1
|
Liu Z, Wei H, Liu Y, Li W, Li S, Wang G, Guo T. Fabrication and characterization of interpenetrating network hydrogels based on sequential amine‐anhydride reaction and photopolymerization in water. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zijun Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Yuhua Liu
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Weikun Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Songmao Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou PR China
| |
Collapse
|
2
|
Watanabe K, Sato K, Komatsu S, Sugiyama K, Kumano M, Fujimura T. FAB-MS Measurement of 2-Hydroxyestrone and Monosaccharides Assisted by 4-Pyridineboronic Ester Derivatization. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Chen X, Yu H, Wang L, Shen D, Li C, Zhou W. Cross-Linking-Density-Changeable Microneedle Patch Prepared from a Glucose-Responsive Hydrogel for Insulin Delivery. ACS Biomater Sci Eng 2021; 7:4870-4882. [PMID: 34519208 DOI: 10.1021/acsbiomaterials.1c01073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To simplify the preparation process of a glucose-responsive microneedle patch, a cross-linking-density changeable microneedle patch was designed. The microneedle patch was made up of a hydrogel formed by phenylboronic acid-grafted polyallylamine and poly(vinyl alcohol) (PVA). The gel was cross-linked by boronate ester bonds between phenylboronic acid groups and PVA. It still had fluidity and could be filled into a mold to prepare microneedle patches. Moreover, insulin could be directly loaded into the microneedle patch by mixing with the gel. The boronate ester bond would be broken in the presence of glucose, resulting in a decrease in the cross-linking density. Therefore, the gel could achieve a greater swelling degree and insulin could be released faster. In addition, PVA chains were crystallized by repeatedly freezing and thawing to improve the mechanical strength of the microneedle patch. In terms of glucose-dependent insulin release, the gel showed good glucose-responsive insulin-release ability. Through additional ion cross-linking, the microneedle patch could also control the insulin release according to glucose concentration. In the hypoglycemic experiment of diabetic rats, the microneedle patch effectively pierced the skin and slowly released insulin.
Collapse
Affiliation(s)
- Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| | - Weibin Zhou
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
4
|
Tang Y, Jia C, Wang Y, Wan W, Li H, Huang G, Zhang X. Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Anti-Proliferation and Anti-Angiogenesis Therapy of Tumors. Adv Healthc Mater 2021; 10:e2100799. [PMID: 34310079 DOI: 10.1002/adhm.202100799] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Lactate, as the most abundant component with concentrations of 4-40 mm in tumors, contributes to the regulation of metabolic pathways, angiogenesis, and immunosuppression, exhibiting remarkable potential in cancer treatment. Therefore, a codelivery strategy that combined the cascaded enzymes Lactate oxidase/Catalase (LOx/CAT) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) to suppress tumor proliferation and angiogenesis synergistically is creatively proposed. In brief, the cationic liposomes (LIP) encapsulated with LOx/CAT and siVEGF via hydrophilic interaction and electrostatic adsorption followed by coating with PEGylated phenylboronic acid (PP) is established (PPL@[LOX+CAT]). Moreover, a simple 3-aminophenylboronic acid (PBA)-shielded strategy via fructose (Fru) is applied to further enhance the targeting efficiency in the tumor site. The obtained co-encapsulated nanoparticles (NPs) can simultaneous intracellular release of LOx/CAT and siVEGF, and the collaborative use of LOx and CAT can promote lactate consumption even under a hypoxic tumor microenvironment (TME) without producing systemic toxicity. The combined application of lactate depletion and VEGF silencing demonstrated the efficient migration suppression of 4T1 cells in vitro and superior antitumor and antimetastatic properties in vivo. This work offers a promising tumor treatment strategy via integrating cascaded enzymes and gene therapy, and explores a promising therapy regimen for 4T1 triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Changhao Jia
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yu Wang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Wenjun Wan
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Hui Li
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Gui Huang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xuenong Zhang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
5
|
Mashoofnia A, Mohamadnia Z, Kompany‐Zareh M. Application of Multivariate and Spectroscopic Techniques for Investigation of the Interactions between Polyelectrolyte Layers in Layer‐by‐Layer Assembled pH‐Sensitive Nanocapsules. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anita Mashoofnia
- Polymer Research Laboratory, Department of Chemistry Institute for Advanced Studies in Basic Science (IASBS) Gava Zang Zanjan 45137‐66731 Iran
| | - Zahra Mohamadnia
- Polymer Research Laboratory, Department of Chemistry Institute for Advanced Studies in Basic Science (IASBS) Gava Zang Zanjan 45137‐66731 Iran
| | - Mohsen Kompany‐Zareh
- Analytical Chemistry Division, Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| |
Collapse
|
6
|
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive Functional Phenylboronic Acid-Based Delivery System as an Emerging Platform for Diabetic Therapy. Int J Nanomedicine 2021; 16:297-314. [PMID: 33488074 PMCID: PMC7816047 DOI: 10.2147/ijn.s284357] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| |
Collapse
|
7
|
Adsorption and Release of Rose Bengal on Layer-by-Layer Films of Poly(Vinyl Alcohol) and Poly(Amidoamine) Dendrimers Bearing 4-Carboxyphenylboronic Acid. Polymers (Basel) 2020; 12:polym12081854. [PMID: 32824825 PMCID: PMC7465977 DOI: 10.3390/polym12081854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Phenylboronic acid-bearing polyamidoamine dendrimer (PBA-PAMAM)/poly(vinyl alcohol) (PVA) multilayer films were prepared through the layer-by-layer (LbL) deposition of PBA-PAMAM solution and PVA solution. PBA-PAMAM/PVA films were constructed successfully through the formation of boronate ester bonds between the boronic acid moiety in PBA and 1,3-diol units in PVA. When the (PBA-PAMAM/PVA)5 films were immersed in rose bengal (RB) solution, RB was adsorbed onto the LbL films. The amount of RB adsorbed was higher in the LbL films immersed in acidic solution than in basic solution. The release of RB from the LbL films was also promoted in the basic solution, while it was suppressed in the acidic solution. The boronic acid ester is oxidized to phenol by hydrogen peroxide (H2O2) and the carbon-boron bond is cleaved, so that the (PBA-PAMAM/PVA)5 films can be decomposed by immersion in H2O2 solution. Therefore, when RB-adsorbed (PBA-PAMAM/PVA)5 films were immersed in H2O2 solution, the release of RB was moderately promoted when the solution was weakly acidic.
Collapse
|
8
|
Cheng H, Zhang H, Xu G, Peng J, Wang Z, Sun B, Aouameur D, Fan Z, Jiang W, Zhou J, Ding Y. A Combinative Assembly Strategy Inspired Reversibly Borate-Bridged Polymeric Micelles for Lesion-Specific Rapid Release of Anti-Coccidial Drugs. NANO-MICRO LETTERS 2020; 12:155. [PMID: 34138187 PMCID: PMC7770674 DOI: 10.1007/s40820-020-00495-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
HIGHLIGHTS A combined assembly strategy from hydrophobicity-driving and reversible borate bridges is proposed for high drug-loading efficiency and superior stability. Intestinal environment-triggered drug delivery system represents an effective treatment for local infection due to the site-specific targeting and shuttling of drugs. The reduced dosage brought by the drug-loading micelles could solve the problem of drug residue in breeding industry. ABSTRACT Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs. Herein, chitosan conjugates (SPCS) installed with sialic acid (SA) and phenylboronic acid (PBA) were synthesized, of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA. The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges. The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract. After reaching the lesions, the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release, while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside. The drug-micelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation. The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable, safe and flexible anti-infectious drug delivery systems. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s40820-020-00495-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Gujun Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jin Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Bo Sun
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Djamila Aouameur
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
9
|
Yoshida K, Kashimura Y, Kamijo T, Ono T, Dairaku T, Sato T, Kashiwagi Y, Sato K. Decomposition of Glucose-Sensitive Layer-by-Layer Films Using Hemin, DNA, and Glucose Oxidase. Polymers (Basel) 2020; 12:E319. [PMID: 32033050 PMCID: PMC7077378 DOI: 10.3390/polym12020319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Glucose-sensitive films were prepared through the layer-by-layer (LbL) deposition of hemin-modified poly(ethyleneimine) (H-PEI) solution and DNA solution (containing glucose oxidase (GOx)). H-PEI/DNA + GOx multilayer films were constructed using electrostatic interactions. The (H-PEI/DNA + GOx)5 film was then partially decomposed by hydrogen peroxide (H2O2). The mechanism for the decomposition of the LbL film was considered to involve more reactive oxygen species (ROS) that were formed by the reaction of hemin and H2O2, which then caused nonspecific DNA cleavage. In addition, GOx present in the LbL films reacts with glucose to generate hydrogen peroxide. Therefore, decomposition of the (H-PEI/DNA + GOx)5 film was observed when the thin film was immersed in a glucose solution. (H-PEI/DNA + GOx)5 films exposed to a glucose solution for periods of 24, 48 72, and 96 h indicated that the decomposition of the film increased with the time to 9.97%, 16.3%, 23.1%, and 30.5%, respectively. The rate of LbL film decomposition increased with the glucose concentration. At pH and ionic strengths close to physiological conditions, it was possible to slowly decompose the LbL film at low glucose concentrations of 1-10 mM.
Collapse
Affiliation(s)
- Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Yu Kashimura
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Toshio Kamijo
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka 997-8511, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Takaya Sato
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka 997-8511, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan
| | - Katsuhiko Sato
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka 997-8511, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
10
|
Liu Y, Gai M, Sukvanitvichai D, Frueh J, Sukhorukov GB. pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids Surf B Biointerfaces 2020; 188:110826. [PMID: 32007703 DOI: 10.1016/j.colsurfb.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo.
Collapse
Affiliation(s)
- Yuechi Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Meiyu Gai
- Max Plank Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Dusita Sukvanitvichai
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Johannes Frueh
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 3, 8093, Zürich, Switzerland.
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
11
|
Huang Q, Wang L, Yu H, Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release 2019; 305:50-64. [DOI: 10.1016/j.jconrel.2019.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
|
12
|
Oda H, Ishihara K. Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Long Y, Lu Z, Mei L, Li M, Ren K, Wang X, Tang J, Zhang Z, He Q. Enhanced Melanoma-Targeted Therapy by "Fru-Blocked" Phenyboronic Acid-Modified Multiphase Antimetastatic Micellar Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800229. [PMID: 30479911 PMCID: PMC6247072 DOI: 10.1002/advs.201800229] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/12/2018] [Indexed: 05/22/2023]
Abstract
Metastasis remains the main driver of mortality in patients suffering from cancer because of the refractoriness resulting from the multi-phase metastatic cascade. Herein, a multifunctional self-delivering PBA-LMWH-TOS nanoparticle (PLT NP) is established that acts as both nanocarrier and anti-metastatic agent with effects on most hematogenous metastases of cancers. The hydrophilic segment (low molecular weight heparin, LMWH) inhibits the interactions between tumor cells and platelets. The hydrophobic segment (d-α-tocopheryl succinate, TOS) could inhibit the expression of matrix metalloproteinase-9 (MMP-9) in B16F10 cells which is first reported in this article. Surprisingly, even the blank NPs showed excellent anti-metastatic capacity in three mouse models by acting on different phases of the metastatic cascade. Moreover, the overexpression of sialic acid (SA) residues on tumor cells is implicated in the malignant and metastatic phenotypes of cancers. Thus, these 3-aminophenylboronic acid (PBA)-modified doxorubicin (DOX)-loaded NPs offer an efficient approach for the treatment of both solid melanomas and metastases. Furthermore, a simple pH-sensitive "Fructose (Fru)-blocking" coping strategy is established to reduce the NP distribution in normal tissues and distinctly increases the accumulation in melanoma tumors. These micellar NPs consisting of biocompatible materials offer a promising approach for the clinical therapy of highly invasive solid tumors and metastases.
Collapse
Affiliation(s)
- Yang Long
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Zhengze Lu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Ling Mei
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Man Li
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Kebai Ren
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Xuhui Wang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Jiajing Tang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityNo. 17, Block 3, Southern Renmin RoadChengdu610041China
| |
Collapse
|
14
|
Yoshida K, Awaji K, Shimizu S, Iwasaki M, Oide Y, Ito M, Dairaku T, Ono T, Kashiwagi Y, Sato K. Preparation of Microparticles Capable of Glucose-Induced Insulin Release under Physiological Conditions. Polymers (Basel) 2018; 10:E1164. [PMID: 30961089 PMCID: PMC6403614 DOI: 10.3390/polym10101164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023] Open
Abstract
Hydrogen peroxide (H₂O₂)-sensitive layer-by-layer films were prepared based on combining phenyl boronic acid (PBA)-modified poly(allylamine) (PAH) with shikimic acid (SA)-modified-PAH through boronate ester bonds. These PBA-PAH/SA-PAH multilayer films could be prepared in aqueous solutions at pH 7.4 and 9.0 in the presence of NaCl. It is believed that the electrostatic repulsion between the SA-PAH and PBA-PAH was diminished and the formation of ester bonds between the SA and PBA was promoted in the presence of NaCl. These films readily decomposed in the presence of H₂O₂ because the boronate ester bonds were cleaved by an oxidation reaction. In addition, SA-PAH/PBA-PAH multilayer films combined with glucose oxidase (GOx) were decomposed in the presence of glucose because GOx catalyzes the oxidation of D-glucose to generate H₂O₂. The surfaces of CaCO₃ microparticles were coated with PAH/GOx/(SA-PAH/PBA-PAH)₅ films that absorbed insulin. A 1 mg quantity of these particles released up to 10 μg insulin in the presence 10 mM glucose under physiological conditions.
