1
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Robinson C, Juska VB, O'Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116877. [PMID: 37579966 DOI: 10.1016/j.envres.2023.116877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Immunosensors are promising alternatives as detection platforms for the current gold standards methods. Electrochemical immunosensors have already proven their capability for the sensitive, selective, detection of target biomarkers specific to COVID-19, varying cancers or Alzheimer's disease, etc. Among the electrochemical techniques, electrochemical impedance spectroscopy (EIS) is a highly sensitive technique which examines the impedance of an electrochemical cell over a range of frequencies. There are several important critical requirements for the construction of successful impedimetric immunosensor. The applied surface chemistry and immobilisation protocol have impact on the electroanalytical performance of the developed immunosensors. In this Review, we summarise the building blocks of immunosensors based on EIS, including self-assembly monolayers, nanomaterials, polymers, immobilisation protocols and antibody orientation.
Collapse
Affiliation(s)
- Caoimhe Robinson
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland
| | - Vuslat B Juska
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork, T12 R5CP, Cork, Ireland.
| |
Collapse
|
3
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
5
|
Overoxidation of Intrinsically Conducting Polymers. Polymers (Basel) 2022; 14:polym14081584. [PMID: 35458334 PMCID: PMC9027932 DOI: 10.3390/polym14081584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers may undergo significant changes of molecular structure and material properties when exposed to highly oxidizing conditions or very positive electrode potentials, commonly called overoxidation. The type and extent of the changes depend on the experimental conditions and chemical environment. They may proceed already at much lower rates at lower electrode potentials because some of the processes associated with overoxidation are closely related to more or less reversible redox processes employed in electrochemical energy conversion and electrochromism. These changes may be welcome for some applications of these polymers in sensors, extraction, and surface functionalization, but in many cases, the change of properties affects the performance of the material negatively, contributing to material and device degradation. This report presents published examples, experimental observations, and their interpretations in terms of both structural and of material property changes. Options to limit and suppress overoxidation are presented, and useful applications are described extensively.
Collapse
|
6
|
Honda H, Kusaka Y, Wu H, Endo H, Tsuya D, Ohnuki H. Toward a Practical Impedimetric Biosensor: A Micro-Gap Parallel Plate Electrode Structure That Suppresses Unexpected Device-to-Device Variations. ACS OMEGA 2022; 7:11017-11022. [PMID: 35415349 PMCID: PMC8991901 DOI: 10.1021/acsomega.1c06942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 05/03/2023]
Abstract
We propose a rational electrode design concept for affinity biosensors based on electrochemical impedance spectroscopy to substantially suppress unexpected device-to-device variations. On the basis that the uniformity of the current distribution affects the variation, a novel micro-gap parallel plate electrode (PPE) was developed, where two planar electrodes with edges covered with a SiO2 layer were placed face to face. The structure provides a uniform current distribution over the planar electrode surface and maximizes the contribution of the planar electrode surface to sensing. For a comparative study, we also fabricated a micro-structured interdigitated electrode (IDE) that has been widely adopted for high-sensitivity measurement, although its current is highly concentrated on the electrode edge corner. Protein G (PrG) molecules were immobilized on both electrodes to prepare an immunoglobulin G (IgG) biosensor on which the specific binding of PrG-IgG can occur. We demonstrated that the IgG sensor with the PPE has small device-to-device variations, in strong contrast to the sensor with the IDE having large device-to-device variations. The results indicate that the current distribution on the electrode surface is important to fabricating electrochemical impedance spectroscopy biosensors with small device-to-device variations. Furthermore, it was found that the PPE allows ultrasensitive detection, that is, the sensor exhibited a linear range from 1 × 10-13 to 1 × 10-7 mol/L with a detection limit of 1 × 10-14 mol/L, which is a record sensitivity at low concentrations for EIS-based IgG sensors.
