorporating a supporting medium for biofilm formation surpasses suspension reactors in both biomass productivity and effluent treatment efficiency. Therefore, the aim of this study was investigated whether the use of a supporting medium in vertical tubular photobioreactors (T-PBRs) could improve the pathogens removal (total coliforms, E. coli, Enterococcus spp., and Staphylococcus spp.) and analyzed the efficiency under light and dark photoperiods to optimize removal and wastewater treatment in microalgae systems. The novelty of this study is that it is the first time a support medium addition in a T-PBRs has been evaluated for pathogen and microorganism removal from sanitary wastewater. All four pathogens showed better removal in T2-PBR (with support medium) - >90%, and especially during light sampling periods. E. coli was the microorganisms with highest removal efficiency (4.43 log-Re - 99.99%).
Collapse
Affiliation(s)
- Caroline Moço Erba Pompei
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Graziele Ruas
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Gabriela Costa Belasco
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| | - Giovanni Andrade Mondin
- São Paulo State University (UNESP), School of Sciences, Department of Biological Sciences, Brazil.
| | - Gustavo Henrique Ribeiro Silva
- São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil.
| |
Collapse
|
2
|
Redfern J, Cunliffe A, Goeres D, Azevedo N, Verran J. Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings. Biofilm 2024; 7:100187. [PMID: 38481762 PMCID: PMC10933470 DOI: 10.1016/j.bioflm.2024.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 11/02/2024] Open
Abstract
The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Collapse
Affiliation(s)
- J. Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - A.J. Cunliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - D.M. Goeres
- Center for Biofilm Engineering, Montana State University, MT, USA
| | - N.F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - J. Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| |
Collapse
|
3
|
Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, Khairil Mokhtar NF, Sharples GJ. Effect of natural antibacterial clays against single biofilm formation by Staphylococcus aureus and Salmonella Typhimurium bacteria on a stainless-steel surface. Int J Food Microbiol 2023; 394:110184. [PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
Collapse
Affiliation(s)
- Wan Hasyera Wan Omar
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Ainy Mahyudin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Naqiyah Azmi
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor-Khaizura Mahmud Ab Rashid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Roslan Ismail
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | - Gary J Sharples
- Department of Biosciences, Durham University, Durham DHI 3LE, United Kingdom
| |
Collapse
|
4
|
Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review deals with microbial adhesion to metal-based surfaces and the subsequent biofilm formation, showing that both processes are a serious problem in the food industry, where pathogenic microorganisms released from the biofilm structure may pollute food and related material during their production. Biofilm exhibits an increased resistance toward sanitizers and disinfectants, which complicates the removal or inactivation of microorganisms in these products. In the existing traditional techniques and modern approaches for clean-in-place, electrochemical biofilm control offers promising technology, where surface properties or the reactions taking place on the surface are controlled to delay or prevent cell attachment or to remove microbial cells from the surface. In this overview, biofilm characterization, the classification of bacteria-forming biofilms, the influence of environmental conditions for bacterial attachment to material surfaces, and the evaluation of the role of biofilm morphology are described in detail. Health aspects, biofilm control methods in the food industry, and conventional approaches to biofilm removal are included as well, in order to consider the possibilities and limitations of various electrochemical approaches to biofilm control with respect to potential applications in the food industry.
