1
|
Rana I, Deepa, Aslam M, Ranjan KR, Singh P, Kumari K. A review on the use of composites of a natural protein, silk fibroin with Mxene/carbonaceous materials in biomedical science. Int J Biol Macromol 2024; 278:135101. [PMID: 39227275 DOI: 10.1016/j.ijbiomac.2024.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.
Collapse
Affiliation(s)
- Ishika Rana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Deepa
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201303, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Kohestani AA, Xu Z, Baştan FE, Boccaccini AR, Pishbin F. Electrically conductive coatings in tissue engineering. Acta Biomater 2024; 186:30-62. [PMID: 39128796 DOI: 10.1016/j.actbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Recent interest in tissue engineering (TE) has focused on electrically conductive biomaterials. This has been inspired by the characteristics of the cells' microenvironment where signalling is supported by electrical stimulation. Numerous studies have demonstrated the positive influence of electrical stimulation on cell excitation to proliferate, differentiate, and deposit extracellular matrix. Even without external electrical stimulation, research shows that electrically active scaffolds can improve tissue regeneration capacity. Tissues like bone, muscle, and neural contain electrically excitable cells that respond to electrical cues provided by implanted biomaterials. To introduce an electrical pathway, TE scaffolds can incorporate conductive polymers, metallic nanoparticles, and ceramic nanostructures. However, these materials often do not meet implantation criteria, such as maintaining mechanical durability and degradation characteristics, making them unsuitable as scaffold matrices. Instead, depositing conductive layers on TE scaffolds has shown promise as an efficient alternative to creating electrically conductive structures. A stratified scaffold with an electroactive surface synergistically excites the cells through active top-pathway, with/without electrical stimulation, providing an ideal matrix for cell growth, proliferation, and tissue deposition. Additionally, these conductive coatings can be enriched with bioactive or pharmaceutical components to enhance the scaffold's biomedical performance. This review covers recent developments in electrically active biomedical coatings for TE. The physicochemical and biological properties of conductive coating materials, including polymers (polypyrrole, polyaniline and PEDOT:PSS), metallic nanoparticles (gold, silver) and inorganic (ceramic) particles (carbon nanotubes, graphene-based materials and Mxenes) are examined. Each section explores the conductive coatings' deposition techniques, deposition parameters, conductivity ranges, deposit morphology, cell responses, and toxicity levels in detail. Furthermore, the applications of these conductive layers, primarily in bone, muscle, and neural TE are considered, and findings from in vitro and in vivo investigations are presented. STATEMENT OF SIGNIFICANCE: Tissue engineering (TE) scaffolds are crucial for human tissue replacement and acceleration of healing. Neural, muscle, bone, and skin tissues have electrically excitable cells, and their regeneration can be enhanced by electrically conductive scaffolds. However, standalone conductive materials often fall short for TE applications. An effective approach involves coating scaffolds with a conductive layer, finely tuning surface properties while leveraging the scaffold's innate biological and physical support. Further enhancement is achieved by modifying the conductive layer with pharmaceutical components. This review explores the under-reviewed topic of conductive coatings in tissue engineering, introducing conductive biomaterial coatings and analyzing their biological interactions. It provides insights into enhancing scaffold functionality for tissue regeneration, bridging a critical gap in current literature.
Collapse
Affiliation(s)
- Abolfazl Anvari Kohestani
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran
| | - Zhiyan Xu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Fatih Erdem Baştan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany; Thermal Spray Research and Development Laboratory, Metallurgical and Materials Engineering Department, Sakarya University, Esentepe Campus, 54187, Turkey
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran 11155-4563 Tehran, Iran.
| |
Collapse
|
3
|
Mendes AX, Caballero Aguilar L, do Nascimento AT, Duchi S, Charnley M, Nisbet DR, Quigley AF, Kapsa RMI, Moraes Silva S, Moulton SE. Integrating Graphene Oxide-Hydrogels and Electrical Stimulation for Controlled Neurotrophic Factor Encapsulation: A Promising Approach for Efficient Nerve Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4175-4192. [PMID: 38830774 DOI: 10.1021/acsabm.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.
Collapse
Affiliation(s)
- Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith Caballero Aguilar
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000 Australia
| | - David R Nisbet
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Saimon Moraes Silva
- Department of Biochemistry and Chemistry, Biomedical and Environmental Sensor Technology Centre, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
4
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
5
|
Das JM, Upadhyay J, Monaghan MG, Borah R. Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Bombyx mori Silk Scaffolds on Electrically Stimulated Axonal Growth. ACS APPLIED BIO MATERIALS 2024; 7:2389-2401. [PMID: 38502100 PMCID: PMC11022174 DOI: 10.1021/acsabm.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. β (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.
Collapse
Affiliation(s)
- Jitu Mani Das
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department
of Physics, Dakshin Kamrup College, Kamrup, Mirza, Assam 781125, India
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway H91 W2TY, Ireland
| | - Rajiv Borah
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
| |
Collapse
|
6
|
Raghavan A, Ghosh S. Influence of Graphene-Based Nanocomposites in Neurogenesis and Neuritogenesis: A Brief Summary. ACS APPLIED BIO MATERIALS 2024; 7:711-726. [PMID: 38265040 DOI: 10.1021/acsabm.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.
Collapse
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Suarato G, Pressi S, Menna E, Ruben M, Petrini EM, Barberis A, Miele D, Sandri G, Salerno M, Schirato A, Alabastri A, Athanassiou A, Proietti Zaccaria R, Papadopoulou EL. Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3093-3105. [PMID: 38206310 PMCID: PMC10811621 DOI: 10.1021/acsami.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.
Collapse
Affiliation(s)
- Giulia Suarato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Samuel Pressi
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Enzo Menna
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Massimo Ruben
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Andrea Barberis
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Dalila Miele
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Marco Salerno
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Schirato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Politecnico di Milano, Pizza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
8
|
Adly N, Teshima TF, Hassani H, Boustani GA, Weiß LJ, Cheng G, Alexander J, Wolfrum B. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery. Adv Healthc Mater 2023; 12:e2202869. [PMID: 36827235 PMCID: PMC11468847 DOI: 10.1002/adhm.202202869] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Indexed: 02/25/2023]
Abstract
The use of soft and flexible bioelectronic interfaces can enhance the quality for recording cells' electrical activity by ensuring a continuous and intimate contact with the smooth, curving surfaces found in the physiological environment. This work develops soft microelectrode arrays (MEAs) made of silk fibroin (SF) films for recording interfaces that can also serve as a drug delivery system. Inkjet printing is used as a tool to deposit the substrate, conductive electrode, and insulator, as well as a drug-delivery nanocomposite film. This approach is highly versatile, as shown in the fabrication of carbon microelectrodes, sandwiched between a silk substrate and a silk insulator. The technique permits the development of thin-film devices that can be employed for in vitro extracellular recordings of HL-1 cell action potentials. The tuning of SF by applying an electrical stimulus to produce a permeable layer that can be used in on-demand drug delivery systems is also demonstrated. The multifunctional MEA developed here can pave the way for in vitro drug screening by applying time-resolved and localized chemical stimuli.