Collapse
Affiliation(s)
- Haruka Honda
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| | - Yusuke Kusaka
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| | - Haiyun Wu
- Department
of Ocean Sciences, Tokyo University of Marine
Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hideaki Endo
- Department
of Ocean Sciences, Tokyo University of Marine
Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Daiju Tsuya
- National
Institute for Material Science, 1-21 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hitoshi Ohnuki
- Department
of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533, Japan
| |
Collapse
|
7
|
Song L, Yin X, Zhu L, Huang Z, Ma J, Xu A, Gu Y, An Y, Miao Y. A specific identification platform based on biscuit-like bismuth nanosheets for label-free electrochemical immunosensor. ANAL SCI 2022; 38:571-582. [DOI: 10.1007/s44211-022-00067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
|
8
|
|
9
|
Chandra Barman S, Sharifuzzaman M, Zahed MA, Park C, Yoon SH, Zhang S, Kim H, Yoon H, Park JY. A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens Bioelectron 2021; 186:113287. [PMID: 33962178 DOI: 10.1016/j.bios.2021.113287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023]
Abstract
Due to the insufficiency of binding sites for the immobilized recognition biomolecules on the immunosensing platform, cancer detection becomes challenging. Whereas, the degradation of black phosphorene (BP) in the presence of the environmental factors becomes a concerning issue for use in electrochemical sensing. In this study, BP is successfully encapsulated by polyallylamine (PAMI) to increase its stability as well as to enhance its electrochemical performance. The successful encapsulation of BP is ensured through X-ray Photoelectron spectroscopy and Raman spectroscopy, whereas the stability of black phosphorus is ensured by Zeta potential measurements and cyclic voltammetry tests. The developed BP-PAMI composite showed high stability in the ambient environment and exhibited improved electrochemical performances. The impedimetric immunosensor was developed on a BP-PAMI modified laser burned graphene (LBG) to detect interleukin-6 biomarkers using electrochemical impedance spectroscopy (EIS). Under the optimized parameters, the fabricated immunosensor demonstrated a wide linear range of 0.003-75 ng/mL, limit of detection (LOD) of 1 pg/mL. Based on the experimental analysis, the developed sensing strategy can be employed as an easy, disposable, cost-effective and highly selective point-of-care cancer detection. In addition, the developed technique can be applied broadly for detecting other biomarkers after treating with suitable biomolecules.
Collapse
Affiliation(s)
- Sharat Chandra Barman
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Md Abu Zahed
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Chani Park
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Sang Hyuk Yoon
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Shipeng Zhang
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Hyunsik Kim
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Hyosang Yoon
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Advanced Sensor & Energy Research (ASER) Lab, KwangWoon University, 447-1, Seoul, 139-701, Republic of Korea.
| |
Collapse
|
10
|
Phetsang S, Khwannimit D, Rattanakit P, Chanlek N, Kidkhunthod P, Mungkornasawakul P, Jakmunee J, Ounnunkad K. A Redox Cu(II)-Graphene Oxide Modified Screen Printed Carbon Electrode as a Cost-Effective and Versatile Sensing Platform for Electrochemical Label-Free Immunosensor and Non-enzymatic Glucose Sensor. Front Chem 2021; 9:671173. [PMID: 34095085 PMCID: PMC8172615 DOI: 10.3389/fchem.2021.671173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
A novel copper (II) ions [Cu(II)]-graphene oxide (GO) nanocomplex-modified screen-printed carbon electrode (SPCE) is successfully developed as a versatile electrochemical platform for construction of sensors without an additionally external redox probe. A simple strategy to prepare the redox GO-modified SPCE is described. Such redox GO based on adsorbed Cu(II) is prepared by incubation of GO-modified SPCE in the Cu(II) solution. This work demonstrates the fabrications of two kinds of electrochemical sensors, i.e., a new label-free electrochemical immunosensor and non-enzymatic sensor for detections of immunoglobulin G (IgG) and glucose, respectively. Our immunosensor based on square-wave voltammetry (SWV) of the redox GO-modified electrode shows the linearity in a dynamic range of 1.0-500 pg.mL-1 with a limit of detection (LOD) of 0.20 pg.mL-1 for the detection of IgG while non-enzymatic sensor reveals two dynamic ranges of 0.10-1.00 mM (sensitivity = 36.31 μA.mM-1.cm-2) and 1.00-12.50 mM (sensitivity = 3.85 μA.mM-1.cm-2) with a LOD value of 0.12 mM. The novel redox Cu(II)-GO composite electrode is a promising candidate for clinical research and diagnosis.
