1
|
Diz F, Monteiro WF, Silveira IS, Ruano D, Zotti ER, Weimer RD, Melo MN, Schossler Lopes JG, Scheffel TB, Caldas LVE, da Costa JC, Morrone FB, Ligabue RA. Zinc-Modified Titanate Nanotubes as Radiosensitizers for Glioblastoma: Enhancing Radiotherapy Efficacy and Monte Carlo Simulations. ACS OMEGA 2024; 9:29499-29515. [PMID: 39005768 PMCID: PMC11238320 DOI: 10.1021/acsomega.4c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Radiotherapy (RT) is the established noninvasive treatment for glioblastoma (GBM), a highly aggressive malignancy. However, its effectiveness in improving patient survival remains limited due to the radioresistant nature of GBM. Metal-based nanostructures have emerged as promising strategies to enhance RT efficacy. Among them, titanate nanotubes (TNTs) have gained significant attention due to their biocompatibility and cost-effectiveness. This study aimed to synthesize zinc-modified TNTs (ZnTNT) from sodium TNTs (NaTNT), in addition to characterizing the formed nanostructures and evaluating their radiosensitization effects in GBM cells (U87 and U251). Hydrothermal synthesis was employed to fabricate the TNTs, which were characterized using various techniques, including transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning-transmission mode, Fourier-transform infrared spectroscopy, ICP-MS (inductively coupled plasma mass spectrometry), X-ray photoelectron spectroscopy, and zeta potential analysis. Cytotoxicity was evaluated in healthy (Vero) and GBM (U87 and U251) cells by the MTT assay, while the internalization of TNTs was observed through TEM imaging and ICP-MS. The radiosensitivity of ZnTNT and NaTNT combined with 5 Gy was evaluated using clonogenic assays. Monte Carlo simulations using the MCNP6.2 code were performed to determine the deposited dose in the culture medium for RT scenarios involving TNT clusters and cells. The results demonstrated differences in the dose deposition values between the scenarios with and without TNTs. The study revealed that ZnTNT interfered with clonogenic integrity, suggesting its potential as a powerful tool for GBM treatment.
Collapse
Affiliation(s)
- Fernando
Mendonça Diz
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Wesley F. Monteiro
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Iury Santos Silveira
- Institute
of Energy and Nuclear Research, National
Nuclear Energy Commission—IPEN/CNEN. São Paulo, São Paulo 01151, Brazil
| | - Daniel Ruano
- ALBA
Syconhrotron Light Source, Cerdanuola
del Vallès 08290, Spain
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científica (UPV-CSIC), Valencia 46022, Spain
| | - Eduardo Rosa Zotti
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Rafael Diogo Weimer
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Micael Nunes Melo
- Institute
of Technology and Research—ITP, Aracaju, Sergipe 49032-490 Brazil
| | - João Gabriel Schossler Lopes
- Radiotherapy
Service at Hospital São Lucas da Pontifical Catholic University
of Rio Grande do Sul/Oncoclinic Group, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Thamiris Becker Scheffel
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Linda V. E. Caldas
- Institute
of Energy and Nuclear Research, National
Nuclear Energy Commission—IPEN/CNEN. São Paulo, São Paulo 01151, Brazil
| | - Jaderson Costa da Costa
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Fernanda Bueno Morrone
- Preclinical
Research Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
- School
of Life and Health Sciences, Pontifical
Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - Rosane Angélica Ligabue
- Graduate
Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul—PUCRS, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| |
Collapse
|
2
|
Lomada D, Gulla S, Reddy MC. Anti-Inflammatory and Antioxidant Activity of Titanium Dioxide Nanotubes Conjugated with Quercetin. Chem Biodivers 2023; 20:e202301188. [PMID: 37821795 DOI: 10.1002/cbdv.202301188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Inflammation is closely associated with cancer and leads to the formation of various malignancies. Quercetin is a naturally occurring flavonoid, with numerous pharmaceutical activities like anti-oxidant, anti-inflammatory, and anti-tumor effects. Due to its partial solubility in an aqueous solution, its consumption is limited. We recently showed the physicochemical characterization of titanium dioxide nanotubes (TNT) conjugated with quercetin and we found that quercetin conjugated with TNT enhances the anticancer activity in B16F10 cells and induced apoptosis. In the present study, we stimulated the efficiency of quercetin conjugated with titanium dioxide nanotubes and studies their anti-oxidant, anti-inflammatory activity. TNT conjugated with quercetin showed less cytotoxic effect towards RAW264.7 macrophages than quercetin alone. The inflammatory stimulation of RAW264.7 with LPS induced the pro-inflammatory cytokine IL-6 and inducible nitric synthase mRNA which were significantly inhibited by treating with TNT-Qu without causing any toxicity than quercetin and TNT alone. These results suggested that the potential of TNT conjugated with quercetin are better than quercetin and TNT alone and TNT may provide protection against inflammation by down regulating IL-6 and iNOS.
