1
|
Homer WJA, Lisnenko M, Hauzerova S, Heczkova B, Gardner AC, Kostakova EK, Topham PD, Jencova V, Theodosiou E. Thermally Stabilised Poly(vinyl alcohol) Nanofibrous Materials Produced by Scalable Electrospinning: Applications in Tissue Engineering. Polymers (Basel) 2024; 16:2079. [PMID: 39065397 PMCID: PMC11281220 DOI: 10.3390/polym16142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≤3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as 'greener' alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives.
Collapse
Affiliation(s)
- W. Joseph A. Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Bohdana Heczkova
- Department of Haematology, Regional Hospital Liberec, 460 01 Liberec, Czech Republic;
| | - Adrian C. Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, UK;
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Eva K. Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Aston Advanced Materials Research Centre, Aston University, Birmingham B4 7ET, UK
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic; (M.L.); (S.H.); (E.K.K.); (V.J.)
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
2
|
Katiyar S, Singh D, Tripathi AD, Chaurasia AK, Singh RK, Srivastava PK, Mishra A. In vitro and in vivo assessment of curcumin-quercetin loaded multi-layered 3D-nanofibroporous matrix prepared by solution blow-spinning for full-thickness burn wound healing. Int J Biol Macromol 2024; 270:132269. [PMID: 38744363 DOI: 10.1016/j.ijbiomac.2024.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Burn wounds (BWs) cause impairment of native skin tissue and may cause significant microbial infections that demand immediate care. Curcumin (Cur) and quercetin (Que) exhibit antimicrobial, hemocompatibility, ROS-scavenging, and anti-inflammatory properties. However, its instability, water insolubility, and low biological fluid absorption render it challenging to sustain local Cur and Que doses at the wound site. Therefore, to combat these limitations, we employed blow-spinning and freeze-drying to develop a multi-layered, Cur/Que-loaded gelatin/chitosan/PCL (GCP-Q/C) nanofibroporous (NFP) matrix. Morphological analysis of the NFP-matrix using SEM revealed a well-formed multi-layered structure. The FTIR and XRD plots demonstrated dual-bioactive incorporation and scaffold polymer interaction. Additionally, the GCP-Q/C matrix displayed high porosity (82.7 ± 2.07 %), adequate pore size (∼121 μm), enhanced water-uptake ability (∼675 % within 24 h), and satisfactory biodegradation. The scaffolds with bioactives had a long-term release, increased antioxidant activity, and were more effective against gram-positive (S. aureus) and gram-negative (E. coli) bacteria than the unloaded scaffolds. The in vitro findings of GCP-Q/C scaffolds showed promoted L929 cell growth and hemocompatibility. Additionally, an in vivo full-thickness BW investigation found that an implanted GCP-Q/C matrix stimulates rapid recuperation and tissue regeneration. In accordance with the findings, the Gel/Ch/PCL-Que/Cur NFP-matrix could represent an effective wound-healing dressing for BWs.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avinash Kumar Chaurasia
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ritika K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep K Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
3
|
Havlickova K, Kuzelova Kostakova E, Lisnenko M, Hauzerova S, Stuchlik M, Vrchovecka S, Vistejnova L, Molacek J, Lukas D, Prochazkova R, Horakova J, Jakubkova S, Heczkova B, Jencova V. The Impacts of the Sterilization Method and the Electrospinning Conditions of Nanofibrous Biodegradable Layers on Their Degradation and Hemocompatibility Behavior. Polymers (Basel) 2024; 16:1029. [PMID: 38674949 PMCID: PMC11053452 DOI: 10.3390/polym16081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.
Collapse
Affiliation(s)
- Kristyna Havlickova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Eva Kuzelova Kostakova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Maxim Lisnenko
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Sarka Hauzerova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Martin Stuchlik
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Stanislava Vrchovecka
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic; (M.S.); (S.V.)
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
| | - Jiri Molacek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (L.V.); (J.M.)
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - David Lukas
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
- Institute of Clinical Disciplines and Biomedicine, Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic
| | - Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic;
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, 46001 Liberec, Czech Republic; (R.P.); (S.J.); (B.H.)
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 1402/2, 46117 Liberec, Czech Republic; (M.L.); (S.H.); (D.L.); (V.J.)
| |
Collapse
|
4
|
Šuca H, Čoma M, Tomšů J, Sabová J, Zajíček R, Brož A, Doubková M, Novotný T, Bačáková L, Jenčová V, Kuželová Košťáková E, Lukačín Š, Rejman D, Gál P. Current Approaches to Wound Repair in Burns: How far Have we Come From Cover to Close? A Narrative Review. J Surg Res 2024; 296:383-403. [PMID: 38309220 DOI: 10.1016/j.jss.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 02/05/2024]
Abstract
Burn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound. Currently, split-thickness/full-thickness skin autografts are the gold standard for permanent skin substitution. However, deep burns treated with split-thickness skin autografts may contract, leading to functional and appearance issues. Conversely, defects treated with full-thickness skin autografts often result in more satisfactory function and appearance. The development of tissue-engineered dermal templates has further expanded the scope of wound repair, providing scar reductive and regenerative properties that have extended their use to reconstructive surgical interventions. Although their interactions with the wound microenvironment are not fully understood, these templates have shown potential in local infection control. This narrative review discusses the current state of wound repair in burn injuries, focusing on the progress made from wound cover to wound closure and local infection control. Advancements in technology and therapies hold promise for improving the outcomes for burn injury patients. Understanding the underlying mechanisms of wound repair and tissue regeneration may provide new insights for developing more effective treatments in the future.
Collapse
Affiliation(s)
- Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Júlia Tomšů
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Antonín Brož
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Doubková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Novotný
- Department of Orthopaedics, University J.E. Purkině and Masaryk Hospital, Ústí nad Labem, Czech Republic; Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Orthopaedic Surgery, Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Jenčová
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Eva Kuželová Košťáková
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Gál
- Prague Burn Center, Third Faculty of Medicine, Charles University and Královské Vinohrady University Hospital, Prague, Czech Republic; Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic; Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Inc, Košice, Slovak Republic; Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; Biomedical Research Center of the Slovak Academy of Sciences, Košice, Slovak Republic.
| |
Collapse
|
5
|
Blanquer A, Kostakova EK, Filova E, Lisnenko M, Broz A, Mullerova J, Novotny V, Havlickova K, Jakubkova S, Hauzerova S, Heczkova B, Prochazkova R, Bacakova L, Jencova V. A novel bifunctional multilayered nanofibrous membrane combining polycaprolactone and poly (vinyl alcohol) enriched with platelet lysate for skin wound healing. NANOSCALE 2024; 16:1924-1941. [PMID: 38170860 DOI: 10.1039/d3nr04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Skin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment. The material is produced using a needleless multi-jet electrospinning approach which can lead to homogeneous large-scale production. The bioactive PCL-PVA + PL membranes are cytocompatible and hemocompatible. A spatially compartmented co-culture of three cell types involved in wound healing - keratinocytes, fibroblasts and endothelial cells - is used for cytocompatibility studies. PCL-PVA + PL membranes enhance the proliferation of all cell types and increase the migration of both fibroblasts and endothelial cells. The membranes are also hemocompatible without any deleterious effect for thrombogenicity, hemolysis and coagulation. Thus, the beneficial effect of the PCL-PVA + PL membrane is demonstrated in vitro, making it a promising scaffold for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Andreu Blanquer
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain.