Collapse
Affiliation(s)
- Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- National Institute of Technology, Nagaoka College, Niigata, Japan
| | - Duangruedee Khwannimit
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Division of Chemistry, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parawee Rattanakit
- Division of Chemistry, School of Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Narong Chanlek
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Metal composite oxides Bi 2MoO 6/IL membrane as matrix for constructing ultrasensitive electrochemical immunosensor. Anal Bioanal Chem 2021; 413:1173-1183. [PMID: 33415435 DOI: 10.1007/s00216-020-03080-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
In the process of diagnosis and disease monitoring, it is important to quickly and easily detect protein biomarkers. The strategy reported here is an attempt to prepare Bi2MoO6 nanomaterial with new three-dimensional holes morphology surrounded by rod and sheet to construct a simple and sensitive sensing platform, where Bi2MoO6/ionic liquid (IL) composite was modified on the carbon paste electrode (CPE). In order to monitor the assembly process of human IgG immunosensors, a plurality of electrochemical tests such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was executed. The obtained BSA/anti-IgG/GA/Bi2MoO6/IL-CPE displayed prominent conductivity and high sensitivity in detecting human immunoglobulin G (human IgG). Under the optimal experimental conditions, the results by differential pulse voltammetry (DPV) showed that the constructed label-free IgG immunosensor can detect IgG in the range of 0.01 to 1000 ng mL-1, and limit of detection (LOD) was 4 pg mL-1. The immunosensor displayed good performances including selectivity, reproducibility, and stability. Based on preliminary experiments, Bi2MoO6 and its composite materials are very promising for the construction of a variety biosensors for the analysis of other biological substances. Graphical abstract.
Collapse
|
12
|
Chen X, Song L, Zhu G, Ma J, Xu A, Zhao W, Gu Y, An Y, Miao Y. A novel site-induced biomolecule anchoring strategy based on solid superacid ZrO 2/SO 42- for fabricating label-free IgG electrochemical immunosensors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01279g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a unique zirconium dioxide solid superacid (ZrO2/SO42−) was utilized for the fabrication of an IgG electrochemical immunosensor.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Lin Song
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Guanyang Zhu
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Jing Ma
- Department of Pharmacy
- Xinhua Hospital, School of Medicine
- Shanghai Jiaotong University
- Shanghai 200092
- China
| | - Ajing Xu
- Department of Pharmacy
- Xinhua Hospital, School of Medicine
- Shanghai Jiaotong University
- Shanghai 200092
- China
| | - Wenya Zhao
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yingying Gu
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yarui An
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yuqing Miao
- Institute of Bismuth Science
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
13
|
Liu X, Yue T, Qi K, Qiu Y, Guo X. Porous graphene based electrochemical immunosensor using Cu 3(BTC) 2 metal-organic framework as nonenzymatic label. Talanta 2020; 217:121042. [PMID: 32498912 DOI: 10.1016/j.talanta.2020.121042] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
An electrochemical immunosensor for highly sensitive detection of cancer biomarkers has been developed based on the combination of a sensing platform of polydopamine modified porous graphene and a nonenzymatic label of metal-organic framework (MOF) conjugated secondary antibody. This approach achieves a wide range of linear response from 0.1 to 10 ng/mL, low detection limit of 0.025 ng/mL (at a signal to noise ratio of 3), good reproducibility and selectivity for the detection of prostate specific antigen (PSA) as a model analyte. The high performance of the immunosensor is attributed to the high surface area from porous graphene and the strong adhesion of polydopamine, allowing a high load of the primary antibody of PSA, as well as the highly electrocatalytic activity of the Cu3(BTC)2 (BTC = benzene-1,3,5-tricarboxylic acid) MOF toward H2O2 to provide greatly amplified sensitivity. In this respect, the MOF-based nonenzymatic label shows promising application for the point-of-care detection of different cancer biomarkers in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaobang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Ting Yue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Kai Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Yubing Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
14
|
|
15
|
A photoelectrochemical sandwich immunoassay for protein S100β, a biomarker for Alzheimer's disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Mikrochim Acta 2019; 186:117. [PMID: 30649628 DOI: 10.1007/s00604-018-3159-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
A sandwich-type photoelectrochemical immunoassay is described for the protein S100ß which is an Alzheimer's disease biomarker found in the astrocytes of the brain. Antibody against S100ß (anti-S100ß) was labeled with CdS quantum dots and then acted as a secondary antibody. The labeled antibody was characterized by FTIR, ultraviolet-visible and fluorescence spectroscopy. An indium-tin oxide (ITO) electrode was modified with a nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Then, a sol-gel film containing isocyanate functional groups (-N=C=O) was cast on the surface of the electrode. The NCO group reacts with amino groups of the labeled antibody to covalently bind them to the surface. The S100β was bound by the primary immobilized antibody on the rGO-Au/ITO electrode and then sandwiched with the labeled secondary antibody. Cyclic voltammetry and electrochemical impedance spectroscopy were applied to confirm the stepwise changes in the electrochemical properties of the electrode surface. The photoelectrochemical immunoassay, typically operated at a potential of +0.2 V (vs. Ag|AgClsat) gives a signal that is related to the logarithm of the S100β concentration in the range from 0.25 to 10 ng·mL-1 with a lower detection limit of 0.15 pg·mL-1. The method was successfully applied to the determination of S100β in human serum samples. Graphical abstract Schematic presentation of an immunosensor which is based on an indium tin oxide modified with reduced graphene oxide decorated with gold nanocomposite and antibody. The immunosensor was applied for the determination of S100β biomarker by using in the labeled antibody.