Collapse
|
5
|
Biswas PP, Turner-Walker G, Rathod J, Liang B, Wang CC, Lee YC, Sheu HS. Sustainable phosphorus management in soil using bone apatite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114344. [PMID: 34953223 DOI: 10.1016/j.jenvman.2021.114344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Soil fertility and phosphorus management by bone apatite amendment are receiving increasing attention, yet further research is needed to integrate the physicochemical and mineralogical transformation of bone apatite and their impact on the supply and storage of phosphorus in soil. This study has examined bone transformation in the field over a span of 10-years using a set of synchrotron-based microscopic and spectroscopic techniques. Transmission X-ray microscopy (TXM) observations reveal the in-situ deterioration of bone osteocyte-canaliculi system and sub-micron microbial tunneling within a year. Extensive organic decomposition, secondary mineral formation and re-mineralization of apatite are evident from the 3rd year. The relative ratio of (v1 + v3) PO43- to v3 CO32- and to amide I increase, and the v3c PO43- peak exhibits a blue-shift in less than 3 years. The carbonate substitution of bone hydroxyapatite (HAp) to AB-type CHAp, and phosphate crystallographic rearrangement become apparent after 10 years' aging. The overall CO32- peak absorbance increases over time, contributing to a higher acid susceptibility in the aged bone. The X-ray Photoelectron Spectroscopy (XPS) binding energies for Ca (2p), P (2p) and O (1s) exhibit a red-shift after 1 year because of organo-mineral interplay and a blue-shift starting from the 3rd year as a result of the de-coupling of mineral and organic components. Nutrient supply to soil occurs within months via organo-mineral decoupling and demineralization. More phosphorus has been released from the bones and enriched in the associated and adjacent soils over time. Lab incubation studies reveal prominent secondary mineral formation via re-precipitation at a pH similar to that in soil, which are highly amorphous and carbonate substituted and prone to further dissolution in an acidic environment. Our high-resolution observations reveal a stage-dependent microbial decomposition, phosphorus dissolution and immobilization via secondary mineral formation over time. The active cycling of phosphorus within the bone and its interplay with adjacent soil account for a sustainable supply and storage of phosphorus nutrients.
Collapse
Affiliation(s)
| | - Gordon Turner-Walker
- Department of Cultural Heritage Conservation, National Yunlin University of Science & Technology, Douliu, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | | | - Yao-Chang Lee
- National Synchrotron Radiation Center, Hsinchu, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | |
Collapse
|
6
|
Hong W, Nyaruaba R, Li X, Liu H, Yang H, Wei H. In-situ and Real-Time Monitoring of the Interaction Between Lysins and Staphylococcus aureus Biofilm by Surface Plasmon Resonance. Front Microbiol 2021; 12:783472. [PMID: 34917062 PMCID: PMC8670000 DOI: 10.3389/fmicb.2021.783472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus can produce a multilayered biofilm embedded in extracellular polymeric matrix. This biofilm is difficult to remove, insensitive to antibiotics, easy to develop drug-resistant strains and causes enormous problems to environments and health. Phage lysin which commonly consists of a catalytic domain (CD) and a cell-wall binding domain (CBD) is a powerful weapon against bacterial biofilm. However, the real-time interaction between lysin and S. aureus biofilm is still not fully understood. In this study, we monitored the interactions of three lysins (ClyF, ClyC, PlySs2) against culture-on-chip S. aureus biofilm, in real-time, based on surface plasmon resonance (SPR). A typical SPR response curve showed that the lysins bound to the biofilm rapidly and the biofilm destruction started at a longer time. By using 1:1 binding model analysis, affinity constants (KD) for ClyF, ClyC, and PlySs2 were found to be 3.18 ± 0.127 μM, 1.12 ± 0.026 μM, and 15.5 ± 0.514 μM, respectively. The fact that ClyF and PlySs2 shared the same CBD but showed different affinity to S. aureus biofilm suggested that, not only CBD, but also CD affects the binding activity of the entire lysin. The SPR platform can be applied to improve our understanding on the complex interactions between lysins and bacterial biofilm including association (adsorption) and disassociation (destruction).
