1
|
Mohsin SA, Shaukat S, Nawaz M, Ur-Rehman T, Irshad N, Majid M, Hassan SSU, Bungau S, Fatima H. Appraisal of selected ethnomedicinal plants as alternative therapies against onychomycosis: Evaluation of synergy and time-kill kinetics. Front Pharmacol 2022; 13:1067697. [PMID: 36506532 PMCID: PMC9729263 DOI: 10.3389/fphar.2022.1067697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: This study aims at the biological profiling of Allium sativum, Zingiber officinale, Nigella sativa, Curcuma longa, Mentha piperita, Withania somnifera, Azadirachta indica, and Lawsonia inermis as alternatives against onychomycosis to combat the treatment challenges. Methods: An extract library of aqueous (DW), ethyl acetate (EA), and methanol (M) extracts was subjected to phytochemical and antioxidant colorimetric assays to gauge the ameliorating role of extracts against oxidative stress. RP-HPLC quantified therapeutically significant polyphenols. Antifungal potential (disc diffusion and broth dilution) against filamentous (dermatophytes and non-dermatophytes) and non-filamentous fungi (yeasts; Candida albicans), synergistic interactions (checkerboard method) with terbinafine and amphotericin-B against resistant clinical isolates of dermatophytes (Trichophyton rubrum and Trichophyton tonsurans) and non-dermatophytes (Aspergillus spp., Fusarium dimerum, and Rhizopus arrhizus), time-kill kinetics, and protein estimation (Bradford method) were performed to evaluate the potential of extracts against onychomycosis. Results: The highest total phenolic and flavonoid content along with noteworthy antioxidant capacity, reducing power, and a substantial radical scavenging activity was recorded for the extracts of Z. officinale. Significant polyphenolics quantified by RP-HPLC included rutin (35.71 ± 0.23 µg/mgE), gallic acid (50.17 ± 0.22 µg/mgE), catechin (93.04 ± 0.43 µg/mgE), syringic acid (55.63 ± 0.35 µg/mgE), emodin (246.32 ± 0.44 µg/mgE), luteolin (78.43 ± 0.18 µg/mgE), myricetin (29.44 ± 0.13 µg/mgE), and quercetin (97.45 ± 0.22 µg/mgE). Extracts presented prominent antifungal activity against dermatophytes and non-dermatophytes (MIC-31.25 μg/ml). The checkerboard method showed synergism with 4- and 8-fold reductions in the MICs of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa extracts and doses of amphotericin-B (Amp-B) and terbinafine (against non-dermatophytes and dermatophytes, respectively). Furthermore, the synergistic therapy showed a time-dependent decrease in fungal growth even after 9 and 12 h of treatment. The inhibition of fungal proteins was also observed to be higher with the treatment of synergistic combinations than with the extracts alone, along with the cell membrane damage caused by terbinafine and amp-B, thus making the resistant fungi incapable of subsisting. Conclusion: The extracts of A. sativum, Z. officinale, M. piperita, L. inermis, and C. longa have proven to be promising alternatives to combat oxidative stress, resistance, and other treatment challenges of onychomycosis.
Collapse
Affiliation(s)
- Syeda Aroosa Mohsin
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shaukat
- Department of Pathology, Shifa College of Medicine, Islamabad, Pakistan
| | - Marya Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan,*Correspondence: Syed Shams ul Hassan, ; Simona Bungau, ; Humaira Fatima,
| |
Collapse
|
2
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
3
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Kumar L, Verma S, Joshi K, Utreja P, Sharma S. Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: challenges and opportunities. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00324-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Transdermal delivery of drugs is a quite challenging task for pharmaceutical scientists. The transdermal route is preferred over the oral route due to various advantages like avoidance of the first-pass effect, non-invasiveness, and high patient compliance. Therefore, it is necessary to develop an effective carrier system that enables the effective passage of the drug through the dermal barrier.