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Eva Kuzelova Kostakova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Maxim Lisnenko
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Antonin Broz
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Jana Mullerova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
- The Institute for Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, Liberec, 460 01, Czech Republic
| | - Vit Novotny
- The Institute for Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, Liberec, 460 01, Czech Republic
| | - Kristyna Havlickova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Sarka Jakubkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
| | - Sarka Hauzerova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| | - Bohdana Heczkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
| | - Renata Prochazkova
- Regional Hospital Liberec, Husova 357/28, Liberec, 460 01, Czech Republic
- Faculty of Health, Technical University of Liberec, Studentska 1402/2, Liberec, 461 17, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4-Krc, Czech Republic
| | - Vera Jencova
- Technical University of Liberec, Faculty of Science, Humanities and Education, Studentska 1402/2, Liberec, 46117, Czech Republic
| |
Collapse
|
6
|
Solarska-Ściuk K, Męczarska K, Jencova V, Jędrzejczak P, Klapiszewski Ł, Jaworska A, Hryć M, Bonarska-Kujawa D. Effect of Non-Modified as Well as Surface-Modified SiO 2 Nanoparticles on Red Blood Cells, Biological and Model Membranes. Int J Mol Sci 2023; 24:11760. [PMID: 37511517 PMCID: PMC10380300 DOI: 10.3390/ijms241411760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nanoparticles are extremely promising components that are used in diagnostics and medical therapies. Among them, silica nanoparticles are ultrafine materials that, due to their unique physicochemical properties, have already been used in biomedicine, for instance, in cancer therapy. The aim of this study was to investigate the cytotoxicity of three types of nanoparticles (SiO2, SiO2-SH, and SiO2-COOH) in relation to red blood cells, as well as the impact of silicon dioxide nanoparticles on biological membranes and liposome models of membranes. The results obtained prove that hemolytic toxicity depends on the concentration of nanoparticles and the incubation period. Silica nanoparticles have a marginal impact on the changes in the osmotic resistance of erythrocytes, except for SiO2-COOH, which, similarly to SiO2 and SiO2-SH, changes the shape of erythrocytes from discocytes mainly towards echinocytes. What is more, nanosilica has an impact on the change in fluidity of biological and model membranes. The research gives a new view of the practical possibilities for the use of large-grain nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Katarzyna Solarska-Ściuk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Aleksandra Jaworska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Monika Hryć
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| |
Collapse
|
7
|
Selvakumar G, Lonchin S. A bio-polymeric scaffold incorporated with p-Coumaric acid enhances diabetic wound healing by modulating MMP-9 and TGF-β3 expression. Colloids Surf B Biointerfaces 2023; 225:113280. [PMID: 36989817 DOI: 10.1016/j.colsurfb.2023.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Diabetic wounds lead to severe health complications as the tissue regeneration process fails predominantly due to prolonged inflammation, reactive oxygen species generation, and imbalance in collagen turnover. Modern wound dressings that can aid in wound management thus improving the public healthcare system, is the present need. This study aims to fabricate an effective wound dressing using plant polyphenol to treat chronic wounds as polyphenols possess excellent wound-healing ability. The collagen scaffold enriched with the polyphenol, p-Coumaric acid, was fabricated by freeze-drying method (Col-OxP3-Ca) and examined for its wound-healing ability by in vitro and in vivo analyses. Col-OxP3-Ca scaffold exhibited 85% antioxidant activity, biocompatibility in fibroblast cells, enhanced cell proliferation and migration rate. The diabetic excision wound treated with Col-OxP3-Ca scaffold healed within 21 days and a well-developed epidermis, blood vessels, hair follicle formation, fewer inflammatory cells and collagen deposition was observed in histological analysis. The immunohistochemical results depicted the enhanced expression of TGF-β3 and lessened expression of the MMP-9 in Col-OxP3-Ca scaffold treatment group. p-Coumaric acid shortened the inflammatory stage, enhanced angiogenesis, tissue regeneration and balanced collagen turnover during healing. From this, we can accomplish that the Col-OxP3-Ca wound dressing could be an outstanding alternative to treat chronic wounds.
Collapse
Affiliation(s)
- Gopika Selvakumar
- Biochemistry and Biotechnology Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; University of Madras, Chepauk, Chennai 600005, India
| | - Suguna Lonchin
- Biochemistry and Biotechnology Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India.
| |
Collapse
|
8
|
Anghel N, Apostol I, Dinu MV, Dimitriu CD, Spiridon I, Verestiuc L. Xanthan-Based Materials as a Platform for Heparin Delivery. Molecules 2023; 28:molecules28062757. [PMID: 36985729 PMCID: PMC10054415 DOI: 10.3390/molecules28062757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Heparin (Hep), with its anticoagulant activity, antiangiogenic and apoptotic effects, and growth factor binding, plays an important role in various biological processes. Formulations as drug delivery systems protect its biological activity, and limit the potential side effects of faulty administration. The objective of this study was to develop novel xanthan-based materials as a delivery carrier for heparin. The materials exhibited remarkable elastic behavior and toughness without any crack development within the network, which also support their application for tissue engineering. It was found that all materials possessed the ability to control the release of heparin, according to the Korsmeyer-Peppas release model. All Hep-containing materials caused significant exchanges of the activated partial thromboplastin time (aPTT) and prothrombin time (PT) parameters, indicating that formulated natural/natural synthetic polymeric networks conserved heparin's biological activity and its ability to interrupt the blood coagulation cascade. The obtained results confirmed that developed materials could be carriers for the controlled release of heparin, with potential applications in topical administration.