Collapse
Affiliation(s)
- Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
M de Araújo FB, Morais VC, M de Oliveira BT, G de Lima KY, Gomes VT, G do Amaral IP, Vasconcelos U. Multi-purpose Disinfecting Solutions only Partially Inhibit the Development of Ocular Microbes Biofilms in Contact Lens Storage Cases. Middle East Afr J Ophthalmol 2021; 28:116-122. [PMID: 34759670 PMCID: PMC8547665 DOI: 10.4103/meajo.meajo_414_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/28/2021] [Accepted: 07/14/2021] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Certain ocular resident or pathogenic microbes may remain viable in the presence of multi-purpose disinfectant solutions (MPDSs), subsequently developing biofilms inside contact lens storage cases (CLSCs) which pose a risk of infection to wearers. This study evaluated the formation of ocular microbiota biofilms exposed to three top selling MPDS. METHODS Crystal violet assay was carried out for the verification of biofilm formation. The in vitro assays evaluated Pseudomonas aeruginosa UFPEDA 416 and Staphylococcus aureus UFPEDA 02 exposure of 48 h to MPDS, as well as the use of 40 KHz ultrasound at the beginning and with 24 h immersion in the MPDS. Subsequently, in vivo assays evaluated the formation of microbial biofilms on the CLSC walls containing silicone-hydrogel contact lenses immersed in MPDS from 15 healthy volunteer patients, who had been wearing the lenses for 7 days. RESULTS Biofilms were inhibited by 26%-98% in the in vitro assays, with a statistically significant difference only for P. aeruginosa UFPEDA 416 exposed to diluted MPDS. Most inhibitions occurred moderately and weakly. In addition, adherent cells were detected in more than 90% of the tests. Biofilm was not inhibited in more than one third of the results, nor was it disturbed, especially with the ultrasound treatments. The average of obtained optical densities at 590 nm was between 0.6 and 0.8 in the in vivo assays. The results were similar between the CLSC right and left wells. There was a correlation between microbial biofilm formation and the type of MPDS tested, with statistical difference between the three treatments. CONCLUSION MPDS promoted a partial inhibition of microbial biofilm formation but only one MPDS proved to be more effective in vitro and in vivo. This study, however, could not distinguish the effect of possible errors in the good hygiene practices of the users.
Collapse
Affiliation(s)
- Fabiano B M de Araújo
- Department of Molecular Biology, Curse of Post-Graduation in Cellular and Molecular Biology, CCEN, UFPB, João Pessoa, Brazil
| | - Vinicius C Morais
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Bianca T M de Oliveira
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Kaíque Y G de Lima
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Victor T Gomes
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Ian P G do Amaral
- Department of Cellular and Molecular Biology, Laboratory of Biotechnology of Aquatic Organisms, CBIOTEC, UFPB, João Pessoa, Brazil
| | - Ulrich Vasconcelos
- Department of Biotechnology, Laboratory of Environmental Microbiology, CBIOTEC, UFPB, João Pessoa, Brazil
| |
Collapse
|
8
|
Wu T, Huang L, Sun J, Sun J, Yan Q, Duan B, Zhang L, Shi B. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohydr Polym 2021; 269:118276. [PMID: 34294308 DOI: 10.1016/j.carbpol.2021.118276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
The guided tissue regeneration technique is an effective approach to repair periodontal defect. However, collagen barrier membranes used clinically lose stability easily, leading to soft tissue invasion, surgical site infection, and failure of osteogenesis. An ideal barrier membrane should possess proper antibacterial, osteoconductive activities, and favorable biodegradation. In this study, zinc oxide nanoparticles were homogeneously incorporated into the chitin hydrogel (ChT-1%ZnO) through one-step dissolution and regeneration method from alkaline/urea solution the first time. The remaining weights of ChT-1%ZnO in 150 μg/mL lysozyme solution was 52% after 5 weeks soaking. ChT-1%ZnO showed statistical antibacterial activities for P. gingivalis and S. aureus at 6 h, 12 h, and 24 h. Moreover, ChT-1%ZnO exhibits osteogenesis promotion in vitro, and it was further evaluated with rat periodontal defect model in vivo. The cemento-enamel junction value in ChT-1%ZnO group is 1.608 mm, presenting a statistical difference compared with no-membrane (1.825 mm) and ChT group (1.685 mm) after 8 weeks postoperatively.
Collapse
Affiliation(s)
- Tao Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| | - Lin Huang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Jing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| | - Jiahui Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| | - Qi Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, Department of Dental Implantology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, PR China.
| |
Collapse
|
9
|
Perwez M, Mazumder JA, Noori R, Sardar M. Magnetic combi CLEA for inhibition of bacterial biofilm: A green approach. Int J Biol Macromol 2021; 186:780-787. [PMID: 34280443 DOI: 10.1016/j.ijbiomac.2021.07.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In the present study different enzymes (α- amylase, trypsin, cellulase, horse-radish peroxidase and pectinex ultra clear) were studied for bacterial biofilm inhibition and Pectinex ultra clear showed best inhibition. So, m-combi-CLEA of Pectinex ultra clear was developed by cross linked enzyme aggregate (CLEA) formation on APTES (3-aminopropyltriethoxysilane) modified iron oxide nanoparticles. Different parameters were optimized and it was observed that 0.4 mg/ml of protein (containing 25 U/mg cellulase activity), 0.5 mg/ml BSA and 10 mM glutaraldehyde when incubated for 3 h gives 100% enzyme activity using ethanol as the precipitant. The CLEA formed were thermally more stable as compared to free enzyme. m-combi-CLEA of Pectinex ultra clear shows 75-78% biofilm inhibition of E. coli and S. aureus. Furthermore, m-combi-CLEA can be reused till 4 cycles with same efficiency. The carbohydrate contents of E. coli biofilm decreased from 64.629 μg to 6.23 μg and for S. aureus biofilm, it decreased from 58.46 μg to 5.52 μg when treated with m-combi CLEA in comparison to untreated biofilms. FTIR, darkfield illumination Fluorescence Microscopy, and Scanning Electron Microscopy was further used for characterization.