Collapse
Affiliation(s)
- Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, 516005, India
| | - Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India
- Division of Hematology and Oncology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India
| |
Collapse
|
3
|
Salgado MTSF, Fernandes E Silva E, Nascimento MAD, Lopes AC, Paiva LSD, Votto APDS. Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review. Nutr Cancer 2023; 75:1687-1709. [PMID: 37553896 DOI: 10.1080/01635581.2023.2241698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| | | | - Mariana Amaral do Nascimento
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
4
|
Lakkim V, Reddy MC, Lekkala VVV, Lebaka VR, Korivi M, Lomada D. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics 2023; 15:pharmaceutics15051517. [PMID: 37242759 DOI: 10.3390/pharmaceutics15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Developing an efficient and cost-effective wound-healing substance to treat wounds and regenerate skin is desperately needed in the current world. Antioxidant substances are gaining interest in wound healing, and green-synthesized silver nanoparticles have drawn considerable attention in biomedical applications due to their efficient, cost-effective, and non-toxic nature. The present study evaluated in vivo wound healing and antioxidant activities of silver nanoparticles from Azadirachta indica (AAgNPs) and Catharanthus roseus (CAgNPs) leaf extracts in BALB/c mice. We found rapid wound healing, higher collagen deposition, and increased DNA and protein content in AAgNPs- and CAgNPs (1% w/w)-treated wounds than in control and vehicle control wounds. Skin antioxidant enzyme activities (SOD, catalase, GPx, GR) were significantly (p < 0.05) increased after 11 days CAgNPs and AAgNPs treatment. Furthermore, the topical application of CAgNPs and AAgNPs tends to suppress lipid peroxidation in wounded skin samples. Histopathological images evidenced decreased scar width, epithelium restoration, fine collagen deposition, and fewer inflammatory cells in CAgNPs and AAgNPs applied wounds. In vitro, the free radical scavenging activity of CAgNPs and AAgNPs was demonstrated by DPPH and ABTS radical scavenging assays. Our findings suggest that silver nanoparticles prepared from C. roseus and A. indica leaf extracts increased antioxidant status and improved the wound-healing process in mice. Therefore, these silver nanoparticles could be potential natural antioxidants to treat wounds.
Collapse
Affiliation(s)
- Vajravathi Lakkim
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, AP, India
| | | | | | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Dakshayani Lomada
- Department of Genetics, Yogi Vemana University, Kadapa 516005, AP, India
| |
Collapse
|
5
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
6
|
Chahardoli A, Qalekhani F, Shokoohinia Y, Fattahi A. Luteolin mediated synthesis of rod-shaped rutile titanium dioxide nanoparticles: Assay of their biocompatibility. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR. Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
The Anticancer Effect of Magnetic Selenium-Based Nanocomposites on Tongue Carcinoma Stem Cells (In Vitro Study). BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ulasov IV, Borovjagin A, Laevskaya A, Kamynina M, Timashev P, Cerchia L, Rozhkova EA. The IL13α 2R paves the way for anti-glioma nanotherapy. Genes Dis 2021; 10:89-100. [PMID: 37013057 PMCID: PMC10066331 DOI: 10.1016/j.gendis.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive (grade IV) gliomas characterized by a high rate of recurrence, resistance to therapy and a grim survival prognosis. The long-awaited improvement in GBM patients' survival rates essentially depends on advances in the development of new therapeutic approaches. Recent preclinical studies show that nanoscale materials could greatly contribute to the improvement of diagnosis and management of brain cancers. In the current review, we will discuss how specific features of glioma pathobiology can be employed for designing efficient targeting approaches. Moreover, we will summarize the main evidence for the potential of the IL-13R alpha 2 receptor (IL13α2R) targeting in GBM early diagnosis and experimental therapy.