Collapse
Affiliation(s)
- Narcis Anghel
- "P. Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Voda nr. 41A, 700487 Iasi, Romania
| | - Irina Apostol
- "P. Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Voda nr. 41A, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- "P. Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Voda nr. 41A, 700487 Iasi, Romania
| | - Cristina Daniela Dimitriu
- Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, Universitatii nr. 16, 700115 Iasi, Romania
| | - Iuliana Spiridon
- "P. Poni" Institute of Macromolecular Chemistry, Grigore Ghica-Voda nr. 41A, 700487 Iasi, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, "Gr. T. Popa" University of Medicine and Pharmacy, Kogalniceanu nr. 9-13, 700454 Iasi, Romania
| |
Collapse
|
9
|
Zhu T, Zhu J, Lu S, Mo X. Evaluation of electrospun PCL diol-based elastomer fibers as a beneficial matrix for vascular tissue engineering. Colloids Surf B Biointerfaces 2022; 220:112963. [DOI: 10.1016/j.colsurfb.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
10
|
Miceli GC, Palumbo FS, Bonomo FP, Zingales M, Licciardi M. Polybutylene Succinate Processing and Evaluation as a Micro Fibrous Graft for Tissue Engineering Applications. Polymers (Basel) 2022; 14:4486. [PMID: 36365480 PMCID: PMC9655432 DOI: 10.3390/polym14214486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
A microfibrous tubular scaffold has been designed and fabricated by electrospinning using poly (1,4-butylene succinate) as biocompatible and biodegradable material. The scaffold morphology was optimized as a small diameter and micro-porous conduit, able to foster cell integration, adhesion, and growth while avoiding cell infiltration through the graft's wall. Scaffold morphology and mechanical properties were explored and compared to those of native conduits. Scaffolds were then seeded with adult normal human dermal fibroblasts to evaluate cytocompatibility in vitro. Haemolytic effect was evaluated upon incubation with diluted whole blood. The scaffold showed no delamination, and mechanical properties were in the physiological range for tubular conduits: elastic modulus (17.5 ± 1.6 MPa), ultimate tensile stress (3.95 ± 0.17 MPa), strain to failure (57 ± 4.5%) and suture retention force (2.65 ± 0.32 N). The shown degradation profile allows the graft to provide initial mechanical support and functionality while being colonized and then replaced by the host cells. This combination of features might represent a step toward future research on PBS as a biomaterial to produce scaffolds that provide structure and function over time and support host cell remodelling.
Collapse
Affiliation(s)
- Giovanni Carlo Miceli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| | - Francesco Paolo Bonomo
- Advanced Technology Network Center (ATeN Center), Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Massimiliano Zingales
- Dipartimento di Ingegneria, Viale delle Scienze, Università degli Studi di Palermo, ed.8, 90128 Palermo, Italy
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy
| |
Collapse
|
11
|
Jia W, Liu L, Li M, Zhou Y, Zhou H, Weng H, Gu G, Xiao M, Chen Z. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels. Acta Biomater 2022; 153:287-298. [PMID: 36155095 DOI: 10.1016/j.actbio.2022.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
The current use of synthetic grafts often yields low patency in the reconstruction of small-diameter blood vessels owing to the deposition of thrombi and imperfect coverage of the endothelium on the graft lumen. Therefore, the design of vascular scaffolds with antithrombotic performance and endothelialization is greatly required. Herein, we developed an enzyme-laden scaffold based on hyaluronic acid oligosaccharides-modified collagen nanofibers (labeled HA-COL) to improve the anti-platelet capacity and endothelialization of vascular grafts. In this study, HA-COL nanofibers not only encouraged the endothelialization of vascular scaffolds, but acted as an antiplatelet enzyme-laden platform. Apyrase (Apy) and 5'-nucleotidase (5'-NT) were covalently grafted onto the nanofibers, which in turn converted the platelet-sensitive substance: adenosine diphosphate (ADP) into adenosine monophosphate (AMP) and adenosine, thereby, improving the antithrombotic performance of the scaffolds. Notably, the catalytic end-product: adenosine would work in coordination with HA-COL to synergistically enhance the endothelialization of the vascular scaffolds. The results demonstrated that the enzyme-laden scaffolds maintained catalytic performance, reduced platelet adhesion and aggregation, and guaranteed higher patency after 1-month in situ transplantation. Moreover, these scaffolds showed optimal cytocompatibility, tissue compatibility, scaffold biodegradability and tissue regenerative capability during in vivo implantation. Overall, these engineered vascular scaffolds demonstrated their capacity for endothelialization and antithrombotic performance, suggesting their potential for small-diameter vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Considering the critical problems in small-diameter vascular reconstruction, the enzyme-laden vascular scaffolds were prepared for improving in-situ endothelialization and antithrombotic performances of artificial blood vessels. The electrospun HA-COL nanofibers were used as the main matrix materials, which provided favorable structural templates for the regeneration of vasculature and functioned as a platform for the loading of enzymes. The enzyme-laden scaffolds with the biomimetic cascading reaction would convert ADP into adenosine, thereby, decreasing the sensitivity of platelets and improving the antithrombotic performance of tissue-engineered blood vessels (TEBVs). The nanofibrous scaffolds exhibited optimal cytocompatibility, tissue compatibility and regenerative capability, working together with catalytic products of dual-enzyme reaction that would synergistically contribute to TEBVs endothelialization. This study provides a new method for the improvement of in-situ endothelialization of small-diameter TEBVs while qualified with antithrombotic performance.
Collapse
Affiliation(s)
- Weibin Jia
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Liling Liu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Min Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Yuanmeng Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Hang Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Hongjuan Weng
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Min Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Selvakumar G, Lonchin S. Bioactive functional collagen-oxidized pullulan scaffold loaded with polydatin for treating chronic wounds. BIOMATERIALS ADVANCES 2022; 140:213078. [PMID: 35964388 DOI: 10.1016/j.bioadv.2022.213078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Prolonged inflammation, elevated matrix metalloproteinases, hypoxia, decreased vascularization, increased oxidative stress, and bacterial infection are typical signs of chronic non-healing diabetic wounds. Any agent that improves one or all factors could offer enhanced opportunities for better healing of diabetic wounds. In this study, a polyphenol (polydatin) incorporated collagen scaffold was prepared using a biocompatible crosslinker, oxidized pullulan (Col-OxP3-Po), to treat diabetic wounds. The scaffolds were characterized using SEM, FTIR, antioxidant activity, in vitro and in vivo wound healing assay, gene expression, and immunohistopathological studies. Polydatin incorporated scaffold exhibited 75 % antioxidant activity, hemostatic and erythrocyte adhesion properties. FTIR results proved the incorporation of polydatin in the Col-OxP3-Po scaffold. They were also non-toxic to the 3 T3 fibroblasts with a viability of 93 % and good cell attachment. In vivo, normal and diabetic wound healing studies showed that the Col-OxP3-Po scaffold treated group healed on days 16 and 21. The histological and immunohistochemistry analyses of the granulation tissues showed improved epithelialization, angiogenesis and enhanced collagen deposition by modulating TGF-β3 and MMP - 9 gene expressions favorable for better healing. Thus, this scaffold could be a newer treatment strategy for chronic non-healing wounds.