Main body of abstract
Various novel drug delivery systems are used to enhance the permeation of a variety of drugs through the skin barrier. Researchers around the globe have explored nanofibers for the transdermal delivery of various therapeutic agents. Nanofibers are designed to have a high concentration of therapeutic agents in them promoting their flux through various skin layers. Polymeric nanofibers can be explored for the loading of both hydrophilic and lipophilic drugs. Biopolymer-based nanofibers have been also explored for transdermal delivery. They are capable of controlling the release of therapeutic agents for a prolonged time.
Short conclusion
The literature presented in this review paper provides significant proof that nanofibers will have an intense impact on the transdermal delivery of different bioactive molecules in the future.
Graphic abstract
Collapse
|
5
|
Alghuthaymi MA, Hassan AA, Kalia A, Sayed El Ahl RMH, El Hamaky AAM, Oleksak P, Kuca K, Abd-Elsalam KA. Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects. J Fungi (Basel) 2021; 7:494. [PMID: 34206304 PMCID: PMC8303737 DOI: 10.3390/jof7070494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The global recognition for the potential of nanoproducts and processes in human biomedicine has given impetus for the development of novel strategies for rapid, reliable, and proficient diagnosis, prevention, and control of animal diseases. Nanomaterials exhibit significant antifungal and antimycotoxin activities against mycosis and mycotoxicosis disorders in animals, as evidenced through reports published over the recent decade and more. These nanoantifungals can be potentially utilized for the development of a variety of products of pharmaceutical and biomedical significance including the nano-scale vaccines, adjuvants, anticancer and gene therapy systems, farm disinfectants, animal husbandry, and nutritional products. This review will provide details on the therapeutic and preventative aspects of nanoantifungals against diverse fungal and mycotoxin-related diseases in animals. The predominant mechanisms of action of these nanoantifungals and their potential as antifungal and cytotoxicity-causing agents will also be illustrated. Also, the other theragnostic applications of nanoantifungals in veterinary medicine will be identified.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 19245, Saudi Arabia;
| | - Atef A. Hassan
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, India
| | - Rasha M. H. Sayed El Ahl
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Ahmed A. M. El Hamaky
- Department of Mycology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), 12611 Giza, Egypt; (A.A.H.); (R.M.H.S.E.A.); (A.A.M.E.H.)
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., 12619 Giza, Egypt
| |
Collapse
|
6
|
Polat HK, Bozdağ Pehlivan S, Özkul C, Çalamak S, Öztürk N, Aytekin E, Fırat A, Ulubayram K, Kocabeyoğlu S, İrkeç M, Çalış S. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: In vitro, ex vivo and in vivo evaluation. Int J Pharm 2020; 585:119552. [DOI: 10.1016/j.ijpharm.2020.119552] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 11/29/2022]
|
7
|
Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107:25-49. [PMID: 32084600 DOI: 10.1016/j.actbio.2020.02.022] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Globally, chronic wounds impose a notable burden to patients and healthcare systems. Such skin wounds are readily subjected to bacteria that provoke inflammation and hence challenge the healing process. Furthermore, bacteria induce infection impeding re-epithelialization and collagen synthesis. With an estimated global market of $20.4 billion by 2021, appropriate wound dressing materials e.g. those composed of biopolymers originating from nature, are capable of alleviating the infection incidence and of accelerating the healing process. Particularly, biopolymeric nanofibrous dressings are biocompatible and mostly biodegradable and biomimic the extracellular matrix structure. Such nanofibrous dressings provide a high surface area and the ability to deliver antibiotics and antibacterial agents locally into the wound milieu to control infection. In this regard, with the dangerous evolution of antibiotic resistant bacteria, antibiotic delivery systems are being gradually replaced with antibacterial biohybrid nanofibrous wound dressings. This emerging class of wound dressings comprises biopolymeric nanofibers containing antibacterial nanoparticles, nature-derived compounds and biofunctional agents. Here, the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings, particularly those made of biohybrids, are reviewed and their antibacterial efficiency is evaluated based on a comprehensive literature analysis. Lastly, the prospects and challenges are discussed to draw a roadmap for further progresses and to open up future research avenues in this area. STATEMENT OF SIGNIFICANCE: With a global market of $20.4 billion by 2021, skin wound dressings are a crucial segment of the wound care industry. As an advanced class of bioactive wound dressing materials, natural polymeric nanofibers loaded with antibacterial agents, e.g. antimicrobial nanoparticles/ions, nature-derived compounds and biofunctional agents, have shown a remarkable potential for replacement of their classic counterparts. Also, given the expanding concern regarding antibiotic resistant bacteria, such biohybrid nanofibrous wound dressings can outperform classical drug delivery systems. Here, an updated overview of the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings is presented. In this review, while discussing about the antibacterial efficiency of such systems, the prospects and challenges are highlighted to draw a roadmap for further progresses in this area.