Collapse
Affiliation(s)
- Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India
| | | | - Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
10
|
Zhang H, Zhao J, Yang C, Shen M, Zhang X, Xi T, Yin L, Zhao H, Liu X, Liu L, Yang K. Corrosion resistance of Cu‐bearing 316L stainless steel tuned by various passivation potentials. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.6946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hongzhen Zhang
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan China
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Jinlong Zhao
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Chunguang Yang
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Minggang Shen
- School of Materials and Metallurgy University of Science and Technology Liaoning Anshan China
| | - Xinrui Zhang
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Tong Xi
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Lu Yin
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Hanyu Zhao
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| | - Xiaofang Liu
- Orthopaedic Institute Foshan Hospital of Traditional Chinese Medicine Foshan China
| | - Lichu Liu
- Orthopaedic Institute Foshan Hospital of Traditional Chinese Medicine Foshan China
| | - Ke Yang
- Shi‐Changxu Innovation Center for Advanced Materials, Institute of Metal Research Chinese Academy of Sciences Shenyang China
| |
Collapse
|
11
|
Dula S, Ajayeoba TA, Ijabadeniyi OA. Bacterial biofilm formation on stainless steel in the food processing environment and its health implications. Folia Microbiol (Praha) 2021; 66:293-302. [PMID: 33768506 DOI: 10.1007/s12223-021-00864-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022]
Abstract
Biofilm formation (BF) and production in the food processing industry (FPI) is a continual threat to food safety and quality. Various bacterial pathogens possess the ability to adhere and produce biofilms on stainless steel (SS) in the FPI due to flagella, curli, pili, fimbrial adhesins, extra polymeric substances, and surface proteins. The facilitating environmental conditions (temperature, pressure, variations in climatic conditions), SS properties (surface energy, hydrophobicity, surface roughness, topography), type of raw food materials, pre-processing, and processing conditions play a significant role in the enhancement of bacterial adhesion and favorable condition for BF. Furthermore, biofilm formers can tolerate different sanitizers and cleaning agents due to the constituents, concentration, contact time, bacterial cluster distribution, and composition of bacteria within the biofilm. Also, bacterial biofilms' ability to produce various endotoxins and exotoxins when consumed cause food infections and intoxications with serious health implications. It is thus crucial to understand BF's repercussions and develop effective interventions against these phenomena that make persistent pathogens difficult to remove in the food processing environment.
Collapse
Affiliation(s)
- Stanley Dula
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Titilayo Adenike Ajayeoba
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa. .,Department of Microbiology, Faculty of Science, Adeleke University, Ede, Nigeria.
| | | |
Collapse
|
12
|
Li J, Liu M, Gao J, Jiang Y, Wu L, Cheong YK, Ren G, Yang Z. AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats. Brain Behav Immun 2020; 87:645-659. [PMID: 32097763 PMCID: PMC7126810 DOI: 10.1016/j.bbi.2020.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.