Collapse
Affiliation(s)
- Ilya V. Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Corresponding author.
| | - Anton Borovjagin
- Department of BioMedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anastasia Laevskaya
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 4 Kosygin St, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russia
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples 80131, Italy
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
10
|
Anticancer Activities of Biogenic Silver Nanoparticles Targeting Apoptosis and Inflammatory Pathways in Colon Cancer Cells. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02143-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Maheswari P, Harish S, Ponnusamy S, Muthamizhchelvan C. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO 2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 2021; 44:1593-1616. [PMID: 34075470 DOI: 10.1007/s00449-020-02491-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicus-Phyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.
Collapse
Affiliation(s)
- P Maheswari
- Department of Nautical Science, VELS Institute of Science, Technology and Advanced Studies, Thalambur, 603 103, India.,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - S Harish
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka, 432-8011, Japan. .,Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Ponnusamy
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - C Muthamizhchelvan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| |
Collapse
|
12
|
Basante-Romo M, Gutiérrez-M JO, Camargo-Amado R. Non-toxic doses of modified titanium dioxide nanoparticles (m-TiO 2NPs) in albino CFW mice. Heliyon 2021; 7:e06514. [PMID: 33786399 PMCID: PMC7988325 DOI: 10.1016/j.heliyon.2021.e06514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/29/2020] [Accepted: 03/10/2021] [Indexed: 11/27/2022] Open
Abstract
Modified titanium dioxide (m-TiO2NPs) is a novel photocatalytic nanomaterial. Its level of toxicity was evaluated to be used in photodynamic treatment for cervical cancer. In the toxicity studies (Irwin test, acute and repeated doses (10 days)), female albino Swiss Webster (CFW) mice, 28 days old were used; the m-TiO2NPs was administered in single 300, 600 and 5,000 mg/kg of body weight (b.w) doses injected in the peritoneal zone. No adverse events or mortality were produced. Daily intraperitoneal doses of 300 and 600 mg/kg b.w every 24 h for 10 days did not produce adverse effects or mortality. There were no abnormal clinical signs or behavioral changes (neurological or physiological) in any of the mice. All organs exhibited normal architecture, and histological studies determined that m-TiO2NPs does not produce changes in the cells or tissues. Based on the test results, it is concluded that the m-TiO2NPs has not a toxic effect in doses equal to or less than 5,000 mg/kg b.w.
Collapse
Affiliation(s)
- Mónica Basante-Romo
- Physicochemistry of Bio and Nanomaterials Research Group, School of Chemical Engineering, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| | - Jose Oscar Gutiérrez-M
- Farmacología UNIVALLE Research Group, School of Medicine, Universidad del Valle, Calle 4B # 36-00, Cali, Colombia
| | - Rubén Camargo-Amado
- Physicochemistry of Bio and Nanomaterials Research Group, School of Chemical Engineering, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia
| |
Collapse
|
13
|
Lakkim V, Reddy MC, Pallavali RR, Reddy KR, Reddy CV, Inamuddin, Bilgrami AL, Lomada D. Green Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial Activity against Multidrug-Resistant Bacteria and Wound Healing Efficacy Using a Murine Model. Antibiotics (Basel) 2020; 9:E902. [PMID: 33322213 PMCID: PMC7763323 DOI: 10.3390/antibiotics9120902] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Green nanotechnology has significant applications in various biomedical science fields. In this study, green-synthesized silver nanoparticles, prepared by using Catharanthus roseus and Azadirachta indica extracts, were characterized using UV-Vis spectroscopy, dynamic light scattering, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Silver nanoparticles (Ag NPs) synthesized from leaf extracts of C. roseus and A. indica effectively inhibited the growth of multidrug-resistant (MDR) bacteria isolated from patients with septic wound infections. The maximum bacteriolytic activity of the green-synthesized Ag NPs of C. roseus and A. indica against the MDR bacterium K. Pneumoniae was shown by a zone of inhibition of 19 and 16 mm, respectively. C. roseus Ag NPs exhibited more bacteriolytic activity than A. indica Ag NPs in terms of the zone of inhibition. Moreover, these particles were effective in healing wounds in BALB/c mice. Ag NPs of C. roseus and A. indica enhanced wound healing by 94% ± 1% and 87% ± 1%, respectively. Our data suggest that Ag NPs from C. roseus and A. indicia ameliorate excision wounds, and wound healing could be due to their effective antimicrobial activity against MDR bacteria. Hence, these Ag NPs could be potential therapeutic agents for the treatment of wounds.
