1
|
Stango AX, Vijayalakshmi U. Optimization of formation of phase pure hydroxyapatite and fabrication of electrochemically stable HAP coatings on 316L SS for orthopedic applications. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arul Xavier Stango
- Department of Chemistry, St. Mother Theresa Engineering College SCAD Group of Institutions Tirunelveli Tamil Nadu India
| | - U. Vijayalakshmi
- Department of Chemistry Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
2
|
Wang H, Zheng J, Sun X, Luo Y. Tribo‐corrosion mechanisms and electromechanical behaviours for metal implants materials of CoCrMo, Ti6Al4V and Ti15Mo alloys. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Hongxiang Wang
- Jiangsu Vocational College of Electronics and Information Huai'an China
| | - Jingjing Zheng
- School of Materials Science and Physics China University of Mining & Technology Xuzhou China
| | - Xiaolei Sun
- School of Materials Science and Physics China University of Mining & Technology Xuzhou China
| | - Yong Luo
- School of Materials Science and Physics China University of Mining & Technology Xuzhou China
| |
Collapse
|
3
|
García I, Trobajo C, Amghouz Z, Alonso-Guervos M, Díaz R, Mendoza R, Mauvezín-Quevedo M, Adawy A. Ag- and Sr-enriched nanofibrous titanium phosphate phases as potential antimicrobial cement and coating for a biomedical alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112168. [PMID: 34082969 DOI: 10.1016/j.msec.2021.112168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Biomaterials and their surfaces regulate the biological response and ultimately the quality of healing at a possible site of implantation. The physical, chemical and topographical properties of implants' surfaces play a decisive role in the biological integration process for their immediate loading and long-term success. Since at this level of biological interaction nano-dimensionality is basically entailed, bio-functional nanostructured composites either as filling/cement or coating to metallic implants are required. This study shows the possibility of synthesizing two phases of nanostructured titanium phosphate (π and ρ polymorphs) and enriching them with silver nanoparticles and strontium. More importantly, Ag-Sr-enriched nanostructured π‑titanium phosphate is induced to grow on a commercially available titanium alloy (Ti-6Al-4V), widely used in orthopedic and dental implants, under highly controlled conditions. Structural and microscopic studies, using XRD, HRTEM and SEM altogether confirm the resultant phases and their enrichment with strontium and silver nanoparticles with an average particle size around 6 nm. Using confocal laser scanning microscopy, the surface roughness was measured and is found to lay at the interface between the nanosized and microsized topologies. Ion release assessments showed that the presence of strontium controlled the release rate of silver ions and this could be beneficial in terms of decreasing the accompanied cytotoxicity that is usually encountered at high concentrations of silver release. Antimicrobial and cell proliferation assays have proved that enriching titanium phosphate with strontium and silver nanoparticles has improved their antimicrobial properties, while the cytotoxicity could be controlled.
Collapse
Affiliation(s)
- Inés García
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Camino Trobajo
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain; Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Zakariae Amghouz
- Department of Material Science and Metallurgical Engineering, University of Oviedo, 33203 Gijón, Spain
| | - Marta Alonso-Guervos
- Optical Microscopy and Image Processing Unit, Institute for Scientific and Technological Resources (SCTs), University of Oviedo, 33006 Oviedo, Spain
| | - Raquel Díaz
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Rafael Mendoza
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Mauvezín-Quevedo
- Department of Prosthodontics and Occlusion, School of Dentistry, University of Oviedo, 33006 Oviedo, Spain
| | - Alaa Adawy
- Laboratory of High-Resolution Transmission Electron Microscopy, Institute for Scientific and Technological Resources (SCTs), University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
4
|
Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci 2020; 579:680-698. [PMID: 32652323 DOI: 10.1016/j.jcis.2020.06.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. EXPERIMENTS Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. FINDINGS PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.