Collapse
Affiliation(s)
- Nouran Adly
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Tetsuhiko F. Teshima
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | | | - George Al Boustani
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Lennart J.K. Weiß
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
| | - Gordon Cheng
- Chair for Cognitive SystemsDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichArcisstrasse 2180333MunichGermany
| | - Joe Alexander
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| | - Bernhard Wolfrum
- Neuroelectronics – Munich Institute of Biomedical EngineeringDepartment of Electrical EngineeringTUM School of ComputationInformation and TechnologyTechnical University of MunichHans‐Piloty‐Strasse 185748GarchingGermany
- Medical & Health Informatics LaboratoriesNTT Research Incorporated940 Stewart DrSunnyvaleCA94085USA
| |
Collapse
|
9
|
Zamora-Ledezma C, Hernández AB, López-González I, Elango J, Paindépice J, Alexis F, González-Sánchez M, Morales-Flórez V, Mowbray DJ, Meseguer-Olmo L. Fabrication, Physical-Chemical and Biological Characterization of Retinol-Loaded Poly(vinyl Alcohol) Electrospun Fiber Mats for Wound Healing Applications. Polymers (Basel) 2023; 15:2705. [PMID: 37376351 PMCID: PMC10302737 DOI: 10.3390/polym15122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, there exists a huge interest in producing innovative, high-performance, biofunctional, and cost-efficient electrospun biomaterials based on the association of biocompatible polymers with bioactive molecules. Such materials are well-known to be promising candidates for three-dimensional biomimetic systems for wound healing applications because they can mimic the native skin microenvironment; however, many open questions such as the interaction mechanism between the skin and the wound dressing material remain unclear. Recently, several biomolecules were intended for use in combination with poly(vinyl alcohol) (PVA) fiber mats to improve their biological response; nevertheless, retinol, an important biomolecule, has not been combined yet with PVA to produce tailored and biofunctional fiber mats. Based on the abovementioned concept, the present work reported the fabrication of retinol-loaded PVA electrospun fiber mats (RPFM) with a variable content of retinol (0 ≤ Ret ≤ 25 wt.%), and their physical-chemical and biological characterization. SEM results showed that fiber mats exhibited diameters distribution ranging from 150 to 225 nm and their mechanical properties were affected with the increasing of retinol concentrations. In addition, fiber mats were able to release up to 87% of the retinol depending on both the time and the initial content of retinol. The cell culture results using primary mesenchymal stem cell cultures proved the biocompatibility of RPFM as confirmed by their effects on cytotoxicity (low level) and proliferation (high rate) in a dose-dependent manner. Moreover, the wound healing assay suggested that the optimal RPFM with retinol content of 6.25 wt.% (RPFM-1) enhanced the cell migratory activity without altering its morphology. Accordingly, it is demonstrated that the fabricated RPFM with retinol content below the threshold 0 ≤ Ret ≤ 6.25 wt.% would be an appropriate system for skin regenerative application.
Collapse
Affiliation(s)
- Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM—Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| | - Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain;
| | - Janèle Paindépice
- École Polytechnique Universitaire D’ingénieurs de Montpellier (POLYTECH), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Frank Alexis
- Departmento de Ingenería Química, Colegio de Ciencias y Ingenierias, Universidad San Francisco de Quito (Ecuador), Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador;
| | - Manuela González-Sánchez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Víctor Morales-Flórez
- Department of Physics of Condensed Matter, University of Seville (Spain), Av. Reina Mercedes, s/n, 41012 Seville, Spain; (M.G.-S.); (V.M.-F.)
| | - Duncan John Mowbray
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, UCAM—Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.B.H.); (I.L.-G.); (L.M.-O.)
| |
Collapse
|
10
|
Bartoli M, Piatti E, Tagliaferro A. A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications. Polymers (Basel) 2023; 15:1567. [PMID: 36987346 PMCID: PMC10056897 DOI: 10.3390/polym15061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific molecular architectures. However, biopolymers do not exhibit the properties required for direct application in tissue repair-such as mechanical and electrical properties-but they do show very attractive chemical functionalities which are difficult to produce through in vitro synthesis. The combination of biopolymers with nanostructured carbon fillers could represent a robust solution to enhance composite properties, producing composites with new and unique features, particularly relating to electronic conduction. In this paper, we provide a review of the field of carbonaceous nanostructure-containing biopolymer composites, limiting our investigation to tissue-engineering applications, and providing a complete overview of the recent and most outstanding achievements.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
11
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
12
|
Phamornnak C, Han B, Spencer BF, Ashton MD, Blanford CF, Hardy JG, Blaker JJ, Cartmell SH. Instructive electroactive electrospun silk fibroin-based biomaterials for peripheral nerve tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213094. [PMID: 36162344 DOI: 10.1016/j.bioadv.2022.213094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Aligned sub-micron fibres are an outstanding surface for orienting and promoting neurite outgrowth; therefore, attractive features to include in peripheral nerve tissue scaffolds. A new generation of peripheral nerve tissue scaffolds is under development incorporating electroactive materials and electrical regimes as instructive cues in order to facilitate fully functional regeneration. Herein, electroactive fibres composed of silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) were developed as a novel peripheral nerve tissue scaffold. Mats of SF with sub-micron fibre diameters of 190 ± 50 nm were fabricated by double layer electrospinning with thicknesses of ∼100 μm (∼70-80 μm random fibres and ∼20-30 μm aligned fibres). Electrospun SF mats were modified with interpenetrating polymer networks (IPN) of PEDOT:PSS in various ratios of PSS/EDOT (α) and the polymerisation was assessed by hard X-ray photoelectron spectroscopy (HAXPES). The mechanical properties of electrospun SF and IPNs mats were characterised in the wet state tensile and the electrical properties were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The cytotoxicity and biocompatibility of the optimal IPNs (α = 2.3 and 3.3) mats were ascertained via the growth and neurite extension of mouse neuroblastoma x rat glioma hybrid cells (NG108-15) for 7 days. The longest neurite outgrowth of 300 μm was observed in the parallel direction of fibre alignment on laminin-coated electrospun SF and IPN (α = 2.3) mats which is the material with the lowest electron transfer resistance (Ret, ca. 330 Ω). These electrically conductive composites with aligned sub-micron fibres exhibit promise for axon guidance and also have the potential to be combined with electrical stimulation treatment as a further step for the effective regeneration of nerves.
Collapse
|
13
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Is Graphene Shortening the Path toward Spinal Cord Regeneration? ACS NANO 2022; 16:13430-13467. [PMID: 36000717 PMCID: PMC9776589 DOI: 10.1021/acsnano.2c04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.