Collapse
Affiliation(s)
- Junyang Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Meicen Liu
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jin Gao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuen-Ki Cheong
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Mitra D, Kang ET, Neoh KG. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21159-21182. [PMID: 31880421 DOI: 10.1021/acsami.9b17815] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface contamination by microbes leads to several detrimental consequences like hospital- and device-associated infections. One measure to inhibit surface contamination is to confer the surfaces with antimicrobial properties. Copper's antimicrobial properties have been known since ancient times, and the recent resurgence in exploiting copper for application as antimicrobial materials or coatings is motivated by the growing concern about antibiotic resistance and the pressure to reduce antibiotic use. Copper, unlike silver, demonstrates rapid and high microbicidal efficacy against pathogens that are in close contact under ambient indoor conditions, which enhances its range of applicability. This review highlights the mechanisms behind copper's potent antimicrobial property, the design and fabrication of different copper-based antimicrobial materials and coatings comprising metallic copper/copper alloys, copper nanoparticles or ions, and their potential for practical applications. Finally, as the antimicrobial coatings market is expected to grow, we offer our perspectives on the implications of increased copper release into the environment and the potential ecotoxicity effects and possibility of development of resistant genes in pathogens.
Collapse
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| |
Collapse
|
14
|
Cattò C, Cappitelli F. Testing Anti-Biofilm Polymeric Surfaces: Where to Start? Int J Mol Sci 2019; 20:E3794. [PMID: 31382580 PMCID: PMC6696330 DOI: 10.3390/ijms20153794] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Present day awareness of biofilm colonization on polymeric surfaces has prompted the scientific community to develop an ever-increasing number of new materials with anti-biofilm features. However, compared to the large amount of work put into discovering potent biofilm inhibitors, only a small number of papers deal with their validation, a critical step in the translation of research into practical applications. This is due to the lack of standardized testing methods and/or of well-controlled in vivo studies that show biofilm prevention on polymeric surfaces; furthermore, there has been little correlation with the reduced incidence of material deterioration. Here an overview of the most common methods for studying biofilms and for testing the anti-biofilm properties of new surfaces is provided.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
15
|
P P Alonso V, Y Kabuki D. Formation and dispersal of biofilms in dairy substrates. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vanessa P P Alonso
- Department of Food Science School of Food Engineering University of Campinas (UNICAMP) Rua Monteiro Lobato 80 Campinas 13083‐862 São Paulo Brazil
| | - Dirce Y Kabuki
- Department of Food Science School of Food Engineering University of Campinas (UNICAMP) Rua Monteiro Lobato 80 Campinas 13083‐862 São Paulo Brazil
| |
Collapse
|
16
|
Bezek K, Nipič D, Torkar KG, Oder M, Dražić G, Abram A, Žibert J, Raspor P, Bohinc K. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. BIOFOULING 2019; 35:273-283. [PMID: 31025585 DOI: 10.1080/08927014.2019.1575959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
There is a wide range of factors affecting bacterial adhesion and biofilm formation. However, in both food processing and medical settings, it is very hard to obtain suitably controlled conditions so that the factors that reduce surface colonisation and biofouling can be studied. The aim of this study was to evaluate the effect of glucose concentration, temperature and stainless steel (SS) surface roughness on biofouling by four common pathogens (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and L. monocytogenes). Among the tested variables, the untreated SS surface (3C) was shown to be fouled more than 3D polished, brushed or electropolished SS surfaces. Although an array of parameters influenced biofouling, the most promising control measure was the influence of low temperature (4 °C) that reduced biofouling even in the case of the psychrophilic Listeria monocytogenes. The study findings could significantly contribute to the prevention of SS surface contamination and consequential biofouling by food and healthcare associated pathogens.