Collapse
Affiliation(s)
- Gopika Selvakumar
- Biochemistry and Biotechnology Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India; University of Madras, Chepauk, Chennai 600005, India
| | - Suguna Lonchin
- Biochemistry and Biotechnology Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600 020, India.
| |
Collapse
|
13
|
Ankush K, Pugazhenthi G, Mohit K, Vasanth D. Experimental study on fabrication, biocompatibility and mechanical characterization of polyhydroxybutyrate-ball clay bionanocomposites for bone tissue engineering. Int J Biol Macromol 2022; 209:1995-2008. [PMID: 35504414 DOI: 10.1016/j.ijbiomac.2022.04.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023]
Abstract
The poly (3-hydroxybutyrate) (PHB)/ball clay nanocomposites (B1-B10) were synthesized using solvent casting method with different weight percentage of ball clay in PHB matrix. Scanning electron microscope (SEM) showed maximum root mean square roughness (188.73 μm) for 10% ball clay loading. Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) showed establishment of intercalated structure and formation of hydrogen bond between ball clay and PHB matrix. Contact angle values (67.3 - 51.3°) exhibited that the nanocomposites (B1-B10) are more hydrophilic than neat PHB (70.30°). Thermogravimetric (TGA) and differential scanning calorimetry (DSC) revealed maximum Tmax (278 °C) and Tm (175 °C) for the nanocomposite B10 (PHB/PEG/ball clay: 80%/10%/10%). Maximum tensile strength (38.21 ± 0.15 MPa) and Young's modulus (1.74 ± 0.016 GPa) was observed for B10 nanocomposite. The values of protein adsorption, platelet adhesion, PT, APTT and complement activation for B10 nanocomposites were 165 ± 2 μg/cm2, 72 ± 3 × 109 platelets/cm2, 23 ± 1 s, 44 ± 2 s, 102 ± 2 mg/dL and 631 ± 3 mg/dL, respectively. Hydroxyapatite formation was also observed for nanocomposite (B10) in in vitro simulated body fluid (SBF) study. Finally, the nanocomposite (B10) showed no harmful effect on MG-63 cells, indicating that they are physiologically safe.
Collapse
Affiliation(s)
- K Ankush
- Department of Biotechnology, National institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - K Mohit
- Department of Biotechnology, National institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - D Vasanth
- Department of Biotechnology, National institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
14
|
Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromol Res 2022. [DOI: 10.1007/s13233-022-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Xu Y, Jiang X, Niu C, Yang S, Xiao X, Huang Z, Feng L. Preparation and Assessment of Nitric Oxide‐releasing Small‐diameter Collagen‐based Vascular Graft for Vascular Regeneration Application. MACROMOLECULAR MATERIALS AND ENGINEERING 2022. [DOI: 10.1002/mame.202100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Xu
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Xia Jiang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Chuan Niu
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Shaojie Yang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Xiong Xiao
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Ziwei Huang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Li Feng
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| |
Collapse
|
16
|
Song ES, Park JH, Ha SS, Cha PH, Kang JT, Park CY, Park K. Novel Corneal Endothelial Cell Carrier Couples a Biodegradable Polymer and a Mesenchymal Stem Cell-Derived Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12116-12129. [PMID: 35238557 DOI: 10.1021/acsami.2c01709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report a transparent, biodegradable, and cell-adhesive carrier that is securely coupled with the extracellular matrix (ECM) for corneal endothelial cell (CEC) transplantation. To fabricate a CEC carrier, poly(lactide-co-caprolactone) (PLCL) solution was poured onto the decellularized ECM (UMDM) derived from in vitro cultured umbilical cord blood-MSCs. Once completely dried, ECM-PLCL was then peeled off from the substrate. It was 20 μm thick, transparent, rich in fibronectin and collagen type IV, and easy to handle. Surface characterizations exhibited that ECM-PLCL was very rough (54.0 ± 4.50 nm) and uniformly covered in high density by ECM and retained a positive surface charge (65.2 ± 57.8 mV), as assessed via atomic force microscopy. Human CECs (B4G12) on the ECM-PLCL showed good cell attachment, with a cell density similar to the normal cornea. They could also maintain a cell phenotype, with nicely formed cell-cell junctions as assessed via ZO-1 and N-cadherin at 14 days. This was in sharp contrast to the CEC behaviors on the FNC-coated PLCL (positive control). A function-related marker, Na+/K+-ATPase, was also identified via western blot and immunofluorescence. In addition, primary rabbit CECs showed a normal shape and they could express structural and functional proteins on the ECM-PLCL. A simulation test confirmed that CECs loaded on the ECM-PLCL were successfully engrafted into the decellularized porcine corneal tissue, with a high engraftment level and cell viability. Moreover, ECM-PLCL transplantation into the anterior chamber of the rabbit eye for 8 weeks proved the maintenance of normal cornea properties. Taken together, this study demonstrates that our ECM-PLCL can be a promising cornea endothelium graft with an excellent ECM microenvironment for CECs.
Collapse
Affiliation(s)
- Eui Sun Song
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Pu-Hyeon Cha
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
17
|
Ankush K, Pugazhenthi G, Vasanth D. Fabrication and properties of polyhydroxybutyrate/kaolin nanocomposites and evaluation of their biocompatibility for biomedical applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- K. Ankush
- Department of Biotechnology National Institute of Technology Raipur India
| | - G. Pugazhenthi
- Department of Chemical Engineering Indian Institute of Technology Guwahati India
| | - D. Vasanth
- Department of Biotechnology National Institute of Technology Raipur India
| |
Collapse
|
18
|
Atashgahi M, Ghaemi B, Valizadeh A, Moshiri A, Nekoofar MH, Amani A. Epinephrine-entrapped chitosan nanoparticles covered by gelatin nanofibers: A bi-layer nano-biomaterial for rapid hemostasis. Int J Pharm 2021; 608:121074. [PMID: 34481888 DOI: 10.1016/j.ijpharm.2021.121074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Uncontrolled hemorrhage accounts for significant death risk both in trauma and surgery. Various bleeding control techniques have been emerged to augment hemostasis, which still has several limitations and drawbacks. In this study, epinephrine-entrapped chitosan nanoparticles were electrosprayed on a base pad and covered by a gelatin nanofiber layer (E-CS-Gl. Physico-chemical characteristics, hemocompatibility, cytotoxicity, and blood coagulation tests were studied in-vitro, and blood coagulation and hemostasis potential tests were performed in-vivo. The in-vitro results showed that the prepared nano-biomaterial is cytocompatible against HuGu cells. Also, hemocompatibility studies showed that PT and aPTT times did not change in comparison with the controls. Further blood coagulation study indicated that E-CS-Gl provides an ultimate interface to induce red blood cell absorption and aggregation, resulting in augmented blood coagulation. E-CS-Gl also caused rapid clotting in rat models of ruptured femoral artery and liver compared to controls. Findings exhibited that E-CS-Gl is a safe and effective hemostatic agent and provides a new approach for fast and safe hemorrhage control.