Collapse
Affiliation(s)
- Vajravathi Lakkim
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, AP 516005, India;
| | - Madhava C. Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP 516005, India; (M.C.R.); (R.R.P.)
| | - Roja Rani Pallavali
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP 516005, India; (M.C.R.); (R.R.P.)
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
| | - Inamuddin
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, UP 202002, India;
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 80216, Saudi Arabia;
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, AP 516005, India;
| |
Collapse
|
14
|
Xu S, Sui J, Fu Y, Wu W, Liu T, Yang S, Liang G. Titanium dioxide nanoparticles induced the apoptosis of RAW264.7 macrophages through miR-29b-3p/NFAT5 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26153-26162. [PMID: 32361970 DOI: 10.1007/s11356-020-08952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in consumer and industrial products, contributing to their prevalent presence in our surroundings. In this study, several miRNAs in the immuno-related pathways were found to be dysregulated in RAW264.7 cells after 24-h exposure to TiO2 NPs, including miR-29b-3p, which had not been previously found to be associated with the dysregulation of immunity after exposure to TiO2 NPs. The KEGG pathway and GO enrichment analysis suggested that miR-29b-3p functioned both in the T and B cell receptor signaling pathways. The NFAT5 gene was predicted to regulate miR-29b-3p using the MiRDB online database. The expression of miR-29b-3p and NFAT5 was found to be inversely correlated using qRT-PCR and western blotting analysis. Dual-luciferase reporter gene assays demonstrated the precise regulatory relationship between miR-29b-3p and NFAT5. The upregulation of miR-29b-3p was found to reinforce the apoptosis of cells, while no changes were found in terms of the cell cycle or cell proliferation, using MTT, cell apoptosis, and cycle detection experiments. Our results demonstrate that miR-29b-3p is involved in the response of RAW264.7 cells to exposure to TiO2, proving evidence for the further study of the toxicity and mechanisms of nano-TiO2 exposure.
Collapse
Affiliation(s)
- Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yanyun Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
15
|
El-Shahawy AAG, Abdel Moaty SA, Zaki AH, Mohamed NA, GadelHak Y, Mahmoud RK, Farghali AA. Prostate Cancer Cellular Uptake of Ternary Titanate Nanotubes/CuFe 2O 4/Zn-Fe Mixed Metal Oxides Nanocomposite. Int J Nanomedicine 2020; 15:619-631. [PMID: 32099355 PMCID: PMC6996550 DOI: 10.2147/ijn.s228279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/07/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Certainly, there is a demand for stronger recognition of how nanoparticles can move through the cell membrane. Prostate cancer is one of the forcing sources of cancer-relevant deaths among men. AIM OF THE WORK The current research studied the power of prostate cancer cells to uptake a ternary nanocomposite TNT/CuFe2O4/Zn-Fe mixed metal oxides (MMO). METHODOLOGY The nanocomposite was synthesized by a chemical method and characterized by a High-resolution transmission electron microscope, Field emission scanning electron microscope, X-ray diffraction, Fourier transmission infra-red, X-ray photoelectron spectroscopy, dynamic light scattering. Besides, it was implemented as an inorganic anticancer agent versus Prostate cancer PC-3 cells. RESULTS The results revealed cellular uptake validity, cell viability reduction, ultra-structures alterations, morphological changes and membrane damage of PC-3 cells. CONCLUSION The prepared ternary nanocomposite was highly uptake by PC-3 cells and possessed cytotoxicity that was dose and time-dependent. To conclude, the study offered the potential of the investigated ternary nanocomposite as a promising prostate anticancer agent.
