1
|
Luevano-Colmenero GH, Rocha-Juache R, Vargas-Mancilla J, Flores-Moreno JM, Rojo FJ, Guinea GV, Mendoza-Novelo B. Pericardial bioscaffold coated with ECM gels and urothelial cells for the repair of a rabbit urinary bladder defect. Biomater Sci 2024. [PMID: 39686765 DOI: 10.1039/d4bm00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Repair of damaged or faulty complex modular organs such as the urinary bladder is a current clinical challenge. The design of constructs for reconstructive urological surgery can draw advantage from the bioactivity of natural extracellular matrix (ECM) bioscaffolds, as well as the activity provided by cells seeded into constructs. Considering these benefits, this work compares the performance of pericardial ECM bioscaffolds and constructs seeded with gel-supported urothelial cells in the repair of urinary bladder defects in rabbits. The bioscaffolds considered in this study are of porcine (pM) and bovine (bM) origin and exhibited a residual composition that confers bioactivity in mesh presentation. Coating an ECM gel on the bioscaffolds promoted the adhesion and viability of urothelial cells. Repairing a full-thickness urinary bladder defect in a rabbit model with the bioscaffolds and constructs resulted in the integration with the host bladder; meanwhile, bladder volumetric capacity was promoted using bM and constructs. Although no contribution of gel/cell seeding to the failure of mechanical properties of the urinary neobladder was observed, this seeding technique is suitable for integration with different strategies to engineer constructs for urinary bladder reconstructive surgery.
Collapse
Affiliation(s)
- Guadalupe H Luevano-Colmenero
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Rosalinda Rocha-Juache
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Juan Vargas-Mancilla
- Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Mineral de Valenciana 200, 36275, Silao de la Victoria, Gto, Mexico
| | - Jorge M Flores-Moreno
- Centro de Investigaciones en Óptica, AC, Lomas del bosque 115, 37150, León, Gto, Mexico
| | - Francisco J Rojo
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle del Prof Martín Lagos, s/n, 28040, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Birzabith Mendoza-Novelo
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del bosque 103, 37150, León, Gto, Mexico.
| |
Collapse
|
2
|
Mendoza JJ, Arenas-de Valle C, Caldera-Villalobos M, Cano-Salazar LF, Flores-Guía TE, Espinosa-Neira R, Claudio-Rizo JA. Collagen-β-cyclodextrin hydrogels for advanced wound dressings: super-swelling, antibacterial action, inflammation modulation, and controlled drug release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2170-2203. [PMID: 38913549 DOI: 10.1080/09205063.2024.2370208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
A key strategy in enhancing the efficacy of collagen-based hydrogels involves incorporating polysaccharides, which have shown great promise for wound healing. In this study, semi-interpenetrating polymeric network (semi-IPN) hydrogels comprised of collagen (Col) with the macrocyclic oligosaccharide β-cyclodextrin (β-CD) (20-80 wt.%) were synthesised. Fourier-transform infrared (FTIR) spectroscopy confirmed the successful fabrication of these Col/β-CD hydrogels, evidenced by the presence of characteristic absorption bands, including the urea bond band at ∼1740 cm-1, related with collagen crosslinking. Higher β-CD content was associated with increased crosslinking, higher swelling, and faster gelation. The β-CD content directly influenced the morphology and semi-crystallinity. All Col/β-CD hydrogels displayed superabsorbent properties, enhanced thermal stability, and exhibited slow degradation rates. Mechanical properties were significantly improved with contents higher than β-CD 40 wt.%. These hydrogels inhibited the growth of Escherichia coli bacteria and facilitated the controlled release of agents, such as malachite green, methylene blue, and ketorolac. The chemical composition of the Col/β-CD hydrogels did not induce cytotoxic effects on monocytes and fibroblast cells. Instead, they actively promoted cellular metabolic activity, encouraging cell growth and proliferation. Moreover, cell signalling modulation was observed, leading to changes in the expression of TNF-α and IL-10 cytokines. In summary, the results of this research indicate that these novel hydrogels possess multifunctional characteristics, including biocompatibility, super-swelling capacity, good thermal, hydrolytic, and enzymatic degradation resistance, antibacterial activity, inflammation modulation, and the ability to be used for controlled delivery of therapeutic agents, indicating high potential for application in advanced wound dressings.
Collapse
Affiliation(s)
- Juan J Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | | | | | - Lucía F Cano-Salazar
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | - Tirso E Flores-Guía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | | | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| |
Collapse
|
3
|
Aguayo-Morales H, Cobos-Puc LE, Lopez-Badillo CM, Oyervides-Muñoz E, Ramírez-García G, Claudio-Rizo JA. