1
|
Shpotyuk O, Lukáčová Bujňáková Z, Baláž P, Kovalskiy A, Sznajder M, Cebulski J, Shpotyuk Y, Demchenko P, Syvorotka I. Equimolar As 4S 4/Fe 3O 4 Nanocomposites Fabricated by Dry and Wet Mechanochemistry: Some Insights on the Magnetic-Fluorescent Functionalization of an Old Drug. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1726. [PMID: 38673084 PMCID: PMC11051269 DOI: 10.3390/ma17081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Multifunctional nanocomposites from an equimolar As4S4/Fe3O4 cut section have been successfully fabricated from coarse-grained bulky counterparts, employing two-step mechanochemical processing in a high-energy mill operational in dry- and wet-milling modes (in an aqueous solution of Poloxamer 407 acting as a surfactant). As was inferred from the X-ray diffraction analysis, these surfactant-free and surfactant-capped nanocomposites are β-As4S4-bearing nanocrystalline-amorphous substances supplemented by an iso-compositional amorphous phase (a-AsS), both principal constituents (monoclinic β-As4S4 and cubic Fe3O4) being core-shell structured and enriched after wet milling by contamination products (such as nanocrystalline-amorphous zirconia), suppressing their nanocrystalline behavior. The fluorescence and magnetic properties of these nanocomposites are intricate, being tuned by the sizes of the nanoparticles and their interfaces, dependent on storage after nanocomposite fabrication. A specific core-shell arrangement consisted of inner and outer shell interfaces around quantum-confined nm-sized β-As4S4 crystallites hosting a-AsS, and the capping agent is responsible for the blue-cyan fluorescence in as-fabricated Poloxamer capped nanocomposites peaking at ~417 nm and ~442 nm, while fluorescence quenching in one-year-aged nanocomposites is explained in terms of their destroyed core-shell architectures. The magnetic co-functionalization of these nanocomposites is defined by size-extended heterogeneous shells around homogeneous nanocrystalline Fe3O4 cores, composed by an admixture of amorphous phase (a-AsS), nanocrystalline-amorphous zirconia as products of contamination in the wet-milling mode, and surfactant.
Collapse
Affiliation(s)
- Oleh Shpotyuk
- Department of Optical Glass and Ceramics, O.G. Vlokh Institute of Physical Optics, 23, Dragomanov Str., 70005 Lviv, Ukraine
- Faculty of Mathematics and Natural Sciences, Jan Dlugosz University in Czestochowa, 13/15, al. Armii Krajowej, 42-200 Czestochowa, Poland
- Scientific Research Company “Electron-Carat”, 202, Stryjska Str., 79031 Lviv, Ukraine;
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| | - Peter Baláž
- Department of Mechanochemistry, Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| | - Andriy Kovalskiy
- Department of Physics, Engineering and Astronomy, Austin Peay State University, Clarksville, TN 37044, USA;
| | - Małgorzata Sznajder
- Institute of Physics, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland; (M.S.); (J.C.); (Y.S.)
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland; (M.S.); (J.C.); (Y.S.)
| | - Yaroslav Shpotyuk
- Institute of Physics, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland; (M.S.); (J.C.); (Y.S.)
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., 79017 Lviv, Ukraine
| | - Pavlo Demchenko
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6-8, Kyryla i Myfodia Str., 79005 Lviv, Ukraine;
| | - Ihor Syvorotka
- Scientific Research Company “Electron-Carat”, 202, Stryjska Str., 79031 Lviv, Ukraine;
| |
Collapse
|
2
|
Baláž P, Dutková E, Baláž M, Daneu N, Findoráková L, Hejtmánek J, Levinský P, Knížek K, Bali Hudáková M, Džunda R, Bureš R, Puchý V. The manipulation of natural mineral chalcopyrite CuFeS 2via mechanochemistry: properties and thermoelectric potential. Phys Chem Chem Phys 2023; 25:31125-31136. [PMID: 37947379 DOI: 10.1039/d3cp01788e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this study, the properties of the natural mineral chalcopyrite CuFeS2 after mechanical activation in a planetary mill were studied. The intensity of mechanical activation was controlled by changing the revolutions of the mill in the range 100-600 min-1. A series of characterization techniques, such as XRD, SEM, TEM, TA (DTA, TG, and DTG), particle size analysis, and UV-vis spectroscopy was applied and reactivity studies were also performed. Several new features were revealed for the mechanically activated chalcopyrite, e.g. the poly-modal distribution of produced nanoparticles on the micrometer scale, agglomeration effects by prolonged milling, possibility to modify the shape of the particles, X-ray amorphization and a shift from a non-cubic (tetragonal) structure to pseudo-cubic structure. The thermoelectric response was evaluated on the "softly" compacted powder via the spark plasma sintering method (very short holding time, low sintering temperature, and moderate pressure) by measuring the Seebeck coefficient and electrical and thermal conductivity above room temperature. The milling process produced samples with lower resistivity compared to the original non-activated sample. The Seebeck data close to zero confirmed the "compensated" character of natural chalcopyrite, reflecting its close-to stoichiometric composition with low concentration of both n- and p-type charge carriers. Alternatively, an evident correlation between thermal conductivity and energy supply by milling was observed with the possibility of band gap manipulation, which is associated with the energy delivered by the milling procedure.