Collapse
Affiliation(s)
- Ahmed AG El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - SA Abdel Moaty
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - AH Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Nada A Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - RK Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - AA Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Bio-modified TiO 2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110457. [PMID: 31924033 DOI: 10.1016/j.msec.2019.110457] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 10/08/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly and stable, less toxic and excellent biocompatibility nature. In this paper we report the biological properties of pure TiO2 nanoparticles modified with Withania somnifera (Ashwagandha), Eclipta prostrata (Karisalankanni) and Glycyrrhiza glabra (Athimathuram) for biological applications. X-ray diffraction results revealed the anatase nature of the samples. From the TEM analyses, it is observed that there is an increase in the particle size of the bio modified samples. UV results show the red shift for the bio modified samples when compared with the pure samples. The samples are then subjected to MTT assay to determine the cell viability. KB oral cancer cells are used for the determination of anticancer nature of the pure and bio modified nanoparticles. It is observed that Withania somnifera - Eclipta prostrate modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for their antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans. Among the modified and pure samples, Withania somnifera - Eclipta prostrata showed good antibacterial nature against Gram-positive and Gram-negative bacteria.
Collapse
|
17
|
Abstract
The current chapter highlights the use of chorioallantoic membrane (CAM) of fertilized chicken egg for the characterization of nanoparticles applied in cancer nanomedicine. The CAM assay represents a promising alternative to mouse models in term of costs, ease of use, rapidity and ethical issues in particular for the screening of nanoformulations. Hence, the features of nanoparticles including blood retention, biocompatibility, active targeting or tumor accumulation, angiogenic activity, drug delivery and tumor elimination might be simply evaluated via the CAM model. In particular, in this model, embryo organs and morphology, CAM vasculature and blood cells, transplanted tumors on CAM were typically monitored and used for the evaluation of the nanomaterials. With the above advantages, the CAM assay, as highly valuable in vivo model, could be used regularly in pharmaceutical industries.
Collapse
Affiliation(s)
- Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand; Institute for Integrated Cell-Material Sciences-Vidyasirimedhi Institute of Science and Technology Research Center, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Ahmad MA, Yuesuo Y, Ao Q, Adeel M, Hui ZY, Javed R. Appraisal of Comparative Therapeutic Potential of Undoped and Nitrogen-Doped Titanium Dioxide Nanoparticles. Molecules 2019; 24:E3916. [PMID: 31671678 PMCID: PMC6864622 DOI: 10.3390/molecules24213916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitrogen-doped and undoped titanium dioxide nanoparticles were successfully fabricated by simple chemical method and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM) techniques. The reduction in crystalline size of TiO2 nanoparticles (from 20-25 nm to 10-15 nm) was observed by TEM after doping with N. Antibacterial, antifungal, antioxidant, antidiabetic, protein kinase inhibition and cytotoxic properties were assessed in vitro to compare the therapeutic potential of both kinds of TiO2 nanoparticles. All biological activities depicted significant enhancement as a result of addition of N as doping agent to TiO2 nanoparticles. Klebsiella pneumoniae has been illuminated to be the most susceptible bacterial strain out of various Gram-positive and Gram-negative isolates of bacteria used in this study. Good fungicidal activity has been revealed against Aspergillus flavus. 38.2% of antidiabetic activity and 80% of cytotoxicity has been elucidated by N-doped TiO2 nanoparticles towards alpha-amylase enzyme and Artemia salina (brine shrimps), respectively. Moreover, notable protein kinase inhibition against Streptomyces and antioxidant effect including reducing power and % inhibition of DPPH has been demonstrated. This investigation unveils the more effective nature of N-doped TiO2 nanoparticles in comparison to undoped TiO2 nanoparticles indicated by various biological tests. Hence, N-doped TiO2 nanoparticles have more potential to be employed in biomedicine for the cure of numerous infections.