Collapse
Affiliation(s)
- Katja Bezek
- a Faculty of Health Sciences , University of Primorska , Izola , Slovenia
| | - Damjan Nipič
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Karmen Godič Torkar
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Martina Oder
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Goran Dražić
- c Department of materials chemistry, National Institute of Chemistry , Ljubljana , Slovenia
| | - Anže Abram
- d Department for nanostructured materials, Jozef Stefan Institute , Ljubljana , Slovenia
| | - Janez Žibert
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| | - Peter Raspor
- e Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana , Ljubljana , Slovenia
| | - Klemen Bohinc
- b Faculty of Health Sciences , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
17
|
Krishnan M, Dahms HU, Seeni P, Gopalan S, Sivanandham V, Jin-Hyoung K, James RA. Multi metal assessment on biofilm formation in offshore environment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:743-755. [DOI: 10.1016/j.msec.2016.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|
18
|
Merghni A, Bekir K, Kadmi Y, Dallel I, Janel S, Bovio S, Barois N, Lafont F, Mastouri M. Adhesiveness of opportunistic Staphylococcus aureus to materials used in dental office: In vitro study. Microb Pathog 2016; 103:129-134. [PMID: 27993700 DOI: 10.1016/j.micpath.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/01/2022]
Abstract
Staphylococcus aureus (S. aureus) is one of several opportunistic microbial pathogens associated with many healthcare problems. In the present study, S. aureus was assessed for its biofilm-forming ability on materials routinely used in dental offices, including stainless steel (SS), polyethylene (PE), and polyvinyl chloride (PVC). Materials that were tested were characterized for roughness (Ra) and surface free energy (SFE). The adhesion forces exerted by S. aureus to each substratum were investigated using atomic force microscopy (AFM), and biofilm formation was quantitatively assessed by crystal violet staining assay. AFM measurements demonstrated that the strongest adhesion forces (20 nN) were exerted on the PE surfaces (P < 0.05) and depended more on Ra. In addition, the results of biofilm formation capability indicated that S. aureus exhibited more affinity to SS materials when compared to the other materials (P < 0.05). This ability of biofilm formation seems to be more correlated to SFE (R = 0.65). Hence, control of the surface properties of materials used in dental practices is of crucial importance for preventing biofilm formation on dental materials to be used for patients' dental care.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia.
| | - Karima Bekir
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products (LR01ES16), Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| | - Yassine Kadmi
- Université d'Artois, EA 7394, Institut Charles VIOLLETTE, Lens, F-62300, France; ISA Lille, EA 7394, Institut Charles VIOLLETTE, Lille, F-59000, France; Ulco, EA 7394, Institut Charles VIOLLETTE, Boulogne sur Mer, F-62200, France; Université de Lille, EA 7394, Institut Charles VIOLLETTE, Lille, F-59000, France
| | - Ines Dallel
- Orthodontic Department of Monastir Dental Clinic, Laboratory of Oral Health and Orofacial Rehabilitation (LR12ES11), Tunisia
| | | | | | | | - Frank Lafont
- BioImaging Center Lille-FR3642, Lille, France; Cellular Microbiology and Physics of Infection Group - Center of Infection and Immunity of Lille: CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille Regional University Hospital Centre, Lille University, France
| | - Maha Mastouri
- Laboratory of Infectious Diseases and Biological Agents (LR99ES27), Faculty of Pharmacy, Monastir University, Monastir, Tunisia; Laboratory of Microbiology, University Hospital of Fattouma Bourguiba, Monastir, Tunisia
| |
Collapse
|
19
|
Sun D, Xu D, Yang C, Chen J, Shahzad MB, Sun Z, Zhao J, Gu T, Yang K, Wang G. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:744-50. [DOI: 10.1016/j.msec.2016.07.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/04/2023]
|
20
|
Tian J, Tu H, Shi X, Wang X, Deng H, Li B, Du Y. Antimicrobial application of nanofibrous mats self-assembled with chitosan and epigallocatechin gallate. Colloids Surf B Biointerfaces 2016; 145:643-652. [DOI: 10.1016/j.colsurfb.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 02/08/2023]
|
21
|
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol 2016; 63:233-9. [PMID: 27479925 DOI: 10.1111/lam.12627] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/07/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED The human opportunistic pathogen, Acinetobacter baumannii, has the propensity to form biofilms and frequently cause medical device-related infections in hospitals. However, the physio-chemical properties of medical surfaces, in addition to bacterial surface properties, will affect colonization and biofilm development. The objective of this study was to compare the ability of A. baumannii to form biofilms on six different materials common to the hospital environment: glass, porcelain, stainless steel, rubber, polycarbonate plastic and polypropylene plastic. Biofilms were developed on material coupons in a CDC biofilm reactor. Biofilms were visualized and quantified using fluorescent staining and imaged using confocal laser scanning microscopy (CLSM) and by direct viable cell counts. Image analysis of CLSM stacks indicated that the mean biomass values for biofilms grown on glass, rubber, porcelain, polypropylene, stainless steel and polycarbonate were 0·04, 0·26, 0·62, 1·00, 2·08 and 2·70 μm(3) /μm(2) respectively. Polycarbonate developed statistically more biofilm mass than glass, rubber, porcelain and polypropylene. Viable cell counts data were in agreement with the CLSM-derived data. In conclusion, polycarbonate was the most accommodating surface for A. baumannii ATCC 17978 to form biofilms while glass was least favourable. Alternatives to polycarbonate for use in medical and dental devices may need to be considered. SIGNIFICANCE AND IMPACT OF THE STUDY In the hospital environment, Acinetobacter baumannii is one of the most persistent and difficult to control opportunistic pathogens. The persistence of A. baumannii is due, in part, to its ability to colonize surfaces and form biofilms. This study demonstrates that A. baumannii can form biofilms on a variety of different surfaces and develops substantial biofilms on polycarbonate - a thermoplastic material that is often used in the construction of medical devices. The findings highlight the need to further study the in vitro compatibility of medical materials that could be colonized by A. baumannii and allow it to persist in hospital settings.