Collapse
Affiliation(s)
- André F. Girão
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (A.F.G.)
| | - María Concepcion Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (M.C.S.)
| | - António Completo
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
| | - Paula A. A. P. Marques
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- (P.A.A.P.M.)
| |
Collapse
|
14
|
Hurtado A, Cano-Vicent A, Tuñón-Molina A, Aparicio-Collado JL, Salesa B, I Serra RS, Serrano-Aroca Á. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int J Biol Macromol 2022; 219:694-708. [PMID: 35961550 PMCID: PMC9364692 DOI: 10.1016/j.ijbiomac.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/27/2022]
Abstract
A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Jose Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
| | - Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain.
| |
Collapse
|
15
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
16
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhuang A, Huang X, Fan S, Yao X, Zhu B, Zhang Y. One-Step Approach to Prepare Transparent Conductive Regenerated Silk Fibroin/PEDOT:PSS Films for Electroactive Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:123-137. [PMID: 34935351 DOI: 10.1021/acsami.1c16855] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silk fibroin (SF)-based electroactive biomaterials with favorable electroconductive property and transparency have great potential applications for cell culture and tissue engineering. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an excellent candidate as a conductive component, which has been widely used in the field of bioelectronics; however, it is hard to be directly coated onto the surface of regenerated SF (RSF) materials with good stability under a cell culture environment. In this study, a one-step facile PEDOT:PSS modification approach for RSF films based on a suitable post-treatment process of RSF was developed. PEDOT:PSS was successfully embedded and fixed into the shallow surface of an RSF film, forming a tightly conjunct conductive layer on the film surface based on the conformation transition of RSF during the post-treatment process. The conductive layer demonstrated a PSS-rich surface and a PEDOT-rich bulk structure and showed excellent stability under a cell culture environment. More specifically, the robust RSF/PEDOT:PSS film achieved in the post-treatment formula with 70% ethanol proportion possessed best comprehensive properties such as a sheet resistance of 3.833 × 103 Ω/square, a conductivity of 1.003 S/cm, and transmittance over 80% at maximum in the visible range. This kind of electroactive biomaterial also showed good electrochemical stability and degradable properties. Moreover, pheochromocytoma-derived cell line (PC12) cells were cultured on the RSF/PEDOT:PSS film, and an effective electrical stimulation cell response was demonstrated. The facile preparation strategy and the good electroconductive property and transparency make this RSF/PEDOT:PSS film an ideal candidate for neuronal tissue engineering and further for biomedical applications.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Graphene-Based Materials for Efficient Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:43-64. [DOI: 10.1007/978-981-16-4923-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Moschetta M, Chiacchiaretta M, Cesca F, Roy I, Athanassiou A, Benfenati F, Papadopoulou EL, Bramini M. Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Front Neurosci 2021; 15:731198. [PMID: 34616276 PMCID: PMC8488094 DOI: 10.3389/fnins.2021.731198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
The use of composite biomaterials as innovative bio-friendly neuronal interfaces has been poorly developed so far. Smart strategies to target neuro-pathologies are currently exploiting the mixed and complementary characteristics of composite materials to better design future neural interfaces. Here we present a polymer-based scaffold that has been rendered suitable for primary neurons by embedding graphene nanoplatelets (GnP). In particular, the growth, network formation, and functionality of primary neurons on poly(3-hydroxybutyrate) [P(3HB)] polymer supports functionalized with various concentrations of GnP were explored. After growing primary cortical neurons onto the supports for 14 days, all specimens were found to be biocompatible, revealing physiological growth and maturation of the neuronal network. When network functionality was investigated by whole patch-clamp measurements, pure P(3HB) led to changes in the action potential waveform and reduction in firing frequency, resulting in decreased neuronal excitability. However, the addition of GnP to the polymer matrix restored the electrophysiological parameters to physiological values. Interestingly, a low concentration of graphene was able to promote firing activity at a low level of injected current. The results indicate that the P(3HB)/GnP composites show great potential for electrical interfacing with primary neurons to eventually target central nervous system disorders.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Mattia Bramini
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
20
|
Sun W, Taylor CS, Zhang Y, Gregory DA, Tomeh MA, Haycock JW, Smith PJ, Wang F, Xia Q, Zhao X. Cell guidance on peptide micropatterned silk fibroin scaffolds. J Colloid Interface Sci 2021; 603:380-390. [PMID: 34186409 DOI: 10.1016/j.jcis.2021.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Guiding neuronal cell growth is desirable for neural tissue engineering but is very challenging. In this work, a self-assembling ultra-short surfactant-like peptide I3K which possesses positively charged lysine head groups, and hydrophobic isoleucine tails, was chosen to investigate its potential for guiding neuronal cell growth. The peptides were able to self-assemble into nanofibrous structures and interact strongly with silk fibroin (SF) scaffolds, providing a niche for neural cell attachment and proliferation. SF is an excellent biomaterial for tissue engineering. However neuronal cells, such as rat PC12 cells, showed poor attachment on pure regenerated SF (RSF) scaffold surfaces. Patterning of I3K peptide nanofibers on RSF surfaces significantly improved cellular attachment, cellular density, as well as morphology of PC12 cells. The live / dead assay confirmed that RSF and I3K have negligible cytotoxicity against PC12 cells. Atomic force microscopy (AFM) was used to image the topography and neurite formation of PC12 cells, where results revealed that self-assembled I3K nanofibers can support the formation of PC12 cell neurites. Immunolabelling also demonstrated that coating of I3K nanofibers onto the RSF surfaces not only increased the percentage of cells bearing neurites but also increased the average maximum neurite length. Therefore, the peptide I3K could be used as an alternative to poly-l-lysine for cell culture and tissue engineering applications. As micro-patterning of neural cells to guide neurite growth is important for developing nerve tissue engineering scaffolds, inkjet printing was used to pattern self-assembled I3K peptide nanofibers on RSF surfaces for directional control of PC12 cell growth. The results demonstrated that inkjet-printed peptide micro-patterns can effectively guide the cell alignment and organization on RSF scaffold surfaces, providing great potential for nerve regeneration applications.