Collapse
|
8
|
Preem L, Bock F, Hinnu M, Putrinš M, Sagor K, Tenson T, Meos A, Østergaard J, Kogermann K. Monitoring of Antimicrobial Drug Chloramphenicol Release from Electrospun Nano- and Microfiber Mats Using UV Imaging and Bacterial Bioreporters. Pharmaceutics 2019; 11:E487. [PMID: 31546922 PMCID: PMC6781501 DOI: 10.3390/pharmaceutics11090487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
New strategies are continuously sought for the treatment of skin and wound infections due to increased problems with non-healing wounds. Electrospun nanofiber mats with antibacterial agents as drug delivery systems provide opportunities for the eradication of bacterial infections as well as wound healing. Antibacterial activities of such mats are directly linked with their drug release behavior. Traditional pharmacopoeial drug release testing settings are not always suitable for analyzing the release behavior of fiber mats intended for the local drug delivery. We tested and compared different drug release model systems for the previously characterized electrospun chloramphenicol (CAM)-loaded nanofiber (polycaprolactone (PCL)) and microfiber (PCL in combination with polyethylene oxide) mats with different drug release profiles. Drug release into buffer solution and hydrogel was investigated and drug concentration was determined using either high-performance liquid chromatography, ultraviolet-visible spectrophotometry, or ultraviolet (UV) imaging. The CAM release and its antibacterial effects in disc diffusion assay were assessed by bacterial bioreporters. All tested model systems enabled to study the drug release from electrospun mats. It was found that the release into buffer solution showed larger differences in the drug release rate between differently designed mats compared to the hydrogel release tests. The UV imaging method provided an insight into the interactions with an agarose hydrogel mimicking wound tissue, thus giving us information about early drug release from the mat. Bacterial bioreporters showed clear correlations between the drug release into gel and antibacterial activity of the electrospun CAM-loaded mats.
Collapse
Affiliation(s)
- Liis Preem
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Frederik Bock
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Mariliis Hinnu
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Kadi Sagor
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
9
|
Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun 2019; 516:1078-1084. [PMID: 31280861 DOI: 10.1016/j.bbrc.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
Abstract
Selenium sulfide is a well-known bioactive chemical whose biosynthesis as a nanoparticle (NP) is a controversial issue. In the present study, we employed Saccharomyces cerevisiae to generate a novel synthetic process of selenium sulfide NPs. The addition of selenium/sulfur precursors to S. cerevisiae culture produced NPs, which we isolated and characterized the physicochemical properties, toxicity, and antifungal activity. Transmission electron microscopy indicated the presence of the NPs inside the cells. Selenium sulfide NPs were successfully synthesized with average size of 6.0 and 153 nm with scanning electron micrographs and 360 and 289 nm in Zeta sizer using different precursors. The presence of sulfur/selenium in the particles was confirmed by energy-dispersive X-ray spectroscopy and elemental mapping. Fourier-transform infrared spectroscopy supported the production of selenium sulfide NPs. X-ray diffractograms showed the presence of characteristic peaks of selenium sulfide NPs which were further confirmed by mass spectrometry. The obtained NPs strongly inhibited the growth of pathogenic fungi that belonged to the genera Aspergillus, Candida, Alternaria and the dermatophytes, while no cytotoxicity was observed in MTT assay. In conclusion, efficient green synthesis of selenium sulfide NPs with appropriate physicochemical properties is possible in bio-systems like S. cerevisiae.