Collapse
Affiliation(s)
- C Greene
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - J Wu
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - A H Rickard
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C Xi
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Piecuch A, Lamch Ł, Paluch E, Obłąk E, Wilk KA. Biofilm prevention by dicephalic cationic surfactants and their interactions with DNA. J Appl Microbiol 2016; 121:682-92. [PMID: 27288863 DOI: 10.1111/jam.13204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
AIMS The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants-N,N-bis[3,3'-(dimethylamine)- propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9 H19 , n-C11 H23 , n-C13 H27 , n-C15 H31 ) and their antibacterial and biofilm preventing activity. METHODS AND RESULTS The minimal inhibitory and bactericidal concentrations (MIC and MBC) of dicephalic surfactants against Staphylococcus epidermidis and Pseudomonas aeruginosa were tested using standard methods. Pseudomonas aeruginosa was resistant to studied compounds but MBC values against Staph. epidermidis reached 0·48-0·01 mmol l(-1) . The influence of dicephalic surfactants on bacterial biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction in bacterial adhesion was observed, especially in the case of glass and stainless steel. The condensation of the DNA was shown in the ethidium bromide intercalation assay. CONCLUSIONS Dicephalic surfactants exhibited antibacterial activity against Staph. epidermidis. The activity of studied compounds depended on the hydrocarbon chain length and the counterion. Surfactants deposited on different materials reduced Staph. epidermidis adhesion, dependently on the surfactant structure and the substratum. Dicephalic surfactants showed the ability of DNA compaction. SIGNIFICANCE AND IMPACT OF THE STUDY This study points the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation. These compounds efficiently condensed DNA and are potential candidates for further studies towards the transfection.
Collapse
Affiliation(s)
- A Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Ł Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - E Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - E Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - K A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
23
|
Al Atya AK, Belguesmia Y, Chataigne G, Ravallec R, Vachée A, Szunerits S, Boukherroub R, Drider D. Anti-MRSA Activities of Enterocins DD28 and DD93 and Evidences on Their Role in the Inhibition of Biofilm Formation. Front Microbiol 2016; 7:817. [PMID: 27303396 PMCID: PMC4886693 DOI: 10.3389/fmicb.2016.00817] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a worrisome superbug. This work aimed at studying the effects of two class IIb bacteriocins, enterocins DD28 and DD93 as anti-MRSA agents. Thus, these bacteriocins were purified, from the cultures supernatants of Enterococcus faecalis 28 and 93, using a simplified purification procedure consisting in a cation exchange chromatography and a reversed-phase high-performance liquid chromatography. The anti-Staphylococcal activity was shown in vitro by the assessment of the minimal inhibitory concentration (MIC), followed by a checkerboard and time-kill kinetics experiments. The data unveiled a clear synergistic effect of enterocins DD28 and DD93 in combination with erythromycin or kanamycin against the clinical MRSA-S1 strain. Besides, these combinations impeded as well the MRSA-S1 clinical strain to setup biofilms on stainless steel and glace devices.
Collapse
Affiliation(s)
- Ahmed K Al Atya
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Yanath Belguesmia
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Gabrielle Chataigne
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Rozenn Ravallec
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| | - Anne Vachée
- Hôpital Victor Provo de Roubaix Roubaix, France
| | - Sabine Szunerits
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Université Lille 1 Lille, France
| | - Rabah Boukherroub
- Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Université Lille 1 Lille, France
| | - Djamel Drider
- Université de Lille 1 Sciences et Technologies - Institut Charles Viollette Lille, France
| |
Collapse
|