Collapse
Affiliation(s)
- Mahboubeh Atashgahi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 19857-17411 Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hossein Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences; Department of Endodontic, Bahçeşehir University School of Dentistry, İstanbul, Turkey.
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Medical Biomaterial Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Atehortua C, Montoya Y, García A, Bustamante J. Hemolytic, Biocompatible, and Functional Effect of Cellularized Polycaprolactone-Hydrolyzed Collagen Electrospun Membranes for Possible Application as Vascular Implants. J Biomed Nanotechnol 2021; 17:1184-1198. [PMID: 34167631 DOI: 10.1166/jbn.2021.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In search of bioactive vascular prostheses that exhibit greater biocompatibility through the combination of natural and synthetic polymers, tissue engineering from a biomimetic perspective has proposed the development of three-dimensional structures as therapeutic strategies in the field of cardiovascular medicine. Techniques such as electrospinning allow obtaining of scaffolds that emulate the microarchitecture of the extracellular matrix of native vessels; thus, this study aimed to evaluate the biological influence of microarchitecture on polycaprolactone (PCL) and hydrolyzed collagen (H-Col) electrospun scaffolds, which have a homogeneous (microscale) or heterogeneous (micro-nanoscale) fibrillar structure. The hemolytic, biocompatible, and functional effect of the scaffolds in interaction with an in vitro fibroblast model was determined, in view of its potential use for vascular implants. Scaffolds were characterized by scanning electron microscopy and atomic force microscopy, Fourier transform infrared spectroscopy, wettability, static permeability, tensile test, and degradation. In addition, direct and indirect 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were used to identify the cell viability of fibroblasts, fluorescence assays were performed to establish morphological changes of the cell nuclei, and the hemolytic effect of the scaffolds was calculated. Results showed that ethanol-treated biocompositescaffolds exhibited mass losses lower than 6.65% and slow wettability and absorption, resulting from an increase in secondary structures that contribute to the crystalline phase of H-Col. The scaffolds demonstrated stable degradation in saline during the incubation period because of the availability of soluble structures in aqueous media, and the inclusion of H-Col increased the elastic properties of the scaffold. As regards hemocompatibility, the scaffolds had hemolysis levels lower than 1%; moreover, in terms of biocompatible characteristics, scaffolds exhibited good adhesion, proliferation, and cell viability and insignificant changes in the circularity of the cell nuclei. However, scaffolds with homogeneous fibers showed cell agglomerates after 48 h of interaction. By contrast, permeability decreased as the incubation period progressed, because of the cellularization of the three-dimensional structure. In conclusion, multiscale scaffolds could exhibit a suitable behavior as a bioactive small-diameter vascular implant.
Collapse
Affiliation(s)
- Camilo Atehortua
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Alejandra García
- Laboratorio de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales, Centro de Investigación en Materiales Avanzados S.C. Parque PIIT Alianza Norte 202, Apodaca 66600, México
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
20
|
Kong X, He Y, Zhou H, Gao P, Xu L, Han Z, Yang L, Wang M. Chondroitin Sulfate/Polycaprolactone/Gelatin Electrospun Nanofibers with Antithrombogenicity and Enhanced Endothelial Cell Affinity as a Potential Scaffold for Blood Vessel Tissue Engineering. NANOSCALE RESEARCH LETTERS 2021; 16:62. [PMID: 33864528 PMCID: PMC8053139 DOI: 10.1186/s11671-021-03518-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 05/24/2023]
Abstract
Electrospun polymer nanofibers have gained much attention in blood vessel tissue engineering. However, conventional nanofiber materials with the deficiencies of slow endothelialization and thrombosis are not effective in promoting blood vessel tissue repair and regeneration. Herein, biomimetic gelatin (Gt)/polycaprolactone (PCL) composite nanofibers incorporating a different amount of chondroitin sulfate (CS) were developed via electrospinning technology to investigate their effects on antithrombogenicity and endothelial cell affinity. Varying CS concentrations in PG nanofibers affects fiber morphology and diameter. The CS/Gt/PCL nanofibers have suitable porosity (~ 80%) and PBS solution absorption (up to 650%). The introduction of CS in Gt/PCL nanofibers greatly enhances their anticoagulant properties, prolongs their coagulation time, and facilitates cell responses. Particularly, 10%CS/Gt/PCL nanofibers display favorable cell attachment, elongation, and proliferation. Thus, the Gt/PCL nanofibers containing a certain amount of CS could be excellent candidates as a promising tissue-engineering scaffold in blood vessel repair and regeneration.
Collapse
Affiliation(s)
- Xiangqian Kong
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yuxiang He
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hua Zhou
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Peixian Gao
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Lei Xu
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zonglin Han
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Le Yang
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Mo Wang
- Vascular Surgury, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
21
|
Blanquer A, Musilkova J, Filova E, Taborska J, Brynda E, Riedel T, Klapstova A, Jencova V, Mullerova J, Kostakova EK, Prochazkova R, Bacakova L. The Effect of a Polyester Nanofibrous Membrane with a Fibrin-Platelet Lysate Coating on Keratinocytes and Endothelial Cells in a Co-Culture System. NANOMATERIALS 2021; 11:nano11020457. [PMID: 33670150 PMCID: PMC7916860 DOI: 10.3390/nano11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.