Collapse
Affiliation(s)
- Weizhen Sun
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Caroline S Taylor
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Yi Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - John W Haycock
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Patrick J Smith
- Department of Mechanical Engineering, University of Sheffield, Sheffield S1 4BJ, UK
| | - Feng Wang
- Biological Science Research Centre, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Centre for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Centre, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Centre for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
21
|
Wen J, Deng X, Huang C, An Z, Liu M. Low-Intensity Pulsed Ultrasound Enhanced Neurite Guidance Growth through Netrin-1/DCC Signal Pathway in Primary Cultured Cortical Neurons of Rats. ACS Chem Neurosci 2021; 12:1931-1939. [PMID: 34018719 DOI: 10.1021/acschemneuro.1c00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-intensity pulsed ultrasound is found to be effective in axonal regeneration, while the role of ultrasound in axonal growth guidance is still unclear. This study was performed to explore the neuroprotective role of low-intensity pulsed ultrasound (US) both in vitro and in vivo. Primary cultured rat cortical neurons were subjected to 1.0 MHz ultrasound for 5 min every day at intensity of 0, 0.008, 0.12, and 0.21 W/cm2. Our results demonstrated that low-intensity pulsed ultrasound significantly increased neuronal cell viability and inhibited neuronal apoptosis in vitro as determined by fluorescein diacetate assay (FDA) and a TdT-mediated biotin-dUTP nicked-end labeling (TUNEL) assay. Moreover, low-intensity pulsed ultrasound at 0.12 W/cm2 significantly enhanced the axonal growth guidance by activation of netrin-1 and DCC (deleted in colorectal carcinoma) expression as determined by Western blots assay. More interestingly, we further found that low-intensity pulsed ultrasound treatment at 0.21 W/cm2 promoted the functional restoration of rat injured nerves in vivo, decreased hemorrhage, and reversed the injury process by activating positive netrin-1 expression as seen in the immunohistochemistry (IHC) assay. Thus, our study strongly demonstrated that low-intensity pulsed ultrasound activated netrin-1/DCC signaling and further mediated neurite outgrowth. It would be a new approach to nerve regeneration in the future.
Collapse
Affiliation(s)
- Jianqiang Wen
- Beijing Engineering Technology Research Center of Ocean Acoustic Equipment, Underwater Acoustic Transducer and Testing Laboratory, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomeng Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chongquan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zitong An
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| |
Collapse
|
22
|
Zhang C, Wang X, Fan S, Lan P, Cao C, Zhang Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surf B Biointerfaces 2021; 197:111444. [DOI: 10.1016/j.colsurfb.2020.111444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
|
23
|
Ghaemi A, Javadi S, Heidari MK, Rashedi H, Yazdian F, Omidi M, Tavakoli Z, Sheikhpour M. Graphene-based materials in drug delivery and growth factor release: A critical review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.wndm.2020.100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Fu J, Li XB, Wang LX, Lv XH, Lu Z, Wang F, Xia Q, Yu L, Li CM. One-Step Dip-Coating-Fabricated Core-Shell Silk Fibroin Rice Paper Fibrous Scaffolds for 3D Tumor Spheroid Formation. ACS APPLIED BIO MATERIALS 2020; 3:7462-7471. [PMID: 35019488 DOI: 10.1021/acsabm.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioscaffolds are important substrates for supporting three-dimensional (3D) cell cultures. Silk fibroin (SF) is an attractive biomaterial in tissue engineering because of its good biocompatibility and mechanical properties. Electrospinning is one of the most often used approaches to fabricate SF fibrous scaffolds; yet, this technique still faces many challenges, such as low yield, residual organic solvents, limited extensibility of fibers, and a lack of spatial control over pore size. To circumvent these limitations, a core-shell SF on rice paper (SF@RP) fibrous scaffold was fabricated using a mild one-step dip-coating method. The cellulose fiber matrix of RP is the physical basis of the 3D scaffold, whereas the SF coating on the cellulose fiber controls the adhesion/spreading of the cells. The results indicated that by tuning the secondary structure of SF on the surface of a SF@RP scaffold, the cell behavior on SF@RP could be tuned. Tumor spheroids can be formed on SF@RP scaffolds with a dominant random secondary structure, in contrast to cells adhering and spreading on SF@RP scaffolds with a higher ratio of β-sheet secondary structures. Direct culturing of breast cancer MDA-MB-231 and MCF-7, lung cancer A549, prostate cancer DU145, and liver cancer HepG2 cells could spontaneously lead to corresponding tumor spheroids on SF@RP. In addition, the physiological characteristics of HepG2 tumor spheroids were investigated, and the results showed that compared with HepG2 monolayer cells, CYP3A4, CYP1A1, and albumin gene expression levels in HepG2 cell spheres formed on SF@RP scaffolds were significantly higher. Moreover, these spheroids showed higher drug resistance. In summary, these SF@RP scaffolds prepared by the dip-coating method are biocompatible substrates for cell culture, especially for tumor cell spheroid formation.
Collapse
Affiliation(s)
- Jingjing Fu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Bai Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Lin Xiang Wang
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Xiao Hui Lv
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Ling Yu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.,Institute of Advanced Cross-field Science, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
25
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
26
|
Zheng-Yang He, -Chen Q, Wu YT, Pan ZJ. Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x2006005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Magaz A, Li X, Gough JE, Blaker JJ. Graphene oxide and electroactive reduced graphene oxide-based composite fibrous scaffolds for engineering excitable nerve tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111632. [PMID: 33321671 DOI: 10.1016/j.msec.2020.111632] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
This study systematically investigates the role of graphene oxide (GO) and reduced GO (rGO)/silk-based composite micro/nano-fibrous scaffolds in regulating neuronal cell behavior in vitro, given the limited comparative studies on the effects of graphene family materials on nerve regeneration. Fibrous scaffolds can mimic the architecture of the native extracellular matrix and are potential candidates for tissue engineering peripheral nerves. Silk/GO micro/nano-fibrous scaffolds were electrospun with GO loadings 1 to 10 wt.%, and optionally post-reduced in situ to explore a family of electrically conductive non-woven silk/rGO scaffolds. Conductivities up to 4 × 10-5 S cm-1 were recorded in the dry state, which increased up to 3 × 10-4 S cm-1 after hydration. Neuronoma NG108-15 cells adhered and were viable on all substrates. Enhanced metabolic activity and proliferation were observed on the GO-containing scaffolds, and these cell responses were further promoted for electroactive silk/rGO. Neurite extensions up to 100 μm were achieved by day 5, with maximum outgrowth up to ~250 μm on some of the conductive substrates. These electroactive composite fibrous scaffolds exhibit potential to enhance the neuronal cell response and could be versatile supportive substrates for neural tissue engineering applications.
Collapse
Affiliation(s)
- Adrián Magaz
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom; Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 138634, Singapore
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 138634, Singapore; Department of Chemistry, National University of Singapore, 117543 Singapore, Singapore.
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jonny J Blaker
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom; Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway.
| |
Collapse
|
28
|
Lebre F, Boland JB, Gouveia P, Gorman AL, Lundahl MLE, I Lynch R, O'Brien FJ, Coleman J, Lavelle EC. Pristine graphene induces innate immune training. NANOSCALE 2020; 12:11192-11200. [PMID: 32407430 DOI: 10.1039/c9nr09661b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene-based materials are of increasing interest for their potential use in biomedical applications. However, there is a need to gain a deeper understanding of how graphene modulates biological responses before moving towards clinical application. Innate immune training is a recently described phenomenon whereby cells of the innate immune system are capable of being programmed to generate an increased non-specific response upon subsequent challenge. This has been well established in the case of certain microbes and microbial products. However, little is known about the capacity of particulate materials, such as pristine graphene (pGr), to promote innate immune training. Here we report for the first time that while stimulation with pGr alone does not directly induce cytokine secretion by bone-marrow derived macrophages (BMDMs), it programs them for enhanced secretion of proinflammatory cytokines (IL-6, TNF-α) and a concomitant decrease in production of the regulatory cytokine, IL-10 after Toll-like receptor (TLR) ligand stimulation. This capacity of pGr to program cells for enhanced inflammatory responses could be overcome if the nanomaterial is incorporated in a collagen matrix. Our findings thus demonstrate the potential of graphene to modulate innate immunity over long timescales and have implications for the design and biomedical use of pGr-based materials.