Collapse
|
5
|
Ding Z, Wang Y, Zhou Q, Ding Z, Liu J, He Q, Zhang H. Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa 2O 5 Multilayer Composite Coatings with Different Cu Incorporation Contents. Biomolecules 2019; 10:E68. [PMID: 31906220 PMCID: PMC7022678 DOI: 10.3390/biom10010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial infection and toxic metal ions releasing are the challenges in the clinical application of Ti6Al4V alloy implant materials. Copper is a kind of long-acting, broad-spectrum and safe antibacterial element, and Ta2O5 has good corrosion resistance, wear-resistance and biocompatibility, they are considered and chosen as a potential coating candidate for implant surface modification. In this paper, magnetron sputtering technology was used to prepare copper doped Ta2O5 multilayer composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al4V alloy surface, for studying the effect of copper incorporation on the microstructure, wettability, anticorrosion and antibacterial activities of the composite coating. The results showed that Cu-MTa2O5 coating obviously improves the hydrophobicity, corrosion resistance and antibacterial property of Ti6Al4V alloy. In the coating, both copper and Ta2O5 exhibit an amorphous structure and copper mainly presents as an oxidation state (Cu2O and CuO). With the increase of the doping amount of copper, the grain size, roughness, and hydrophobicity of the modified surface of Ti6Al4V alloy are increased. Electrochemical experiment results demonstrated that the corrosion resistance of Cu-MTa2O5 coated Ti6Al4V alloy slightly decreased with the increase of copper concentration, but this coating still acts strong anticorrosion protection for Ti6Al4V alloy. Moreover, the Cu-MTa2O5 coating can kill more than 97% of Staphylococcus aureus in 24 h, and the antibacterial rate increases with the increase of copper content. Therefore, Cu-MTa2O5 composite coating is a good candidate for improving anticorrosion and antibacterial properties of Ti6Al4V alloy implant medical devices.
Collapse
Affiliation(s)
- Zeliang Ding
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Yi Wang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Quan Zhou
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Ziyu Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China;
| | - Jun Liu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Haibo Zhang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| |
Collapse
|
6
|
Mahlooji E, Atapour M, Labbaf S. Electrophoretic deposition of Bioactive glass - Chitosan nanocomposite coatings on Ti-6Al-4V for orthopedic applications. Carbohydr Polym 2019; 226:115299. [PMID: 31582073 DOI: 10.1016/j.carbpol.2019.115299] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Chitosan-Bioactive glass (CS-BG) nanocomposite coatings were developed on the Ti-6Al-4 V alloy to investigate the effect of the BG content on the adhesion strength, bioactivity, bio-corrosion, wettability and roughness. For this purpose, BG nanoparticles were synthesized using a sol-gel process. Three nanocomposite coatings with different concentrations of BG (0.5, 1 and 1.5 g/L) were fabricated through cathodic electrophoretic deposition (EPD). The surface morphology and composition of the coatings revealed the formation of compact coatings with a uniform distribution of BG nanoparticles. Increasing the BG content enhanced the deposition rate of CS-BG nanocomposite coatings and raised the coating thickness. Moreover, the CS-BG coating containing 1.5 g/L BG showed the best corrosion performance owing to the more uniform distribution of BG nanoparticles and its higher thickness. Also, increasing the BG concentration improved the adhesion strength, raised the roughness, and promoted wettability. Further, in-vitro bioactivity evaluation of the coated and uncoated specimens in SBF revealed that the formation of bone-like apatite was significantly encouraged on the surface of CS-BG coatings, as compared to the Ti-6Al-4 V uncoated sample. So, the apatite-forming ability of the coatings was improved by increasing the BG content. For in vitro investigation, osteoblast-like cell line MG63 were cultured on Ti-6Al-4 V substrate coated with CS-BG and cellular behavior was evaluated. Results demonstrated good cell attachment with no significant levels of cytotoxicity during 5 days of culture. Therefore, the electrophoretic deposition of the CS-1.5 g/L BG coating could successfully enhance the adhesion strength, bioactivity, corrosion and cellular performance of the substrate.
Collapse
Affiliation(s)
- Elham Mahlooji
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
7
|
Zeng Q, Wan W, Chen L. Enhanced Mechanical and Electrochemical Performances of Silica-Based Coatings Obtained by Electrophoretic Deposition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24308-24317. [PMID: 31251016 DOI: 10.1021/acsami.9b07585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To solve the existing problems of silicon dioxide (SiO2) coating fabricated by the sol-gel method, such as complicated process, long production cycle, uncontrollable quality, etc., an improved electrophoretic deposition (EPD) combined with the sintering process was proposed to prepare SiO2 coating on a dark nickel (Ni)-coated Q235 steel substrate. Silica sol was prepared by basic catalysis, containing silica of ∼130 g L-1 with viscosities below 4 mPa s. Silica sol powder was characterized by the differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. EPD was applied to prepare SiO2 coating on the Ni adhesive layer, followed by the sintering process to improve the compactness. In addition, the effects of EPD and sintering parameters were also evaluated. Potentiodynamic polarization and electrochemical impedance spectra were utilized to assess the corrosion behavior of the coating. The results showed that the EPD coating demonstrated excellent wear resistance when deposited at 15 V for 40 s and sintered at 400 °C for 45 min, exhibiting ∼6 μm thickness and a compact morphology. It also showed superior corrosion resistance with icorr of 1.02 × 10-7 A cm-2, which was 2 orders of magnitude lower than that of dip-coating. Combining the EPD and sintering processes could shorten the fabrication period of SiO2 inorganic coating and also improve the mechanical and corrosion properties, providing guidance for inorganic ceramic fabrication and showing potential for practical applications.