Collapse
Affiliation(s)
- Andreu Blanquer
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
- Correspondence: ; Tel.: +420-29-644-3741
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Elena Filova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| | - Johanka Taborska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Eduard Brynda
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Tomas Riedel
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic; (J.T.); (E.B.); (T.R.)
| | - Andrea Klapstova
- Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
| | - Vera Jencova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Jana Mullerova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
- Institute of Nanomaterials, Advanced Technologies and Innovation, Bendlova 1409/7, 460 01 Liberec 1, Czech Republic
| | - Eva Kuzelova Kostakova
- Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic; (V.J.); (J.M.); (E.K.K.)
| | - Renata Prochazkova
- Faculty of Health, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec 1, Czech Republic;
- Regional Hospital Liberec, Husova 357/28, 460 01 Liberec 1, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.M.); (E.F.); (L.B.)
| |
Collapse
|
22
|
Jia W, Li M, Liu L, Zhou H, Liu X, Gu G, Xiao M, Chen Z. Fabrication and assessment of chondroitin sulfate-modified collagen nanofibers for small-diameter vascular tissue engineering applications. Carbohydr Polym 2021; 257:117573. [PMID: 33541632 DOI: 10.1016/j.carbpol.2020.117573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
Chondroitin sulfate (ChS) has shown promising results in promoting cell proliferation and antithrombogenic activity. To engineered develop a dual-function vascular scaffold with antithrombosis and endothelialization, ChS was tethered to collagen to accelerate the growth of endothelial cells and prevent platelet activation. First, ChS was used to conjugate with collagen to generate glycosylated products (ChS-COL) via reductive amination. Then, the fabricated ChS-COL conjugates were electrospun into nanofibers and their morphologies and physicochemical characteristics, cell-scaffold responses and platelet behaviors upon ChS-COL nanofibers were comprehensively characterized to evaluate their potential use for small-diameter vascular tissue-engineered scaffolds. The experimental results demonstrated that the ChS modified collagen electrospun nanofibers were stimulatory of endothelial cell behavior, alleviated thrombocyte activation and maintained an antithrombotic effect in vivo in 10-day post-transplantation. The ChS-COL scaffolds encouraged rapid endothelialization, thus probably ensuring the antithrombotic function in long-term implantation, suggesting their promise for small-diameter vascular tissue engineering applications.
Collapse
Affiliation(s)
- Weibin Jia
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Min Li
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Liling Liu
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Hang Zhou
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Xiankun Liu
- Graduate College of Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Guofeng Gu
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Min Xiao
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Zonggang Chen
- National Glycoengineering Research Center, and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
23
|
Perez JVD, Singhana B, Damasco J, Lu L, Behlau P, Rojo RD, Whitley EM, Heralde F, Melancon A, Huang S, Melancon MP. Radiopaque scaffolds based on electrospun iodixanol/polycaprolactone fibrous composites. MATERIALIA 2020; 14:100874. [PMID: 32954230 PMCID: PMC7497787 DOI: 10.1016/j.mtla.2020.100874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grafts based on biodegradable polymer scaffolds are increasingly used in tissue-engineering applications as they facilitate natural tissue regeneration. However, monitoring the position and integrity of these scaffolds over time is challenging due to radiolucency. In this study, we used an electrospinning method to fabricate biodegradable scaffolds based on polycaprolactone (PCL) and iodixanol, a clinical contrast agent. Scaffolds were implanted subcutaneously into C57BL/6 mice and monitored in vivo using longitudinal X-ray imaging and micro-computed tomography (CT). The addition of iodixanol altered the physicochemical properties of the PCL scaffold; notably, as the iodixanol concentration increased, the fiber diameter decreased. Radiopacity was achieved with corresponding signal enhancement as iodine concentration increased while exhibiting a steady time-dependent decrease of 0.96% per day in vivo. The electrospun scaffolds had similar performance with tissue culture-treated polystyrene in supporting the attachment, viability, and proliferation of human mesenchymal stem cells. Furthermore, implanted PCL-I scaffolds had more intense acute inflammatory infiltrate and thicker layers of maturing fibrous tissue. In conclusion, we developed radiopaque, biodegradable, biocompatible scaffolds whose position and integrity can be monitored noninvasively. The successful development of other imaging enhancers may further expand the use of biodegradable scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
- Joy Vanessa D Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila, National Capital Region 1000, Philippines
| | - Burapol Singhana
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Innovative Nanomedicine Research Unit, Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathum Thani, 12120, Thailand
| | - Jossana Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Behlau
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raniv D Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila, National Capital Region 1000, Philippines
| | - Elizabeth M Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francisco Heralde
- College of Medicine, University of the Philippines Manila, Manila, National Capital Region 1000, Philippines
| | - Adam Melancon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marites Pasuelo Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
24
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Conjugated Linoleic Acid Grafting Improved Hemocompatibility of the Polycaprolactone Electrospun Membrane. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8127570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycaprolactone (PCL) is a versatile biomaterial with a wide range of medical applications, but its use in blood-contacting devices is hampered due to insufficient hemocompatibility. In this work, electrospun polycaprolactone (PCL) membranes were chemically grafted with conjugated linoleic acid (CLA) to prevent induced blood coagulation. The density of grafted CLA and its effects on the morphology and wettability of the membranes were examined. The study also investigated how the membrane interacted with human whole blood and platelets to determine its antithrombotic properties. As the results suggested, the grafting caused a negligible effect on the physical properties of the membrane but greatly improved its compatibility with blood, showing that the approach can be investigated further for blood-contacting applications.
Collapse
|
26
|
Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns. Adv Healthc Mater 2020; 9:e2000247. [PMID: 32378364 DOI: 10.1002/adhm.202000247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Management of burn wounds with diabetes and microbial infection is challenging in tissue engineering. The delayed wound healing further leads to scar formation in severe burn injury. Herein, a silver-catechin nanocomposite tethered collagen scaffold with angiogenic and antibacterial properties is developed to enable scarless healing in chronic wounds infected with Pseudomonas aeruginosa under diabetic conditions. Histological observations of the granulation tissues collected from an experimental rat model show characteristic structural organizations similar to normal skin, whereas the open wound and pristine collagen scaffold treated animals display elevated dermis with thick epidermal layer and lack of appendages. Epidermal thickness of the hybrid scaffold treated diabetic animals is lowered to 33 ± 2 µm compared to 90 ± 2 µm for pristine collagen scaffold treated groups. Further, the scar elevation index of 1.3 ± 0.1 estimated for the bioengineered scaffold treated diabetic animals is closer to the normal skin. Immunohistochemical analyses provide compelling evidence for the enhanced angiogenesis as well as downregulated transforming growth factor- β1 (TGF-β1) and upregulated TGF-β3 expressions in the hybrid scaffold treated animal groups. The insights from this study endorse the bioengineered collagen scaffolds for applications in tissue regeneration without scar in chronic burn wounds.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| | - Thanikaivelan Palanisamy
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| |
Collapse
|
27
|
Veras FF, Ritter AC, Roggia I, Pranke P, Pereira CN, Brandelli A. Natamycin-loaded electrospun poly(ε-caprolactone) nanofibers as an innovative platform for antifungal applications. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2912-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
28
|
Yu Y, Cui R, Wang X, Yang H, Li H. Preparation of multifunctional poly(l-lactic acid) film using heparin-mimetic polysaccharide multilayers: Hemocompatibility, cytotoxicity, antibacterial and drug loading/releasing properties. Int J Biol Macromol 2020; 155:14-26. [PMID: 32220642 DOI: 10.1016/j.ijbiomac.2020.03.180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
Poly(l-lactic acid) (PLLA) has been the most commonly used polymer for making bioresorbable vascular scaffolds (BVS). Despite owning remarkable properties, BVS made from PLLA are facing higher rates of early thrombosis compared with permanent metallic scaffolds. To solve this issue, we modified the PLLA film surface with heparin-mimetic polysaccharide multilayers consisting of sulfated Chinese yam polysaccharide (SCYP) and chitosan (CS) through layer-by-layer (LBL) assembly. The surface chemical compositions, morphologies and growth manner of SCYP/CS multilayers were investigated using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and UV-vis spectroscopy. The relevant hemocompatibility results showed that multilayer-modified PLLA could effectively resist protein adsorption, suppress the platelet adhesion, prolong clotting time, prevent contact and complement activation as well as reduce hemolysis rate. Moreover, the multilayer-modified PLLA exhibited non-cytotoxicity, good antibacterial ability against E. coli and S. aureus, and drug loading/sustained releasing behavior. Overall, the multifunctional PLLA film with integrated properties of hemocompatibility, non-cytotoxicity, antibacterial and drug loading/releasing behavior could be successfully achieved by deposition of SCYP/CS multilayers, which will have potential application in blood-contacting biomedical materials.