Collapse
Affiliation(s)
- Farnoush Asghari-Paskiabi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran.
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | |
Collapse
|
10
|
Abdali Z, Logsetty S, Liu S. Bacteria-Responsive Single and Core-Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides. ACS OMEGA 2019; 4:4063-4070. [PMID: 31459615 PMCID: PMC6647954 DOI: 10.1021/acsomega.8b03137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 06/10/2023]
Abstract
Traditional antibacterial dressings continuously elute biocides, even if there are no bacteria. This unneeded release can cause cytotoxicity, increase costs, and delay healing. We designed a bacteria-responsive nanofibrous wound dressing, which can be degraded in the presence of bacteria to release antimicrobial agents. A model biocide, benzyl dimethyl tetradecyl ammonium chloride (BTAC), was incorporated into bacteria-degradable polymers [polycaprolactone and poly(ethylene succinate)] in two ways: evenly distributed inside the polymers as single nanofibers and encapsulated in a core surrounded by the same polymers as core-shell nanofibers. Because of bacterial activity (both lipase secretion and acidic pH), degradation of the fibers was facilitated and caused the release of incorporated BTAC. BTAC-loaded single and core-shell nanofibers presented >1 log reduction of both Staphylococcus aureus and Escherichia coli within 2 h. Additionally, the core-shell structure provided a more controlled release of BTAC with prolonged antibacterial properties than single nanofibers. The core-shell nanofibers also exhibited minimal cytotoxicity against human fibroblast cells (>80% viable cells after 24 h contact). These nanofibrous mats have the potential to selectively release antibacterial agents to prevent wound infections without delaying wound healing.
Collapse
Affiliation(s)
- Zahra Abdali
- Biomedical
Engineering, Faculty of Engineering, Director of Manitoba Firefighters
Burn Unit, Professor in the Departments of Surgery and Psychiatry,
Rady Faculty of Health Sciences, Department of Biosystems Engineering, and Department of
Medical Microbiology, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Sarvesh Logsetty
- Biomedical
Engineering, Faculty of Engineering, Director of Manitoba Firefighters
Burn Unit, Professor in the Departments of Surgery and Psychiatry,
Rady Faculty of Health Sciences, Department of Biosystems Engineering, and Department of
Medical Microbiology, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Song Liu
- Biomedical
Engineering, Faculty of Engineering, Director of Manitoba Firefighters
Burn Unit, Professor in the Departments of Surgery and Psychiatry,
Rady Faculty of Health Sciences, Department of Biosystems Engineering, and Department of
Medical Microbiology, University of Manitoba, Winnipeg R3T 2N2, Canada
| |
Collapse
|
11
|
Trichophyton as a Rare Cause of Postoperative Wound Infection Resistant to Standard Empiric Antimicrobial Therapy. Case Rep Pediatr 2019; 2018:3483685. [PMID: 30671272 PMCID: PMC6317086 DOI: 10.1155/2018/3483685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022] Open
Abstract
Fungal infections are rare causes of acute surgical wound infections, but Candida is not an infrequent etiology in chronic wound infections. Trichophyton species is a common cause of tinea capitis but has not been reported as a cause of neurosurgical wound infection. We report a case of Trichophyton tonsurans causing a nonhealing surgical wound infection in a 14-year-old male after hemicraniectomy. His wound infection was notable for production of purulent exudate from the wound and lack of clinical improvement despite empiric treatment with multiple broad-spectrum antibiotics targeting typical bacterial causes of wound infection. Multiple wound cultures consistently grew Trichophyton fungus, and his wound infection clinically improved rapidly after starting terbinafine and discontinuing antibiotics.