Collapse
|
16
|
A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Mikrochim Acta 2018; 185:387. [DOI: 10.1007/s00604-018-2919-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
|
17
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Besharati M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim Acta 2017; 185:59. [PMID: 29594593 DOI: 10.1007/s00604-017-2570-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
The authors describe an electrochemical method for aptamer-based determination of insulin at femtomolar concentrations. The surface of a screen printed electrode was modified with ordered mesoporous carbon that was chemically modified with 1,3,6,8-pyrenetetrasulfonate (TPS). The amino-terminated aptamer was then covalently linked to TPS via reactive sulfonyl chloride groups. Subsequently, the redox probe Methylene Blue (MB) was interacted into the aptamer. The MB-modified binds to insulin and this results in the release of MB and a decreased signal as obtained by differential pulse voltammetry, best at a working voltage of -0.3 V (versus silver pseudo-reference electrode). Insulin can be quantified by this method in the 1.0 fM to 10.0 pM concentration range, with a 0.18 fM limit of detection (at 3σ/slope). The assay was applied to the determination of insulin in spiked human serum samples. The method is highly sensitive, selective, stable, and has a wide analytical range. Graphical abstract The surface of a screen printed electrode was modified with ordered mesoporous carbon-1,3,6,8-pyrenetetrasulfonate. The amino-terminated aptamer was then linked to the 1,3,6,8-pyrenetetrasulfonate. Then, the Methylene Blue was interacted into the aptamer. The modified electrode was applied to the determination of insulin.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, P.O. Box 6714967346, Kermanshah, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran.
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Saeed Sarkar
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 1417613151, Tehran, Iran
| | - Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and center of excellence in phylogeny living organisms, College of Science, University of Tehran, P.O. Box 41556455, Tehran, Iran
- Microbial technology and products (MTP) research center, University of Tehran, P.O. Box 1417466191, Tehran, Iran
| |
Collapse
|
19
|
|
20
|
Libansky M, Zima J, Barek J, Reznickova A, Svorcik V, Dejmkova H. Basic electrochemical properties of sputtered gold film electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pd nano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta 2017; 985:61-68. [PMID: 28864195 DOI: 10.1016/j.aca.2017.07.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
In this research, we demonstrated a flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblasts (CCRF-CEM) based on poly(3,4-ethylenedioxythiophene) decorated with gold nanoparticles (PEDOT-Aunano) as a nano platform to immobilize thiolated sgc8c aptamer and multiwall carbon nanotubes decorated with palladium nanoparticles/3,4,9,10-perylene tetracarboxylic acid (MWCNTs-Pdnano/PTCA) to fabricate catalytic labeled aptamer. In the proposed sensing strategy, the CCRF-CEM cancer cells were sandwiched between immobilized sgc8c aptamer on PEDOT-Aunano modified surface electrode and catalytic labeled sgc8c aptamer (MWCNTs-Pdnano/PTCA/aptamer). After that, the concentration of CCRF-CEM cancer cells was determined in presence of 0.1 mM hydrogen peroxide (H2O2) as an electroactive component. The attached MWCNTs-Pdnano nanocomposites to CCRF-CEM cancer cells amplified the electrocatalytic reduction of H2O2 and improved the sensitivity of the sensor to CCRF-CEM cancer cells. The MWCNT-Pdnano nanocomposite was characterized with transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to confirm the stepwise changes in the electrochemical surface properties of the electrode. The proposed sandwich-type electrochemical aptasensor exhibited an excellent analytical performance for the detection of CCRF-CEM cancer cells ranging from 1.0 × 101 to 5.0 × 105 cells mL-1. The limit of detection was 8 cells mL-1. The proposed aptasensor showed high selectivity toward CCRF-CEM cancer cells. The proposed aptasensor was also applied to the determination of CCRF-CEM cancer cells in human serum samples.