Collapse
Affiliation(s)
- Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Ssciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin CC, Chang JJ, Yung MC, Huang WC, Chen SY. Spontaneously Micropatterned Silk/Gelatin Scaffolds with Topographical, Biological, and Electrical Stimuli for Neuronal Regulation. ACS Biomater Sci Eng 2020; 6:1144-1153. [PMID: 33464846 DOI: 10.1021/acsbiomaterials.9b01449] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Effective integration of stimulation and direction in bionic scaffolds by materials and microstructure design has been the focus in the advancement of nerve regeneration. Hydrogels are the most promising biomimicked materials used in developing nerve grafts, but the highly hydrated networks limit the fabrication of hydrogel materials into complex biomedical devices. Herein, facile lithography-free and spontaneously micropatterned techniques were used to fabricate a smart protein hydrogel-based scaffold, which carried topographical, electrical, and chemical induction for neural regulation. The synthesized tissue-mimicked silk-gelatin (SG)/polylactic acid bilayer system can self-form three-dimensional ordered corrugation micropatterns with well-defined dimensions (wavelength, λ) based on the stress-induced topography. Through magnetically and topographically guided deposition of the synthesized nerve growth factor-incorporated Fe3O4-graphene nanoparticles (GFPNs), a biologically and electrically conductive cell passage with one-dimensional directionality was constructed to allow for a controllable constrained geometric effect on neuronal adhesion, differentiation, and neurite orientation. Particularly, the SG with corrugation patterns of λ ≈ 30 μm resulted in the optimal cell adhesion and differentiation in response to the pattern guidance. Furthermore, the additional electrical stimulation applied on GFPN-deposited SG resulted in a 1.5-fold increase in the neurite elongation by day 7, finally leading to the neuronal connection by day 21. Such a hydrogel device with synergistic effects of physical and chemical enhancement on neuronal activity provides an expectable opportunity in the development of next-generation nerve conduits.
Collapse
Affiliation(s)
- Chun-Chang Lin
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| | - Jing-Jing Chang
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| | - Ming-Chi Yung
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan, R.O.C
| | - Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C.,Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan, R.O.C
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, Taiwan 30010, R.O.C
| |
Collapse
|
30
|
Photocatalytic Performance of Electrospun Silk Fibroin/ZnO Mats to Remove Pesticide Residues from Water under Natural Sunlight. Catalysts 2020. [DOI: 10.3390/catal10010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have evaluated the efficiency of silk fibroin (SF) coated with ZnO nanoparticles in the photocatalytic disappearance of one acaricide (etoxazole) and three fungicides (difenoconazole, myclobutanil and penconazole) in water exposed to sunlight irradiation. Electrospun SF/ZnO mats were successfully synthesized by electrospinning technique and characterized by XRD, FE-SEM, XPS, XDS, FTIR, and BET. The influence of catalyst loading on the degradation kinetics of the different pesticides was examined in order to gain knowledge of maximum degradation efficiency. A significant increment in degradation rates was observed with the addition of ZnO. SF mats with 25 mg of ZnO were finally selected since no significant differences (p < 0.05) were detected when the loading was enlarged from 25 to 50 mg for the majority of the compounds. In the experimental conditions, the half-lives ranged from 33 min to 93 min for etoxazole and myclobutanil, respectively. The comparison of SF materials coated with similar amount of TiO2 and ZnO showed that the later was slightly more efficient to remove pesticide residues. Hence, the use of electrospun SF/ZnO nanostructures would provide an environmentally friendly approach with photocatalytic activity to be applied in the reclamation of water polluted by pesticides.
Collapse
|
31
|
Aznar-Cervantes S, Aliste M, Garrido I, Yañez-Gascón MJ, Vela N, Cenis JL, Navarro S, Fenoll J. Electrospun silk fibroin/TiO2 mats. Preparation, characterization and efficiency for the photocatalytic solar treatment of pesticide polluted water. RSC Adv 2020; 10:1917-1924. [PMID: 35494574 PMCID: PMC9047524 DOI: 10.1039/c9ra09239k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
The photocatalytic properties of silk fibroin (SF) incorporating TiO2 nanoparticles using an electrospinning technique were examined. Electrospun SF/TiO2 mats were successfully prepared and characterized by different techniques (XRD, FE-SEM, XPS, XDS, FTIR and BET). The photocatalytic efficiency of these materials were assessed by their ability to degrade four pesticides (boscalid, hexythiazox, pyraclostrobin and trifloxystrobin) in water exposed to solar irradiation. The effect of catalyst loading on the disappearance kinetics of the different pesticides was studied in order to determine the maximum degradation efficiency. The degradation rate significantly increases upon adding the TiO2. However, no significant differences (p < 0.05) were observed when the TiO2 loading was increased from 25 to 50 mg for most compounds. Thus, SF mats with 25 mg of TiO2 were selected. Therefore, a new and simple approach to produce materials with photocatalytic activity, safety and potential application in the purification of water contaminated by pesticides has been developed. The photocatalytic properties of silk fibroin (SF) incorporating TiO2 nanoparticles using an electrospinning technique were examined.![]()
Collapse
Affiliation(s)
| | - Marina Aliste
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - Isabel Garrido
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - María J. Yañez-Gascón
- Applied Technology Group to Environmental Health
- Faculty of Health Science
- Catholic University of Murcia
- Murcia
- Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health
- Faculty of Health Science
- Catholic University of Murcia
- Murcia
- Spain
| | - Jose L. Cenis
- Biotechnology Group
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology
- Faculty of Chemistry
- University of Murcia
- Murcia
- Spain
| | - José Fenoll
- Sustainability and Quality Group of Fruit and Vegetable Products
- Murcia Institute of Agri-Food Research and Development
- 30150 Murcia
- Spain
| |
Collapse
|
32
|
Nazari H, Heirani‐Tabasi A, Hajiabbas M, Khalili M, Shahsavari Alavijeh M, Hatamie S, Mahdavi Gorabi A, Esmaeili E, Ahmadi Tafti SH. Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojjatollah Nazari
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Asieh Heirani‐Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Maryam Hajiabbas
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Masoud Khalili
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | | | - Shadie Hatamie
- Stem Cell Technology Research Center Tehran Iran
- Institute of NanoEngineering and MicroSystemsNational Tsing Hua University Hsinchu Taiwan
| | - Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
| | - Elaheh Esmaeili
- Department of Cell Therapy and Hematology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
- Stem Cell Technology Research Center Tehran Iran
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
33
|
Naghavi Alhosseini S, Moztarzadeh F, Karkhaneh A, Dodel M, Khalili M, Eslami Arshaghi T, Elahirad E, Mozafari M. Improved cellular response on functionalized polypyrrole interfaces. J Cell Physiol 2019; 234:15279-15287. [PMID: 30697725 DOI: 10.1002/jcp.28173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Neuroregeneration strategies involve multiple factors to stimulate nerve regeneration. Neural support with chemical and physical cues to optimize neural growth and replacing the lesion neuron and axons are crucial for designing neural scaffolds, which is a promising treatment approach. In this study, polypyrrole polymerization and its functionalization at the interface developed by glycine and gelatin for further optimization of cellular response. Nanofibrous scaffolds were fabricated by electrospinning of polyvinyl alcohol and chitosan solutions. The electrospun scaffolds were polymerized on the surface by pyrrole monomers to form an electroactive interface for further applications in neural tissue engineering. The polymerized polypyrrole showed a positive zeta potential value of 57.5 ± 5.46 mV. The in vitro and in vivo biocompatibility of the glycine and gelatin-functionalized polypyrrole-coated scaffolds were evaluated. No inflammatory cells were observed for the implanted scaffolds. Further, DAPI nucleus staining showed a superior cell attachment on the gelatin-functionalized polypyrrole-coated scaffolds. The topography and tuned positively charged polypyrrole interface with gelatin functionalization is expected to be particularly efficient physical and chemical simultaneous factors for promoting neural cell adhesion.