Collapse
Affiliation(s)
- Peter Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Nina Daneu
- Jozef Stefan Institute, Jamova cesta 3, S1-1000 Ljubljana, Slovenia.
| | - Lenka Findoráková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Jiří Hejtmánek
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16200 Prague, Czech Republic.
| | - Petr Levinský
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16200 Prague, Czech Republic.
| | - Karel Knížek
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16200 Prague, Czech Republic.
| | - Mária Bali Hudáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Róbert Džunda
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia.
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia.
| | - Viktor Puchý
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia.
| |
Collapse
|
3
|
Fang J, Zou X, Gong L, Xi J, Liu Y, Yang X, Zhang X, Gui C. Acid ground nano-realgar processed product inhibits breast cancer by inducing mitophagy via the p53/BNIP3/NIX pathway. J Cell Mol Med 2023; 27:3478-3490. [PMID: 37610095 PMCID: PMC10660646 DOI: 10.1111/jcmm.17917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Breast cancer is a highly prevalent malignancy with the first morbidity and the primary reason for female cancer-related deaths worldwide. Acid ground nano-realgar processed product (NRPP) could inhibit breast cancer cell proliferation and induce autophagy in our previous research; however, the underlying mechanisms are still unclear. Therefore, this research aimed to verify whether NRPP induces breast cancer mitophagy and explore the mitophagy-mediated mechanism. Primarily, rhodamine-123 assay and transmission electron microscopy were applied to detect mitochondrial membrane potential (MMP) and ultrastructural changes in the MDA-MB-435S cells, respectively. Mito-Tracker Green/Lyso-Tracker Red staining, western blot, immunofluorescence and RT-PCR were used to explore molecular mechanisms of NRPP-induced mitophagy in vitro. MDA-MB-435S breast cancer xenograft models were established to assess the activity and mechanisms of NRPP in vivo. Our results showed that NRPP decreased MMP and increased autophagosome numbers in MDA-MB-435S cells and activated mitophagy. Furthermore, mitophagy was consolidated because mitochondria and lysosomes colocalized phenomenology were observed, and the expression of LC3II/I and COXIV was upregulated. Additionally, we found the p53/BNIP3/NIX pathway was activated. Finally, NRPP inhibited tumour growth and downregulated the levels of TNF-α, IL-1β and IL-6. Necrosis, damaged mitochondria and autophagosomes were observed in xenograft tumour cells, and proteins and mRNA levels of LC3, p53, BNIP3 and NIX were increased. Overall, NRPP inhibited MDA-MB-435S cell proliferation and tumour growth by inducing mitophagy via the p53/BNIP3/NIX pathway. Thus, NRPP is a promising candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Jiahui Fang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Pharmacy, Taihe HospitalHubei University of MedicineShiyanHubeiChina
| | - Xue Zou
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Ling Gong
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Juan Xi
- College of InspectionHubei University of Chinese MedicineWuhanHubeiChina
| | - Yi Liu
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiaoli Yang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xiuqiao Zhang
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Chun Gui
- College of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| |
Collapse
|
4
|
Lukáčová Bujňáková Z, Dutková E, Jakubíková J, Cholujová D, Varhač R, Borysenko L, Melnyk I. Investigation of the Interaction between Mechanosynthesized ZnS Nanoparticles and Albumin Using Fluorescence Spectroscopy. Pharmaceuticals (Basel) 2023; 16:1219. [PMID: 37765027 PMCID: PMC10536685 DOI: 10.3390/ph16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, ZnS nanoparticles were bioconjugated with bovine serum albumin and prepared in a form of nanosuspension using a wet circulation grinding. The stable nanosuspension with monomodal particle size distribution (d50 = 137 nm) and negative zeta potential (-18.3 mV) was obtained. The sorption kinetics and isotherm were determined. Interactions between ZnS and albumin were studied using the fluorescence techniques. The quenching mechanism, describing both static and dynamic interactions, was investigated. Various parameters were calculated, including the quenching rate constant, binding constant, stoichiometry of the binding process, and accessibility of fluorophore to the quencher. It has been found that tryptophan, in comparison to tyrosine, can be closer to the binding site established by analyzing the synchronous fluorescence spectra. The cellular mechanism in multiple myeloma cells treated with nanosuspension was evaluated by fluorescence assays for quantification of apoptosis, assessment of mitochondrial membrane potential and evaluation of cell cycle changes. The preliminary results confirm that the nontoxic nature of ZnS nanoparticles is potentially applicable in drug delivery systems. Additionally, slight changes in the secondary structure of albumin, accompanied by a decrease in α-helix content, were investigated using the FTIR method after analyzing the deconvoluted Amide I band spectra of ZnS nanoparticles conjugated with albumin. Thermogravimetric analysis and long-term stability studies were also performed to obtain a complete picture about the studied system.