Collapse
Affiliation(s)
- Ying Yu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongqi Cui
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hui Li
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
29
|
Horakova J, Oulehlova Z, Novotny V, Jencova V, Mikes P, Havlickova K, Prochazkova R, Heczkova B, Hadinec P, Sehr S, Wendel HP, Bell CM, Krajewski S. The assessment of electrospun scaffolds fabricated from polycaprolactone with the addition of L-arginine. Biomed Phys Eng Express 2020; 6:025012. [PMID: 33438638 DOI: 10.1088/2057-1976/ab756f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polycaprolactone (PCL) was electrospun with the addition of arginine (Arg), an α-amino acid that accelerates the healing process. The efficient needleless electrospinning technique was used for the fabrication of the nanofibrous layers. The materials produced consisted mainly of fibers with diameters of between 200 and 400 nm. Moreover, both microfibers and beads were present within the layers. Higher bead sizes were observed with the increased addition of arginine. The arginine content within the layers as well as the weight of the resultant electrospun materials were enhanced with the increased addition of arginine to the electrospinning solution (1, 5 and 10 wt%). The PCL + 1% Arg nanofibrous layer contained 5.67 ± 0.04% of arginine, the PCL + 5% Arg layer 22.66 ± 0.24% of arginine and the PCL + 10% Arg layer 37.33 ± 0.39% of arginine according to the results of the elemental analysis. A high burst release within 5 h of soaking was recorded for the PCL + 5% and PCL + 10% nanofibrous layers. However, the release rate of arginine from the PCL + 1% Arg was significantly slower, reaching a maximum level after 72 h of soaking. The resulting materials were hydrophobic. Hemocompatibility testing under static conditions revealed no effect on hemolysis following the addition of arginine and the prolongation of the prothrombin time with the increased addition of arginine, thus exerting an influence on the extrinsic and common pathway of coagulation activation. The results of the dynamic hemocompatibility assessment revealed that the numbers of blood cells and platelets were not affected significantly by the various electrospun samples during incubation. The TAT, β-thromboglobulin and SC5-b9 concentrations were characterized by a moderate increase in the PCL group compared to those of the control group. The presence of arginine resulted in a decrease in the investigated hemocompatibility markers. The PMN elastase levels were comparable with respect to all the groups.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kalirajan C, Palanisamy T. Silica microsphere–resorcinol composite embedded collagen scaffolds impart scar-less healing of chronic infected burns in type-I diabetic and non-diabetic rats. Biomater Sci 2020; 8:1622-1637. [DOI: 10.1039/c9bm01089k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biocompatible hybrid collagen scaffolds embedded with a silica–resorcinol composite promote scar-less wound healing in chronically infected deep second-degree burns.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai 600020
- India
- University of Madras
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai 600020
- India
- University of Madras
| |
Collapse
|
31
|
Kang L, Jia W, Li M, Wang Q, Wang C, Liu Y, Wang X, Jin L, Jiang J, Gu G, Chen Z. Hyaluronic acid oligosaccharide-modified collagen nanofibers as vascular tissue-engineered scaffold for promoting endothelial cell proliferation. Carbohydr Polym 2019; 223:115106. [DOI: 10.1016/j.carbpol.2019.115106] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
|
32
|
Wang D, Wang X, Li X, Jiang L, Chang Z, Li Q. Biologically responsive, long-term release nanocoating on an electrospun scaffold for vascular endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110212. [PMID: 31761208 DOI: 10.1016/j.msec.2019.110212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
A critical challenge to the development of tissue engineering small-diameter vascular grafts is to achieve rapid endothelialization and long-term anticoagulation. It is necessary to graft both adhesion and antithrombus factors onto the surface of polycaprolactone without burst release to promote endothelial cell affinity and antithrombogenicity. A bionic structure with a nanocoating that allows a biologically responsive, long-term release was employed in this work to enable the grafting of various bioactive molecules such as gelatin, polylysine, and heparin. This approach involved orienting the biomimetic vascular structures; the self-assembly grafting of gelatin, polylysine, and heparin nanoparticles; and genipin crosslinking to form a multiphase crosslinked nanocoating. In this biologically inspired design, vascular endothelialization and long-term anticoagulation were successfully induced through a matrix metallopeptidase 2 regulative mechanism by delivering both adhesion and antithrombus factors with a responsive, long-term release without burst release. The method provided a simple and effective approach for delivering dual factors for tissue engineering small-diameter vascular grafts.