Collapse
Affiliation(s)
- Qi Zeng
- Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , China
| | - Wenlu Wan
- Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , China
| | - Liqiong Chen
- Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , China
| |
Collapse
|
8
|
Fabrication and Performance of ZnO Doped Tantalum Oxide Multilayer Composite Coatings on Ti6Al4V for Orthopedic Application. NANOMATERIALS 2019; 9:nano9050685. [PMID: 31052573 PMCID: PMC6566857 DOI: 10.3390/nano9050685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 01/11/2023]
Abstract
Ti6Al4V titanium alloy has been widely used as medical implant material in orthopedic surgery, and one of the obstacles preventing it from wide use is toxic metal ions release and bacterial implant infection. In this paper, in order to improve corrosion resistance and antibacterial performance of Ti6Al4V titanium alloy, ZnO doped tantalum oxide (TaxOy) multilayer composite coating ZnO-TaxOy/TaxOy/TaxOy-TiO2/TiO2/Ti (ZnO-TaxOy) was deposited by magnetron sputtering at room temperature. As a comparison, monolayer TaxOy coating was prepared on the surface of Ti6Al4V alloy. The morphology and phase composition of the coatings were investigated by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), the elemental chemical states of coating surfaces were investigated by X-ray photoelectron spectroscope (XPS). The adhesion strength and corrosion resistance of the coatings were examined by micro-scratch tester and electrochemical workstations, respectively. The results show that the adhesion strength of multilayer ZnO-TaxOy coating is 16.37 times higher than that of single-layer TaxOy coating. The ZnO-TaxOy composite coating has higher corrosion potential and lower corrosion current density than that of TaxOy coating, showing better corrosion inhibition. Furthermore, antibacterial test revealed that multilayer ZnO-TaxOy coating has a much better antibacterial performance by contrast.
Collapse
|
9
|
Śmieszek A, Szydlarska J, Mucha A, Chrapiec M, Marycz K. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. J Biomater Appl 2018; 32:570-586. [PMID: 29113566 DOI: 10.1177/0885328217738006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the pro-osteogenic properties of sol-gel-derived silica/zirconium dioxide coatings functionalized with 1 mM of metformin. The matrices were applied on 316L stainless steel using dip-coating technique. First of all, physicochemical properties of biomaterials were evaluated. Surface morphology and topography was determined using energy-dispersive X-ray spectroscopy and atomic force microscopy. The chemical composition was evaluated using Fourier transform infrared spectroscopy. Further, wettability and surface free energy were characterized. Cytocompatibility of biomaterials was tested in vitro using model of human multipotent mesenchymal stromal cells isolated from adipose tissue. The influence of biomaterials on cells morphology and proliferation was determined. Osteogenic effect of obtained biomaterials was evaluated in terms of their influence on secretory activity of human multipotent mesenchymal stromal cells isolated from adipose tissue and matrix mineralization. Analysis was performed in relation to the control cultures i.e. maintained on pure SS316L substrate and SS316L covered with silica/zirconium dioxide. Obtained results indicate that silica/zirconium dioxide_metformin coatings ameliorated metabolic and proliferative activity of human multipotent mesenchymal stromal cells isolated from adipose tissue, as well as promoted their proper growth and adhesion. The human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on biomaterials were characterized by typical fibroblast-like morphology. The addition of metformin to the silica/zirconium dioxide coatings improved functional differentiation of human multipotent mesenchymal stromal cells isolated from adipose tissue. Osteogenic cultures on silica/zirconium dioxide_metformin were characterized by formation of well-developed osteonodules rich in calcium and phosphorous. Moreover, human multipotent mesenchymal stromal cells isolated from adipose tissue cultured on silica/zirconium dioxide_metformin synthesized increased amount of alkaline phosphatase, bone morphogenetic protein 2 and osteopontin, both on messenger RNA and protein level. Obtained biomaterials modulate cellular plasticity of human multipotent mesenchymal stromal cells isolated from adipose tissue promoting their osteogenic differentiation, thus may find application in broadly defined tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| | - Joanna Szydlarska
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Mucha
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Martyna Chrapiec
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Krzysztof Marycz
- 1 Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Norwida 25, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,2 Wroclaw Research Centre EIT+, Stablowicka 147, Wroclaw, Poland
| |
Collapse
|
10
|
Li J, He X, Zhang G, Hang R, Huang X, Tang B, Zhang X. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V. Bioelectrochemistry 2018; 121:105-114. [DOI: 10.1016/j.bioelechem.2018.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
11
|
Madhan Kumar A, Hussein MA, Adesina AY, Ramakrishna S, Al-Aqeeli N. Influence of surface treatment on PEDOT coatings: surface and electrochemical corrosion aspects of newly developed Ti alloy. RSC Adv 2018; 8:19181-19195. [PMID: 35539678 PMCID: PMC9080621 DOI: 10.1039/c8ra01718b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/21/2022] Open
Abstract