Collapse
Affiliation(s)
- Zdenka Lukáčová Bujňáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Jana Jakubíková
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Danka Cholujová
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Rastislav Varhač
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154 Košice, Slovakia;
| | - Larysa Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Generala Naumova 17, 03164 Kyiv, Ukraine;
| | - Inna Melnyk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| |
Collapse
|
5
|
Lukáčová Bujňáková Z, Melnyk I, Dutková E, Varhač R, Jakubíková J, Cholujová D, Tóthová E, Storozhuk L, Briančin J. Nano-bio Interface between As 4S 4 Nanoparticles and Albumin Influenced by Wet Stirred Media Milling. Int J Pharm 2023; 640:123046. [PMID: 37178791 DOI: 10.1016/j.ijpharm.2023.123046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Arsenic sulfide (As4S4) nanoparticles have been intensively researched as a promising drug in a cancer treatment. For the first time, the interaction between As4S4 and bovine serum albumin has been studied in this paper. Initially, the sorption kinetics of albumin on the surface of nanoparticles was investigated. Subsequently, its structural changes influenced by interaction with the As4S4 nanoparticles during wet stirred media milling were studied in deep. Both the dynamic and static quenching were detected after analyzing the fluorescence quenching spectra. From the synchronous fluorescence spectra it was investigated, that the fluorescence intensity for tyrosine residues decreased by about 55%, and for tryptophan it was about 80%. It indicates the fluorescence from tryptophan is more intense and gets more efficiently quenched than those from tyrosine residues in presence of As4S4, implying that the tryptophan can be closer to the binding site. From the circular dichroisms and FTIR spectra it was observed that conformation of the protein remains almost unchanged. The content of appropriate secondary structures was determined by deconvolution of the absorption peak attributed to the amide I band in FTIR spectra. The preliminary anti-tumor cytotoxic effect of prepared albumin-As4S4 system was also tested on multiple myeloma cell lines.
Collapse
Affiliation(s)
| | - Inna Melnyk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Rastislav Varhač
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154 Košice, Slovakia
| | - Jana Jakubíková
- Cancer Research Institute BMC, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Danka Cholujová
- Cancer Research Institute BMC, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | - Erika Tóthová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Liudmyla Storozhuk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; Healthcare Biomagnetic and Nanomaterials Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, United Kingdom
| | - Jaroslav Briančin
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| |
Collapse
|
6
|
Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J Control Release 2023; 355:343-357. [PMID: 36731799 DOI: 10.1016/j.jconrel.2023.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.