Collapse
|
22
|
A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO 2 nanocomposite. Biosens Bioelectron 2017; 98:113-118. [PMID: 28667837 DOI: 10.1016/j.bios.2017.06.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 11/23/2022]
Abstract
Herein, for the first time a visible-light-driven photoelectrochemical (PEC) aptasensor for shrimp tropomyosin determination was fabricated by using graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) as photoactive nanomaterials, ascorbic acid (AA) as electron donor and ruthenium (III) hexaammine (Ru(NH3)63+) as signal enhancer. The surface of an ITO electrode was first modified with g-C3N4, TiO2, and polyethyleneimine (PEI) and then the amine terminal aptamerTROP probe was attached to PEI by the use of glutaraldehyde (GA) as cross-linker. After that, Ru(NH3)63+ was adsorbed on aptamer to enhance the photocurrent signal. The principle of proposed PEC aptasensor is based on the formation of a selective complex between tropomyosin and immobilized aptamerTROP probe on the surface of ITO/g-C3N4-TiO2/PEI/aptamerTROP-Ru(NH3)6+3. After the incubation of tropomyosin with TROP aptamer probe, the photocurrent signal decreased due to releasing adsorbed Ru(NH3)63+ on aptamer and preventing AA from scavenging photogenerated holes to the photoactive modified electrode. Under the optimized conditions, the fabricated PEC aptasensor was used for the determination of shrimp tropomyosin in the concentration range of 1-400ngmL-1 with a limit of detection of 0.23ngmL-1. The proposed PEC aptasensor exhibited high selectivity, sensitivity, and good stability.
Collapse
|
23
|
Thunkhamrak C, Reanpang P, Ounnunkad K, Jakmunee J. Sequential injection system with amperometric immunosensor for sensitive determination of human immunoglobulin G. Talanta 2017; 171:53-60. [PMID: 28551153 DOI: 10.1016/j.talanta.2017.04.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Sequential injection (SI) system incorporated with amperometric immunosensor was developed for sensitive determination of human immunoglobulin G (HIgG). A cost effective label-free immunosensor was fabricated by immobilizing anti-HIgG on a graphene oxide (GO) modified screen-printed carbon electrode (SPCE). The developed electrode was characterized by cyclic voltammetry(CV), scanning electron microscope(SEM), and energy dispersive spectroscopy(EDS) which confirmed the selective immunointeraction of HIgG to the anti-HIgG on the electrode, thus reduced the amperometric current of [Fe(CN)6]3-/4- redox probe. The sensing electrode was placed in a designed electrochemical flow cell of SI system, where the redox probe was propelled through and the currents before and after the immunointeraction occurred were measured amperometrically by using a simple home-made amperometer. Under the optimum condition: flow rate of 2mLmin-1, applied potential of +350mV, [Fe(CN)6]3-/4- concentration of 10mM and 10min of incubation time, a linear calibration in the range of 2-100ngmL-1 was achieved, with detection limit of 1.70ngmL-1. The proposed system provided good repeatability and reproducibility and the application for urine sample analysis was demonstrated.
Collapse
Affiliation(s)
- Chidkamon Thunkhamrak
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Preeyaporn Reanpang
- Faculty of Science and Technology, Thammasat University Lampang Center, 248 M.2 Lampang-Chiang Mai Road, Pong Yang Khok, Hangchat, Lampang 52190, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Recent Advances in Electrochemical Immunosensors. SENSORS 2017; 17:s17040794. [PMID: 28387718 PMCID: PMC5422067 DOI: 10.3390/s17040794] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/08/2023]
Abstract
Immunosensors have experienced a very significant growth in recent years, driven by the need for fast, sensitive, portable and easy-to-use devices to detect biomarkers for clinical diagnosis or to monitor organic pollutants in natural or industrial environments. Advances in the field of signal amplification using enzymatic reactions, nanomaterials such as carbon nanotubes, graphene and graphene derivatives, metallic nanoparticles (gold, silver, various oxides or metal complexes), or magnetic beads show how it is possible to improve collection, binding or transduction performances and reach the requirements for realistic clinical diagnostic or environmental control. This review presents these most recent advances; it focuses first on classical electrode substrates, then moves to carbon-based nanostructured ones including carbon nanotubes, graphene and other carbon materials, metal or metal-oxide nanoparticles, magnetic nanoparticles, dendrimers and, to finish, explore the use of ionic liquids. Analytical performances are systematically covered and compared, depending on the detection principle, but also from a chronological perspective, from 2012 to 2016 and early 2017.