Collapse
Affiliation(s)
- Sanaz Naghavi Alhosseini
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Akbar Karkhaneh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Mahsa Khalili
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Tarlan Eslami Arshaghi
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Elnaz Elahirad
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
You D, Li K, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites combined with electrical stimulation in wound healing: preparation and characterization. Int J Nanomedicine 2019; 14:7039-7052. [PMID: 31564864 PMCID: PMC6722438 DOI: 10.2147/ijn.s216365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE In this study, we fabricated multifunctional, electrically conductive composites by incorporating graphene oxide (GO) into a poly (lactic-co-glycolic acid) (PLGA) copolymer for wound repair. Furthermore, the resultant composites were coupled with electrical stimulation to further improve the therapeutic effect of wound repair. METHODS We evaluated the surface morphology of the composites, as well as their physical properties, cytotoxicity, and antibacterial activity, along with the combined effects of composites and electrical stimulation (ES) in a rat model of wound healing. RESULTS Application of the PLGA/GO composites to full-thickness wounds confirmed their advantageous biological properties, as evident from the observed improvements in wound-specific mechanical properties, biocompatibility, and antibacterial activity. Additionally, we found that the combination of composites and ES improved composite-mediated cell survival and accelerated wound healing in vivo by promoting neovascularization and the formation of type I collagen. CONCLUSION These results demonstrated that combined treatment with the PLGA/GO composite and ES promoted vascularization and epidermal remodeling and accelerated wound healing in rats, thereby suggesting the efficacy of PLGA/GO+ES for broad applications associated with wound repair.
Collapse
Affiliation(s)
- Di You
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Wenlai Guo
- Department of Hand and Foot Surgery, The Second Hospital of Jilin University, Changchun130012, People’s Republic of China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Chuan Fu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
35
|
Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness. Macromol Res 2019. [DOI: 10.1007/s13233-020-8010-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
37
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019; 7:1228-1239. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past few years, graphene has outstandingly emerged as a key nanomaterial for boosting the performance of commercial, industrial and scientific related technologies. The popularity of this novel nanomaterial in biomedical engineering is due to its excellent biological, electronic, optical and thermal properties that, as a whole, surpass the features of commonly used biomaterials and consequently open a wide range of applications so far within the reach of science fiction. In this minireview, the potential of graphene and its based materials in the expanding biomedical field is highlighted with focus on groundbreaking diagnostic, monitoring and therapeutic strategies. Some of the major challenges related to the synthesis and safety of graphene-based materials are also briefly discussed because of their critical importance in bringing this class of carbon materials closer to the clinic.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
38
|
Yildirimer L, Zhang Q, Kuang S, Cheung CWJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards
in vitro
disease models of the central nervous system. Biofabrication 2019; 11:032003. [DOI: 10.1088/1758-5090/ab17aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Sun J, Shakya S, Gong M, Liu G, Wu S, Xiang Z. Combined Application of Graphene‐Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect 2019. [DOI: 10.1002/slct.201804034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiachen Sun
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Sujan Shakya
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Min Gong
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Guoming Liu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Shuang Wu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Zhou Xiang
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
- Division of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan University Chengdu 610041 P. R. China
| |
Collapse
|
40
|
Aznar-Cervantes SD, Pagan A, Monteagudo Santesteban B, Cenis JL. Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials. Sci Rep 2019; 9:6703. [PMID: 31040313 PMCID: PMC6491555 DOI: 10.1038/s41598-019-43134-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Stifling treatments are applied to silk cocoons in order to kill the pupae, preventing the emergence of moths and allowing to preserve the silk during long periods of time. All of them involve the application of aggressive steps, such as sun exposure, hot steam from boiling water or hot air, during hours or even days. None of the scientific articles related to silk fibroin biomaterials has previously taken into account this fact in its section of materials and methods. In this work, the consequences of the stifling treatments most commonly used by the silk producing countries and companies are explored in depth, using fibroin films as biomaterial model. The protein degradation (visualised by SDS-PAGE) was dramatically increased in all the fibroin dissolutions produced from stifled cocoons; heavy and light chains of fibroin were specially degraded, reducing their presence along the lanes of the gel compared to the negative control (untreated fresh cocoons). Structural changes are also described for annealed silk fibroin films. The β-sheet content, analysed by means of infrared spectroscopy, was significantly higher when stifling was performed at higher temperature (70 °C and 85 °C). It is also exposed the impact of the stifling on the mechanical properties of the materials. Tensile strength and strain at break values were detected as significantly lower when this procedure was carried out by means of dry heat (85 °C) and sun exposure. On the other hand, and contrary to expectations, the proliferation of fibroblasts growing on the materials was improved by all the different stifling methods, compared to negative control, being this improvement, especially accentuated, on the films produced with fibroin purified from cocoons treated with dry heat.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain.