Collapse
Affiliation(s)
- Muhammad Arslan Ahmad
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Yang Yuesuo
- Key Lab of Eco-restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 11044, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhang Yan Hui
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China.
| |
Collapse
|
19
|
In vitro evaluation of anticancer activity of sodium hyaluronate-titanium dioxide bionanocomposite. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The purpose of the current research is to optimize the synthesis of sodium hyaluronatetitanium dioxide nanocomposite with the highest anticancer activity. To this end, the Taguchi method was followed to design nine experiments with different ratios of sodium hyaluronate biopolymer, titanium dioxide nanoparticles and stirring times. The results of scanning electron microscopy (SEM) confirmed the synthesis of the nanoparticle and nanocomposite. The comparison of anticancer activity level of synthesized nanocomposites using MTT assay showed that the nanocomposite synthesized in the conditions of experiment 9 (8 mg/ml of titanium dioxide nanoparticles, 2 mg/ml of sodium hyaluronate biopolymer and 60 min stirring time) had the maximum anticancer activity against Michigan Cancer Foundation-7 (MCF-7) cell line. According to the results, the Taguchi method can be employed as an effective and useful strategy to save time and cost in order to determine the optimal conditions for the synthesis of sodium hyaluronate-titanium dioxide nanocomposite with the most favorable anticancer activity.
Collapse
|
20
|
Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Investigation of the Compressibility and Compactibility of Titanate Nanotube-API Composites. MATERIALS 2018; 11:ma11122582. [PMID: 30567364 PMCID: PMC6315882 DOI: 10.3390/ma11122582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/02/2022]
Abstract
The present work aims to reveal the pharma-industrial benefits of the use of hydrothermally synthesised titanate nanotube (TNT) carriers in the manufacturing of nano-sized active pharmaceutical ingredients (APIs). Based on this purpose, the compressibility and compactibility of various APIs (diltiazem hydrochloride, diclofenac sodium, atenolol and hydrochlorothiazide) and their 1:1 composites formed with TNTs were investigated in a comparative study, using a Lloyd 6000R uniaxial press instrumented with a force gauge and a linear variable differential transformer extensometer. The tablet compression was performed without the use of any excipients, thus providing the precise energetic characterisation of the materials’ behaviour under pressure. In addition to the powder functionality test, the post-compressional properties of the tablets were also determined and evaluated. The results of the energetic analysis demonstrated that the use of TNTs as drug carriers is beneficial in every step of the tabletting process: besides providing better flowability and more favourable particle rearrangement, it highly decreases the elastic recovery of the APIs and results in ideal plastic deformation. Moreover, the post-compressional properties of the TNT–API composites were found to be exceptional (e.g., great tablet hardness and tensile strength), affirming the above results and proving the potential in the use of TNT carriers for drug manufacturing.
Collapse
|
22
|
Latha TS, Reddy MC, R Durbaka PV, Muthukonda SV, Lomada D. Immunomodulatory properties of titanium dioxide nanostructural materials. Indian J Pharmacol 2018; 49:458-464. [PMID: 29674801 PMCID: PMC5892028 DOI: 10.4103/ijp.ijp_536_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Although titanium dioxide (TiO2) nanostructural materials have been widely used in Biology and Medicine, very little is known about immunomodulation mechanism of these materials. Objectives of this study are to investigate in vitro immunomodulatory effects of TiO2. Immunosuppressant may lower immune responses and are helpful for the treatment of graft versus host diseases and autoimmune disorders. MATERIALS AND METHODS In this study, we used H2Ti3O7 titanium dioxide nanotubes (TNT) nanotubes along with commercial TiO2 nanoparticles (TNP) and TiO2 fine particles (TFP). We investigated the in vitro immunomodulatory effects of TNP, TNT, and TFP using mixed lymphocyte reaction (MLR). Suppression was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Cytokine profile was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS AND CONCLUSIONS The results from this study illustrated that the TiO2 nanostructural materials strongly suppressed splenocytes proliferation in MLR. For TNP and TNT, at 50 μg/ml suppression of 20%-25% and 30%-35%, respectively, and for TFP at 100 μg/ml suppression was 25%-30% was observed. Suppression of splenocytes proliferation in the presence of TNP, TNT, and TFP demonstrated that these nanostructural materials probably block T-cell-mediated responses in vitro. Our ELISA results confirmed that significantly lower levels of Th1 type cytokines (interleukin-2, interferon-γ) in the 48 h MLR culture supernatants. Our data suggest that TiO2 nanostructural materials suppress splenocytes proliferation by suppressing Th1 cytokines.
Collapse
Affiliation(s)
- T Sree Latha
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Prasad V R Durbaka
- Department of Microbiology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Shankar V Muthukonda
- Department of Materials Science and Nanotechnology, Nanocatalysis and Solar Fuels Research Laboratory, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|