Collapse
|
25
|
Norfun P, Jumpathong W, Kungwan N, Jakmunee J, Ounnunkad K. Electroanalytical Application of Screen-printed Carbon Electrode Modified with Conductive Graphene Oxide–Poly(acrylic acid) Film for Label-free Detection of Human Immunoglobulin G. CHEM LETT 2016. [DOI: 10.1246/cl.160715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 2016; 85:343-350. [DOI: 10.1016/j.bios.2016.04.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
27
|
Tang Z, Ma Z. Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe. Sci Rep 2016; 6:35440. [PMID: 27739493 PMCID: PMC5064308 DOI: 10.1038/srep35440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
In this work, we presented a ratiometric electrochemical immunosensor based on redox substrate and immunoprobe. Carboxymethyl cellulose-Au-Pb2+ (CMC-Au-Pb2+) and carbon-Au-Cu2+ (C-Au-Cu2+) nanocomposites were firstly synthesized and implemented as redox substrate and immunoprobe with strong current signals at -0.45 V and 0.15 V, respectively. Human immunoglobulin G (IgG) was used as a model analyte to examine the analytical performance of the proposed method. The current signals of CMC-Au-Pb2+ (Isubstrate) and C-Au-Cu2+ (Iprobe) were monitored. The effect of redox substrate and immunoprobe behaved as a better linear relationship between Iprobe/Isubstrate and Lg CIgG (ng mL-1). By measuring the signal ratio Iprobe/Isubstrate, the sandwich immunosensor for IgG exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, which was two orders of magnitude higher than other previous works. The limit of detection reached 0.26 fg mL-1. Furthermore, for human serum samples, the results from this method were consistent with those of the enzyme linked immunosorbent assay (ELISA), demonstrating that the proposed immunoassay was of great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Zhongxue Tang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
28
|
Li P, Zhang H. A Novel Magnetism-assisted Electrochemical Immunosensor with Sub-Picomolar Sensitivity. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengli Li
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| | - Hongfang Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science; Northwest University; Xi'an 710127 P. R. China
| |
Collapse
|
29
|
Park CS, Lee C, Kwon OS. Conducting Polymer Based Nanobiosensors. Polymers (Basel) 2016; 8:E249. [PMID: 30974524 PMCID: PMC6432403 DOI: 10.3390/polym8070249] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/17/2022] Open
Abstract
In recent years, conducting polymer (CP) nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET) biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.
Collapse
Affiliation(s)
- Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Changsoo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology and Bioinformatics, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34144, Korea.
| | - Oh Seok Kwon
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
30
|
Liang J, Guan M, Huang G, Qiu H, Chen Z, Li G, Huang Y. Highly sensitive covalently functionalized light-addressable potentiometric sensor for determination of biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:185-91. [PMID: 27040210 DOI: 10.1016/j.msec.2016.02.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 11/18/2022]
Abstract
A biomarker is related to the biological status of a living organism and shows great promise for the early prediction of a related disease. Herein we presented a novel structured light-addressable potentiometric sensor (LAPS) for the determination of a model biomarker, human immunoglobulin G (hIgG). In this system, the goat anti-human immunoglobulin G antibody was used as recognition element and covalently immobilized on the surface of light-addressable potentiometric sensor chip to capture human immunoglobulin G. Due to the light addressable capability of light-addressable potentiometric sensor, human immunoglobulin G dissolved in the supporting electrolyte solution can be detected by monitoring the potential shifts of the sensor. In order to produce a stable photocurrent, the laser diode controlled by field-programmable gate array was used as the light emitter to drive the light-addressable potentiometric sensor. A linear correlation between the potential shift response and the concentration of human immunoglobulin G was achieved and the corresponding regression equation was ΔV (V)=0.00714ChIgG (μg/mL)-0.0147 with a correlation coefficient of 0.9968 over a range 0-150 μg/mL. Moreover, the light-addressable potentiometric sensor system also showed acceptable stability and reproducibility. All the results demonstrated that the system was more applicable to detection of disease biomarkers with simple operation, multiple-sample format and might hold great promise in various environmental, food, and clinical applications.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Mingyuan Guan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guoyin Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Hengming Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zhengcheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yong Huang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China; Guangxi Experiment Center of Information Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| |
Collapse
|