| | - Ana Pagan
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| | - Beatriz Monteagudo Santesteban
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| | - José L Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| |
Collapse
|
41
|
Aznar-Cervantes SD, Pagan A, Monteagudo Santesteban B, Cenis JL. Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials. Sci Rep 2019. [PMID: 31040313 DOI: 10.1038/s41598‐019‐43134‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stifling treatments are applied to silk cocoons in order to kill the pupae, preventing the emergence of moths and allowing to preserve the silk during long periods of time. All of them involve the application of aggressive steps, such as sun exposure, hot steam from boiling water or hot air, during hours or even days. None of the scientific articles related to silk fibroin biomaterials has previously taken into account this fact in its section of materials and methods. In this work, the consequences of the stifling treatments most commonly used by the silk producing countries and companies are explored in depth, using fibroin films as biomaterial model. The protein degradation (visualised by SDS-PAGE) was dramatically increased in all the fibroin dissolutions produced from stifled cocoons; heavy and light chains of fibroin were specially degraded, reducing their presence along the lanes of the gel compared to the negative control (untreated fresh cocoons). Structural changes are also described for annealed silk fibroin films. The β-sheet content, analysed by means of infrared spectroscopy, was significantly higher when stifling was performed at higher temperature (70 °C and 85 °C). It is also exposed the impact of the stifling on the mechanical properties of the materials. Tensile strength and strain at break values were detected as significantly lower when this procedure was carried out by means of dry heat (85 °C) and sun exposure. On the other hand, and contrary to expectations, the proliferation of fibroblasts growing on the materials was improved by all the different stifling methods, compared to negative control, being this improvement, especially accentuated, on the films produced with fibroin purified from cocoons treated with dry heat.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain.
| | - Ana Pagan
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| | - Beatriz Monteagudo Santesteban
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| | - José L Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Department of Biotechnology. La Alberca (Murcia), E-30150, Murcia, Spain
| |
Collapse
|
42
|
Bach QV, Vu CM, Vu HT, Nguyen DD. Enhancing mode I and II interlaminar fracture toughness of carbon fiber-filled epoxy-based composites using both rice husk silica and silk fibroin electrospun nanofibers. HIGH PERFORM POLYM 2019. [DOI: 10.1177/0954008319840404] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we used both silk fibroin nanofibers (nSFs) and rice husk silica nanoparticles as epoxy (EP) resin reinforcement materials to improve the modes I and II interlaminar fracture toughness of EP-filled carbon fiber-based (CF/EP) composites. The nSFs were obtained by electrospinning, while the rice husk silica nanoparticles were obtained via acidic and thermal treatments. The results showed that the interfacial shear strength, GIC, and GIIC of the CF/EP composites improved by 25, 36, and 30%, respectively, by adding 0.2 wt% nSF and 20 wt% silica nanoparticles.
Collapse
Affiliation(s)
- Quang-Vu Bach
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Manh Vu
- Faculty of Chemical-Physical Engineering, Le Quy Don Technical University, Hanoi, Vietnam
| | - Huong Thi Vu
- AQP Research and Control Pharmaceuticals Joint Stock Company (AQP Pharma J.S.C), Dong Da, Hanoi, Vietnam
| | - Dinh Duc Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, South Korea
| |
Collapse
|
43
|
Du M, Gu J, Wang J, Xue Y, Ma Y, Mo X, Xue S. Silk fibroin/poly(L-lactic acid-co-ε-caprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Exp Ther Med 2019; 17:3989-3998. [PMID: 30988780 PMCID: PMC6447927 DOI: 10.3892/etm.2019.7405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Electrospinning using biocompatible polymer scaffolds, seeded with or without stem cells, is considered a promising technique for producing fibrous scaffolds with therapeutic possibilities for ischemic heart disease. However, no optimal scaffolds for treating ischemic heart disease have been identified thus far. In the present study, it was evaluated whether electrospun silk fibroin (SF)-blended poly(L-lactic acid-co-ε-caprolactone) [P(LLA-CL)] scaffolds that were seeded with cluster of differentiation 117 (c-kit)+ bone marrow (BM) cells may serve a protective role in cardiac remodeling following myocardial infarction (MI). Mechanical characteristics and cytocompatibility were compared between SF/P(LLA-CL) and P(LLA-CL) electrospun nanofibrous scaffolds in vitro. It was observed that MI led to a significant increase of the c-kit+ BM cell subpopulation in mice. Magnetic activated cell sorting was performed to harvest the c-kit+ cell population from the BM of mice following MI. c-kit+ BM cells were seeded on SF/P(LLA-CL) and P(LLA-CL) electrospun nanofibrous scaffolds. Results indicated that SF/P(LLA-CL) electrospun nanofibrous scaffolds were superior to P(LLA-CL) electrospun nanofibrous scaffolds in improving c-kit+ BM cell proliferation. Additionally, compared with pure SF/P(LLA-CL) electrospun nanofibrous scaffolds, SF/P(LLA-CL) scaffolds seeded with c-kit+ BM cells resulted in lower levels of MI markers and reduced infarct size, leading to greater global heart function improvement in vivo. The findings of the present study indicated that SF/P(LLA-CL) electrospun nanofibrous scaffolds seeded with c-kit+ BM cells exert a protective effect against MI and may be a promising approach for cardiac regeneration after ischemic heart disease.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jianmin Gu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Yizheng Xue
- College of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yiwen Ma
- Department of Anesthesiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xiumei Mo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
44
|
Guo Z, Liang J, Poot AA, Grijpma DW, Chen H. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration. ACTA ACUST UNITED AC 2019; 14:024104. [PMID: 30665200 DOI: 10.1088/1748-605x/ab0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the key challenges for neural tissue engineering is to exploit functional materials to guide and support nerve regeneration. Currently, reduced graphene oxide (rGO), which is well-known for its unique electrical and mechanical properties, has been incorporated into biocompatible polymers to manufacture functional scaffolds for nerve tissue engineering. However, rGO has poor dispersity in polymer matrix, which limits its further application. Here, we replaced rGO with rGO-graft-PTMC. The rGO-graft-PTMC was firstly prepared by grafting trimethylene carbonate (TMC) oligomers onto rGO. Subsequently, PTMC/rGO-graft-PTMC composite fibrous mats were fabricated by electrospinning of a dispersion of PTMC and rGO-graft-PTMC. The loading of rGO-graft-PTMC could reach up to 6 wt% relative to PTMC. Scanning electron microscopy images showed that the morphologies and average diameters of PTMC/rGO-graft-PTMC composite fibrous mats were affected by the content of rGO-graft-PTMC. Additionally, the incorporation of rGO-graft-PTMC resulted in enhanced thermal stability and hydrophobicity of PTMC fibers. Biological results demonstrated that PC12 cells showed higher cell viability on PTMC/rGO-graft-PTMC fibers of 2.4, 4.0 and 6.0 wt% rGO-graft-PTMC compared to pure PTMC fibers. These results suggest that PTMC/rGO-graft-PTMC composite fibrous structures hold great potential for neural tissue engineering.