Collapse
Affiliation(s)
- Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-Machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kazuma Awaji
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Seira Shimizu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miku Iwasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yuki Oide
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Megumi Ito
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-Machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-Machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University 31-1 Misumido, Tomita-Machi, Koriyama, Fukushima 963-8611, Japan.
| | - Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
15
|
Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Takei C, Ohno Y, Seki T, Miki R, Seki T, Egawa Y. Sugar-Responsive Layer-by-Layer Film Composed of Phenylboronic Acid-Appended Insulin and Poly(vinyl alcohol). Chem Pharm Bull (Tokyo) 2018; 66:368-374. [PMID: 29607902 DOI: 10.1248/cpb.c17-00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that reversible chemical bond formation between phenylboronic acid (PBA) and 1,3-diol can be utilized as the driving force for the preparation of layer-by-layer (LbL) films. The LbL films composed of a PBA-appended polymer and poly(vinyl alcohol) (PVA) disintegrated in the presence of sugar. This type of LbL films has been recognized as a promising approach for sugar-responsive drug release systems, but an issue preventing the practical application of LbL films is combining them with insulin. In this report, we have proposed a solution for this issue by using PBA-appended insulin as a component of the LbL film. We prepared two kinds of PBA-appended insulin derivatives and confirmed that they retained their hypoglycemic activity. The LbL films composed of PBA-appended insulin and PVA were successfully prepared through reversible chemical bond formation between the boronic acid moiety and the 1,3-diol of PVA. The LbL film disintegrated upon treatment with sugars. Based on the results presented herein, we discuss the suitability of the PBA moiety with respect to hypoglycemic activity, binding ability, and selectivity for D-glucose.
Collapse
Affiliation(s)
- Chihiro Takei
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yui Ohno
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Tomohiro Seki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Ryotaro Miki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Toshinobu Seki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
17
|
Takahashi S, Suzuki I, Ojima T, Minaki D, Anzai JI. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component. SENSORS (BASEL, SWITZERLAND) 2018; 18:E317. [PMID: 29361775 PMCID: PMC5795570 DOI: 10.3390/s18010317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/08/2023]
Abstract
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.
Collapse
Affiliation(s)
- Shigehiro Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Iwao Suzuki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Takuto Ojima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Daichi Minaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
18
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
19
|
Lactate-induced decomposition of layer-by-layer films composed of phenylboronic acid-modified poly(allylamine) and poly(vinyl alcohol) under extracellular tumor conditions. J Colloid Interface Sci 2018; 510:302-307. [DOI: 10.1016/j.jcis.2017.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023]
|
20
|
Yoshida K. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique. YAKUGAKU ZASSHI 2017; 137:1215-1221. [PMID: 28966262 DOI: 10.1248/yakushi.17-00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO3) microparticles, followed by dissolution of the CaCO3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.
Collapse
|
21
|
Preparation of a PVA/PBA dispersion and its response to glucose, fructose, and hydrogen peroxide. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4135-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Wu JZ, Bremner DH, Li HY, Niu SW, Li SD, Zhu LM. Phenylboronic acid-diol crosslinked 6-O-vinylazeloyl-d-galactose nanocarriers for insulin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:845-855. [PMID: 28482599 DOI: 10.1016/j.msec.2017.03.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/28/2022]
Abstract
A new block polymer named poly 3-acrylamidophenylboronic acid-b-6-O-vinylazeloyl-d-galactose (p(AAPBA-b-OVZG)) was prepared using 3-acrylamidophenylboronic acid (AAPBA) and 6-O-vinylazeloyl-d-galactose (OVZG) via a two-step procedure involving S-1-dodecyl-S-(α', α'-dimethyl-α″-acetic acid) trithiocarbonate (DDATC) as chain transfer agent, 2,2-azobisisobutyronitrile (AIBN) as initiator and dimethyl formamide (DMF) as solvent. The structures of the polymer were examined by Fourier transform infrared spectroscopy (FT-IR) and 1H NMR and the thermal stability was determined by thermal gravimetric analysis (TG/DTG). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were utilized to evaluate the morphology and properties of the p(AAPBA-b-OVZG) nanoparticles. The cell toxicity, animal toxicity and therapeutic efficacy were also investigated. The results indicate the p(AAPBA-b-OVZG) was successfully synthesized and had excellent thermal stability. Moreover, the p(AAPBA-b-OVZG) nanoparticles were submicron in size and glucose-sensitive in phosphate-buffered saline (PBS). In addition, insulin as a model drug had a high encapsulation efficiency and loading capacity and the release of insulin was increased at higher glucose levels. Furthermore, the nanoparticles showed a low-toxicity in cell and animal studies and they were effective at decreasing blood glucose levels of mice over 96h. These p(AAPBA-b-OVZG) nanoparticles show promise for applications in diabetes treatment using insulin or other hypoglycemic proteins.
Collapse
Affiliation(s)
- Jun-Zi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland, UK
| | - He-Yu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shi-Wei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shu-De Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650228, PR China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|