Collapse
|
7
|
Nanomilling-driven volumetric changes in multiparticulate As4S4-bearing nanocomposites recognized with a help of annihilating positrons. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractEmploying positron annihilation lifetime (PAL) spectroscopy, nanomilling-driven volumetric changes driven are identified in multiparticulate nanocomposites of As4S4–ZnS–Fe3O4 system, considered in transitions between their respective hierarchical derivatives from triparticulate (1⋅As4S4/4⋅ZnS/1⋅Fe3O4) to biparticulate (1⋅As4S4/1⋅Fe3O4, 1⋅As4S4/4⋅ZnS) and monoparticulate (As4S4) ones. Unconstrained three-component PAL spectra of nanocomposites are parameterized in terms of positron-Ps trapping conversion obeying x3-x2-CDA (coupling decomposition algorithm). Coexistence of nanocrystalline nc-β-As4S4 and amorphous a-AsS phase is shown to be crucial feature of these nanocomposites, the latter being generated continuously due to reamorphization of initial disordered phase and/or vitrification of nc-β-As4S4 phase. The inverse positron-to-Ps trapping conversion prevails in transition from biparticulate (1⋅As4S4/1⋅Fe3O4) and monoparticulate (As4S4) nanocomposites (both dominated by trapping in As4S4-bearing sub-system) to triparticulate (1⋅As4S4/4⋅ZnS/1⋅Fe3O4) one, disappeared positron traps being vacancy defects in a-As–S matrix, and Ps-decay sites formed instead being triple junctions between amorphized nc-β-As4S4 grains. The normal Ps-to-positron-trapping conversion prevails in transition from biparticulate (1⋅As4S4/4⋅ZnS) nanocomposite dominated by positron trapping in ZnS sub-system to triparticulate (1⋅As4S4/4⋅ZnS/1⋅Fe3O4) one, disappeared Ps-decay sites being triple junctions between amorphized nc-β-As4S4 grains, and positron traps formed instead being vacancy-type defects in the packing of the finest ZnS crystallites (~ 2–3 nm).
Collapse
|
8
|
Improved mechanically induced synthesis of nanocrystalline gadolinium oxymolybdate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Dutková E, Bujňáková ZL, Sphotyuk O, Jakubíková J, Cholujová D, Šišková V, Daneu N, Baláž M, Kováč J, Kováč J, Briančin J, Demchenko P. SDS-Stabilized CuInSe 2/ZnS Multinanocomposites Prepared by Mechanochemical Synthesis for Advanced Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E69. [PMID: 33396849 PMCID: PMC7823814 DOI: 10.3390/nano11010069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CuInSe2/ZnS multiparticulate nanocomposites were first synthesized employing two-step mechanochemical synthesis. In the first step, tetragonal CuInSe2 crystals prepared from copper, indium and selenium precursors were co-milled with zinc acetate dihydrate and sodium sulfide nonahydrate as precursors for ZnS in different molar ratios by mechanochemical route in a planetary mill. In the second step, the prepared CuInSe2/ZnS nanocrystals were further milled in a circulation mill in sodium dodecyl sulphate (SDS) solution (0.5 wt.%) to stabilize the synthesized nanoparticles. The sodium dodecyl sulphate capped CuInSe2/ZnS 5:0-SDS nanosuspension was shown to be stable for 20 weeks, whereas the CuInSe2/ZnS 4:1-SDS one was stable for about 11 weeks. After sodium dodecyl sulphate capping, unimodal particle size distribution was obtained with particle size medians approaching, respectively, 123 nm and 188 nm for CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanocomposites. Successful stabilization of the prepared nanosuspensions due to sodium dodecyl sulphate covering the surface of the nanocomposite particles was confirmed by zeta potential measurements. The prepared CuInSe2/ZnS 5:0-SDS and CuInSe2/ZnS 4:1-SDS nanosuspensions possessed anti-myeloma sensitizing potential assessed by significantly reduced viability of multiple myeloma cell lines, with efficient fluorescence inside viable cells and higher cytotoxic efficacy in CuInSe2/ZnS 4:1-SDS nanosuspension.
Collapse
Affiliation(s)
- Erika Dutková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Zdenka Lukáčová Bujňáková
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Oleh Sphotyuk
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej, 13/15, 42201 Czestochowa, Poland;
- Department of Optical Glass and Ceramics, Vlokh Institute of Physical Optics, 23, Dragomanov Str., 79005 Lviv, Ukraine
| | - Jana Jakubíková
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
- Centre of Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84511 Bratislava, Slovakia
| | - Danka Cholujová
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
- Centre of Advanced Material Application, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 84511 Bratislava, Slovakia
| | - Viera Šišková
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (J.J.); (D.C.); (V.Š.)
| | - Nina Daneu
- Advanced Materials Department, Jozef Štefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
| | - Matej Baláž
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Jaroslav Kováč
- Institute of Electronics and Photonics, Slovak University of Technology, 81219 Bratislava, Slovakia; (J.K.); (J.K.J.)
| | - Jaroslav Kováč
- Institute of Electronics and Photonics, Slovak University of Technology, 81219 Bratislava, Slovakia; (J.K.); (J.K.J.)