Collapse
Affiliation(s)
- Zhengchao Guo
- Department of Biomaterials Science and Technology, University of Twente, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf53a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
47
|
Wu P, Zhang P, Zheng H, Zuo B, Duan X, Chen J, Wang X, Shen Y. Biological effects different diameters of Tussah silk fibroin nanofibers on olfactory ensheathing cells. Exp Ther Med 2019; 17:123-130. [PMID: 30651772 PMCID: PMC6307394 DOI: 10.3892/etm.2018.6933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) has potential for treating spinal cord and brain injury. However, they are void of an extracellular matrix to support cell growth and migration. Engineering of tissue to mimic the extracellular matrix is a potential solution for neural repair. Tussah silk fibroin (TSF) has good biocompatibility and an Arg-Gly-Asp tripeptide sequence. A small number of studies have assessed the effect of the diameter of TSF nanofibers on cell adhesion, growth and migration. In the present study, TSF nanofibers with a diameter of 400 and 1,200 nm were prepared using electrospinning technology; these were then used as scaffolds for OECs. The structure and morphology of the TSF nanofibers were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy. An inverted-phase contrast microscope and SEM were used to observe the morphology of OECs on the TSF nanofibers. The effect on the adhesion of the cells was observed following crystal violet staining. The phenotype of the cells and the maximum axon length on the scaffolds were evaluated by immunostaining for nerve growth factor receptor p75. Cell proliferation and viability were assessed by an MTT assay and a Live/Dead reagent kit. The migration efficiency of OECs was observed using live-cell microscopy. The results indicated that a 400-nm TSF fiber scaffold was more conducive to OEC adhesion, growth and migration compared with a 1,200-nm TSF scaffold. The phenotype of the OECs was normal, and no difference in OEC phenotype was observe when comparing those on TSF nanofibers to those on PLL. The present study may provide guidance regarding the preparation of tissue-engineered materials for neural repair.
Collapse
Affiliation(s)
- Peng Wu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hanjiang Zheng
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaofeng Duan
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Junjun Chen
- Department of Orthopedics, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Xinhong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
48
|
Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, Fabrication, and Function of Silk-Based Nanomaterials. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1805305. [PMID: 32440262 PMCID: PMC7241600 DOI: 10.1002/adfm.201805305] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Animal silks are built from pure protein components and their mechanical performance, such as strength and toughness, often exceed most engineered materials. The secret to this success is their unique nanoarchitectures that are formed through the hierarchical self-assembly of silk proteins. This natural material fabrication process in sharp contrast to the production of artificial silk materials, which usually are directly constructed as bulk structures from silk fibroin (SF) molecular. In recent years, with the aim of understanding and building better silk materials, a variety of fabrication strategies have been designed to control nanostructures of silks or to create functional materials from silk nanoscale building blocks. These emerging fabrication strategies offer an opportunity to tailor the structure of SF at the nanoscale and provide a promising route to produce structurally and functionally optimized silk nanomaterials. Here, we review the critical roles of silk nanoarchitectures on property and function of natural silk fibers, outline the strategies of utilization of these silk nanobuilding blocks, and we provide a critical summary of state of the art in the field to create silk nanoarchitectures and to generate silk-based nanocomponents. Further, such insights suggest templates to consider for other materials systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, MA 02155, USA; Department of Chemical and Biological Engineering, Tufts University, MA 02155, USA
| | - Liang Zhou
- Department of Material Science and Engineering, AnHui Agricultural University, Hefei 230036, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
49
|
Wang L, Song D, Zhang X, Ding Z, Kong X, Lu Q, Kaplan DL. Silk-Graphene Hybrid Hydrogels with Multiple Cues to Induce Nerve Cell Behavior. ACS Biomater Sci Eng 2018; 5:613-622. [PMID: 33405825 DOI: 10.1021/acsbiomaterials.8b01481] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell behavior is dependent in part on chemical and physical cues from the extracellular matrix. Although the influence of various cues on cell behavior has been studied, challenges remain to incorporate multiple cues to matrix systems to optimize and control cell outcomes. Here, aligned silk fibroin (SF)-graphene hydrogels with preferable stiffness were developed through arranging SF nanofibers and SF-modified graphene sheets under an electric field. Different signals, such as bioactive graphene, nanofibrous structure, aligned topography, and mechanical stiffness, were tailored into the hydrogel system, providing niches for nerve cell responses. The desired adhesion, proliferation, differentiation, extensio,n and growth factor secretion of multiple nerve-related cells was achieved on these hydrogels, suggesting strong synergistic action through the combination of different cues. Based on the fabrication strategy, our present study provides a useful materials engineering platform for revealing cooperative influences of different signals on nerve cell behavior, to help in the understanding of cell-biomaterial interactions, with potential toward studies related to nerve regeneration.
Collapse
Affiliation(s)
- Lili Wang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dawei Song
- Tai'an City Central Hospital, Taian, 271000, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangdong Kong
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
50
|
Magaz A, Faroni A, Gough JE, Reid AJ, Li X, Blaker JJ. Bioactive Silk-Based Nerve Guidance Conduits for Augmenting Peripheral Nerve Repair. Adv Healthc Mater 2018; 7:e1800308. [PMID: 30260575 DOI: 10.1002/adhm.201800308] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/22/2018] [Indexed: 02/03/2023]
Abstract
Repair of peripheral nerve injuries depends upon complex biology stemming from the manifold and challenging injury-healing processes of the peripheral nervous system. While surgical treatment options are available, they tend to be characterized by poor clinical outcomes for the injured patients. This is particularly apparent in the clinical management of a nerve gap whereby nerve autograft remains the best clinical option despite numerous limitations; in addition, effective repair becomes progressively more difficult with larger gaps. Nerve conduit strategies based on tissue engineering approaches and the use of silk as scaffolding material have attracted much attention in recent years to overcome these limitations and meet the clinical demand of large gap nerve repair. This review examines the scientific advances made with silk-based conduits for peripheral nerve repair. The focus is on enhancing bioactivity of the conduits in terms of physical guidance cues, inner wall and lumen modification, and imbuing novel conductive functionalities.
Collapse
Affiliation(s)
- Adrián Magaz
- Bio‐Active Materials GroupSchool of MaterialsMSS TowerThe University of Manchester Manchester M13 9PL UK
- Institute of Materials Research and Engineering (IMRE)Agency for Science Technology and Research (A*STAR) 2 Fusionopolis, Way, Innovis #08‐03 Singapore 138634 Singapore
| | - Alessandro Faroni
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
| | - Julie E. Gough
- School of MaterialsThe University of Manchester Manchester M13 9PL UK
| | - Adam J. Reid
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
- Department of Plastic Surgery and BurnsWythenshawe HospitalManchester University NHS Foundation TrustManchester Academic Health Science Centre Manchester M23 9LT UK
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE)Agency for Science Technology and Research (A*STAR) 2 Fusionopolis, Way, Innovis #08‐03 Singapore 138634 Singapore
| | - Jonny J. Blaker
- Bio‐Active Materials GroupSchool of MaterialsMSS TowerThe University of Manchester Manchester M13 9PL UK
- School of MaterialsThe University of Manchester Manchester M13 9PL UK
| |
Collapse
|