Collapse
|
12
|
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol Biosci 2018; 19:e1800256. [DOI: 10.1002/mabi.201800256] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical NanotechnologyTehran University of Medical Sciences—International Campus 14177‐43373 Tehran Iran
| | - Ahmed Barhoum
- Faculty of ScienceChemistry DepartmentHelwan University 11795 Helwan Cairo Egypt
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Alain Dufresne
- LGP2, Grenoble INP, CNRSUniversité Grenoble Alpes F‐38000 Grenoble France
| |
Collapse
|
13
|
|
14
|
Cai J, Chen X, Wang X, Tan Y, Ye D, Jia Y, Liu P, Yu H. High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. RSC Adv 2018; 8:39463-39469. [PMID: 35558052 PMCID: PMC9090719 DOI: 10.1039/c8ra06922k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/07/2018] [Indexed: 11/30/2022] Open
Abstract
More and more water-absorbing wound dressings have been studied since moist wound-healing treatment can effectively promote the healing of wounds. In this work, we introduce a novel method to produce improved wound dressings with high-water-absorbance. A high-water-absorbing calcium alginate (Ca-Alg) fibrous scaffold was fabricated simply by microfluidic spinning and centrifugal reprocessing. The structure and physical properties of the scaffold were characterized, and its water-absorbing, cytotoxicity properties and other applicability to wound dressings were comprehensively evaluated. Our results indicate that this material possesses high water-absorbing properties, is biocompatible, and has a 3D structure that mimics the extracellular matrix, while Ca-Alg fibers loaded with silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activities; these properties meet the requirements for promoting the healing of chronic wounds and are widely applicable to wound dressings. More and more water-absorbing wound dressings have been studied since moist wound-healing treatment can effectively promote the healing of wounds.![]()
Collapse
Affiliation(s)
- Jie Cai
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province
- College of Textile Materials and Engineering
- Wuyi University
- Jiangmen 529020
- China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | | | - Yulu Tan
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province
- College of Textile Materials and Engineering
- Wuyi University
- Jiangmen 529020
- China
| | - Dongdong Ye
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province
- College of Textile Materials and Engineering
- Wuyi University
- Jiangmen 529020
- China
| | - Yongtang Jia
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province
- College of Textile Materials and Engineering
- Wuyi University
- Jiangmen 529020
- China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Cancer Institute
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
| | - Hui Yu
- The Engineering Technology Research Center for Functional Textiles in Higher Education of Guangdong Province
- College of Textile Materials and Engineering
- Wuyi University
- Jiangmen 529020
- China
| |
Collapse
|
15
|
Nagarajan S, Pochat-Bohatier C, Balme S, Miele P, Kalkura SN, Bechelany M. Electrospun fibers in regenerative tissue engineering and drug delivery. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractElectrospinning is a versatile technique to produce micron or nano sized fibers using synthetic or bio polymers. The unique structural characteristic of the electrospun mats (ESM) which mimics extracellular matrix (ECM) found influential in regenerative tissue engineering application. ESM with different morphologies or ESM functionalizing with specific growth factors creates a favorable microenvironment for the stem cell attachment, proliferation and differentiation. Fiber size, alignment and mechanical properties affect also the cell adhesion and gene expression. Hence, the effect of ESM physical properties on stem cell differentiation for neural, bone, cartilage, ocular and heart tissue regeneration will be reviewed and summarized. Electrospun fibers having high surface area to volume ratio present several advantages for drug/biomolecule delivery. Indeed, controlling the release of drugs/biomolecules is essential for sustained delivery application. Various possibilities to control the release of hydrophilic or hydrophobic drug from the ESM and different electrospinning methods such as emulsion electrospinning and coaxial electrospinning for drug/biomolecule loading are summarized in this review.
Collapse
Affiliation(s)
- Sakthivel Nagarajan
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
- Crystal Growth Centre, Anna University, 600025 Chennai, India
| | - Céline Pochat-Bohatier
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | - Philippe Miele
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France
| | | | - Mikhael Bechelany
- Institut Européen des Membranes, UMR 5635, Université Montpellier, CNRS, ENSCM, Place Eugene Bataillon, F-34095 Montpellier Cedex 5, France, Phone: +33467149167, Fax: +33467149119
| |
Collapse
|