| | - Jaroslav Briančin
- Department of Mechanochemistry, Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (Z.L.B.); (M.B.); (J.B.)
| | - Pavlo Demchenko
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 107, Tarnavskogo Str., 79017 Lviv, Ukraine;
| |
Collapse
|
10
|
Chitosan capped CuInS2 and CuInS2/ZnS by wet stirred media milling: in vitro verification of their potential bio-imaging applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01530-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Temperature-sensitive gel-loaded composite nanomedicines for the treatment of cervical cancer by vaginal delivery. Int J Pharm 2020; 586:119616. [PMID: 32650113 DOI: 10.1016/j.ijpharm.2020.119616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
In this study, toad venom (TV) and realgar were loaded into a poloxamer 188/407 (F127/F188)-based temperature-sensitive in situ gel (TISG) and encapsulated in solid lipid nanoparticles (TV-SLN) or ground nano-realgar (NR) to improve drug release and reduce local irritation after vaginal administration. The combination of TV-SLN and NR (TV-SLN/NR) greatly enhanced the inhibition of tumor cell proliferation and was most effective at a dose ratio of 2:3 (w/w). After TV-SLN/NR treatment, S and G0/G1 phase arrest were observed in HeLa and SKOV-3 cells and the inhibitory effects on proliferation were stronger than those in the conventional powder group. The gelation temperature of TV-SLN and NR-loaded TISG (TV-SLN/NR-TISG) using the selected formulation was 33 ± 0.91 °C. The cumulative release of the drug increased as the dissolution of gel progressed, showing a linear relationship (r > 0.99). TV-SLN/NR-TISG enabled the sustained release of cargo by adhesion to the vaginal mucosa and showed excellent biocompatibility during continuous administration for 7 days. We specifically demonstrated the effectiveness of the TISG for the vaginal delivery of TV-SLN and NR, supporting its important clinical implications for the treatment of cervical cancer.
Collapse
|
12
|
Bujňáková Z, Kello M, Kováč J, Tóthová E, Shpotyuk O, Baláž P, Mojžiš J, Andrejko S. Preparation of As4S4/Fe3O4 nanosuspensions and in-vitro verification of their anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110683. [DOI: 10.1016/j.msec.2020.110683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
|
13
|
Mechanochemical Synthesis and Characterization of CuInS₂/ZnS Nanocrystals. Molecules 2019; 24:molecules24061031. [PMID: 30875932 PMCID: PMC6471728 DOI: 10.3390/molecules24061031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, CuInS2/ZnS nanocrystals were synthesized by a two-step mechanochemical synthesis for the first time. In the first step, tetragonal CuInS2 was prepared from copper, indium and sulphur precursors. The obtained CuInS2 was further co-milled with zinc acetate dihydrate and sodium sulphide nonahydrate as precursors for cubic ZnS. Structural characterization of the CuInS2/ZnS nanocrystals was performed by X-ray diffraction analysis, Raman spectroscopy and transmission electron microscopy. Specific surface area of the product (86 m2/g) was measured by low-temperature nitrogen adsorption method and zeta potential of the particles dispersed in water was calculated from measurements of their electrophoretic mobility. Optical properties of the nanocrystals were determined using photoluminescence emission spectroscopy.
Collapse
|
14
|
Bujňáková Z, Dutková E, Kello M, Mojžiš J, Baláž M, Baláž P, Shpotyuk O. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications. NANOSCALE RESEARCH LETTERS 2017; 12:328. [PMID: 28476088 PMCID: PMC5418165 DOI: 10.1186/s11671-017-2103-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/24/2017] [Indexed: 05/03/2023]
Abstract
The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.
Collapse
Affiliation(s)
- Zdenka Bujňáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovakia
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovakia
| | - Martin Kello
- Faculty of Medicine, P.J.Šafárik University, Trieda SNP1, 04011, Košice, Slovakia
| | - Ján Mojžiš
- Faculty of Medicine, P.J.Šafárik University, Trieda SNP1, 04011, Košice, Slovakia
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovakia
| | - Peter Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001, Košice, Slovakia
| | - Oleh Shpotyuk
- Vlokh Institute of Physical Optics, 23 Dragomanov, 79005, Lviv, Ukraine.
- Institute of Physics, Jan Dlugosz University, 13/15, Armii Krajowej al., 42200, Czestochowa, Poland.
| |
Collapse
|