Surface treatment of metallic materials prior to the application of polymer coatings plays an important role in providing improved surface features and enhanced corrosion protection. In the current investigation, we aimed to evaluate the effect of surface treatment of newly developed TiNbZr (TNZ) alloys on the surface characteristics, including the surface topography, morphology, hydrophobicity and adhesion strength of subsequent poly(3,4-ethylenedioxythiophene) (PEDOT) coatings. The surface morphology, chemical composition, and surface roughness of both treated and coated alloys were characterized by scanning electron microscopy, energy dispersive spectroscopy, and optical profilometry, respectively. The adhesion strength of the coating was measured using a micro scratch machine. Furthermore, we also evaluated the performance of electrochemically synthesized PEDOT coatings on surface-treated TNZ alloys in terms of the surface protective performance in simulated body fluid (SBF) and in vitro bioactivity in osteoblast MG63 cells. Surface analysis findings indicated that the nature of the PEDOT coating (surface morphology, topography, wettability and adhesion strength) was intensely altered, while the surface treatment performed before electrodeposition facilitated the overall performance of PEDOT coatings as implant coating materials. The obtained corrosion studies confirmed the enhanced corrosion protection performance of PEDOT coatings on treated TNZ substrates. In vitro cell culture studies validated the improved cell adhesion and proliferation rate, further highlighting the important role of surface treatment before electrodeposition.
Collapse
Affiliation(s)
- A Madhan Kumar
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia +966-538604818 +966-538801789
| | - M A Hussein
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia +966-538604818 +966-538801789
| | - Akeem Yusuf Adesina
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University Seoul South Korea
- College of Medicine, Hanyang University Seoul South Korea
| | - N Al-Aqeeli
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
12
|
Cheng Y, Wu B, Ma X, Lu S, Xu W, Szunerits S, Boukherroub R. Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation. J Colloid Interface Sci 2018; 525:76-85. [PMID: 29684733 DOI: 10.1016/j.jcis.2018.04.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/28/2022]
Abstract
Inspired by the lotus effect and water-repellent properties of water striders' legs, superhydrophobic surfaces have been intensively investigated from both fundamental and applied perspectives for daily and industrial applications. Various techniques are available for the fabrication of artificial superoleophilic/superhydrophobic (SS). However, most of these techniques are tedious and often require hazardous or expensive equipment, which hampers their implementation for practical applications. In the present work, we used a versatile and straightforward technique based on polymer drop-casting for the preparation SS materials that can be implemented on any substrate. High density polyethylene (HDPE) SS coatings were prepared on different substrates (glass, copper mesh and polyurethane (PU) sponge) by drop casting the parent polymer xylene-ethanol solution at room temperature. All the substrates exhibited a superhydrophobic behavior with a water contact angle (WCA) greater than 150°. Furthermore, the corrosion resistance, stability, self-cleaning property, and water/oil separation of the developed materials were also assessed. While copper mesh and PU sponge exhibited good ability for oil and organic solvents separation from water, the HDPE-functionalized PU sponge displayed good adsorption capacity, 32-90 times the weight of adsorbed substance vs. the weight of adsorbent.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bei Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xiaofan Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shixiang Lu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| |
Collapse
|
13
|
Pan C, Chen L, Wu R, Shan H, Zhou Z, Lin Y, Yu X, Yan L, Wu C. Lithium-containing biomaterials inhibit osteoclastogenesis of macrophagesin vitroand osteolysisin vivo. J Mater Chem B 2018; 6:8115-8126. [PMID: 32254931 DOI: 10.1039/c8tb02678e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-containing bioceramics were promising biomaterials for inhibiting osteoclastogenesis of macrophages and osteolysisin vivo, potentially using for treating osteoporosis.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Ruoyu Wu
- Institute of Microsurgery on Extremities
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Haojie Shan
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Zubin Zhou
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Yiwei Lin
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Xiaowei Yu
- Department of Orthopaedic
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
- Institute of Microsurgery on Extremities
| | - Liang Yan
- Department of Ophthalmology
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai
- China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
14
|
Jameel U, Zhu M, Chen X, Chen H, Iqbal N, Tong Z, Timayo SJ. Novel Gallium Polyoxometalate/Nano-Gold Hybrid Material Supported on Nano-sized Silica for Mild Cyclohexene Oxidation Using Molecular Oxygen. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Umsa Jameel
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingqiao Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Hengquan Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Nousheen Iqbal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering; Donghua University; Shanghai 201620 China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| | - Satmon John Timayo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|