Collapse
Affiliation(s)
- Dongfang Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xuyan Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lin Jiang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhonghua Chang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
33
|
Wang W, Liu D, Li D, Du H, Zhang J, You Z, Li M, He C. Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization. Colloids Surf B Biointerfaces 2019; 181:963-972. [DOI: 10.1016/j.colsurfb.2019.06.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
|
34
|
Brito AEMD, Pessoa Jr A, Converti A, Rangel-Yagui CDO, Silva JAD, Apolinário AC. Poly (lactic-co-glycolic acid) nanospheres allow for high l-asparaginase encapsulation yield and activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:524-534. [DOI: 10.1016/j.msec.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
|
35
|
Nakielski P, Pierini F. Blood interactions with nano- and microfibers: Recent advances, challenges and applications in nano- and microfibrous hemostatic agents. Acta Biomater 2019; 84:63-76. [PMID: 30471475 DOI: 10.1016/j.actbio.2018.11.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
Nanofibrous materials find a wide range of applications, such as vascular grafts, tissue-engineered scaffolds, or drug delivery systems. This phenomenon can be attributed to almost arbitrary biomaterial modification opportunities created by a multitude of polymers used to form nanofibers, as well as by surface functionalization methods. Among these applications, the hemostatic activity of nanofibrous materials is gaining more and more interest in biomedical research. It is therefore crucial to find both materials and nanofiber structural properties that affect organism responses. The present review critically analyzes the response of blood elements to natural and synthetic polymers, and their blends and composites. Also assessed in this review is the incorporation of pro-coagulative substances or drugs that can decrease bleeding time. The review also discusses the main animal models that were used to assess hemostatic agent safety and effectiveness. STATEMENT OF SIGNIFICANCE: The paper contains an in-depth review of the most representative studies recently published in the topic of nanofibrous hemostatic agents. The topic evolved from analysis of pristine polymeric nanofibers to multifunctional biomaterials. Furthermore, this study is important because it helps clarify the use of specific blood-biomaterial analysis techniques with emphasis on protein adsorption, thrombogenicity and blood coagulation. The paper should be of interest to the readers of Acta biomaterialia who are curious about the strategies and materials used for the development of multifunctional polymer nanofibers for novel blood-contacting applications.
Collapse
|
36
|
Ji HF, He C, Wang R, Fan X, Xiong L, Zhao WF, Zhao CS. Multifunctionalized polyethersulfone membranes with networked submicrogels to improve antifouling property, antibacterial adhesion and blood compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:402-411. [PMID: 30606548 DOI: 10.1016/j.msec.2018.11.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/23/2018] [Accepted: 11/26/2018] [Indexed: 01/24/2023]
Abstract
Intensive efforts have been employed in modifying biomedical membranes. Among them, blending is recognized as a simple method. However, the conventional blending materials commonly lead to an insufficient modification, which is mainly caused by the poor miscibility between the blending materials and the matrixes, the elution of the hydrophilic materials from the matrixes during the use and storage, and the insufficient surface enrichment of the blending materials. Aiming to solve the abovementioned disadvantages, we developed novel polyethersulfone/poly(acrylic acid-co-N-vinyl-2-pyrrolidone) networked submicrogels (PES/P(AA-VP) NSs), which were blended with PES to enhance the antifouling properties, antibacterial adhesion and haemocompatible properties of PES membranes. As results, the PES/P(AA-VP) NSs showed good miscibility with the PES matrix, and hydrophilic submicrogels would enrich onto the membrane surface during the phase inversion process due to the surface segregation. The entanglement between the PES matrix and the networked submicrogels would effectively limit the elution of the submicrogels. In conclusion, the modified PES membranes prepared by blending with the PES/P(AA-VP) NSs might draw great attention for the application in haemodialysis fields.
Collapse
Affiliation(s)
- Hai-Feng Ji
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lian Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
37
|
Horakova J, Mikes P, Lukas D, Saman A, Jencova V, Klapstova A, Svarcova T, Ackermann M, Novotny V, Kalab M, Lonsky V, Bartos M, Rampichova M, Litvinec A, Kubikova T, Tomasek P, Tonar Z. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery. ACTA ACUST UNITED AC 2018; 13:065009. [PMID: 30177582 DOI: 10.1088/1748-605x/aade9d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study involved the electrospinning of the copolymer poly(L-lactide-co-ε-caprolactone) (PLCL) into tubular grafts. The subsequent material characterization, including micro-computed tomography analysis, revealed a level of porosity of around 70%, with pore sizes of 9.34 ± 0.19 μm and fiber diameters of 5.58 ± 0.10 μm. Unlike fibrous polycaprolactone, the electrospun PLCL copolymer promoted fibroblast and endothelial cell adhesion and proliferation in vitro. Moreover, the regeneration of the vessel wall was detected following implantation and, after six months, the endothelialization of the lumen and the infiltration of arranged smooth muscle cells producing collagen was observed. However, the degradation rate was found to be accelerated in the rabbit animal model. The study was conducted under conditions that reflected the clinical requirements-the prostheses were sutured in the end-to-side fashion and the long-term end point of prosthesis healing was assessed. The regeneration of the vessel wall in terms of endothelialization, smooth cell infiltration and the presence of collagen fibers was observed after six months in vivo. A part of the grafts failed due to the rapid degradation rate of the PLCL copolymer.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czechia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bolbasov E, Goreninskii S, Tverdokhlebov S, Mishanin A, Viknianshchuk A, Bezuidenhout D, Golovkin A. Comparative Study of the Physical, Topographical and Biological Properties of Electrospinning PCL, PLLA, their Blend and Copolymer Scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/350/1/012012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Jiřík M, Bartoš M, Tomášek P, Malečková A, Kural T, Horáková J, Lukáš D, Suchý T, Kochová P, Hubálek Kalbáčová M, Králíčková M, Tonar Z. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc Res Tech 2018; 81:551-568. [PMID: 29476582 DOI: 10.1002/jemt.23011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/22/2018] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans.
Collapse
Affiliation(s)
- Miroslav Jiřík
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
| | - Martin Bartoš
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, 128 01, Czech Republic
| | - Petr Tomášek
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, 301 66, Czech Republic
| | - Anna Malečková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, 301 66, Czech Republic
| | - Tomáš Kural
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, 301 66, Czech Republic
| | - Jana Horáková
- Faculty of Textile Engineering, Technical University of Liberec, Liberec 1, 461 17, Czech Republic
| | - David Lukáš
- Faculty of Textile Engineering, Technical University of Liberec, Liberec 1, 461 17, Czech Republic
| | - Tomáš Suchý
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | - Petra Kochová
- European Centre of Excellence NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, Pilsen, 306 14, Czech Republic
| | - Marie Hubálek Kalbáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic.,Institute of Pathological Physiology, First Faculty of Medicine, Charles University, U nemocnice 5, 128 53, Prague, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, 301 66, Czech Republic
| | - Zbyněk Tonar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, 301 66, Czech Republic
| |
Collapse
|
40
|
Laurent CP, Vaquette C, Liu X, Schmitt JF, Rahouadj R. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation. J Biomater Appl 2018; 32:1276-1288. [PMID: 29409376 DOI: 10.1177/0885328218757064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.
Collapse
Affiliation(s)
| | - Cédryck Vaquette
- 2 95541 Queensland University of Technology (QUT) , Brisbane, Australia
| | - Xing Liu
- 3 CNRS, IMoPA, UMR 7365, Biopôle, Université de Lorraine, France
| | | | | |
Collapse
|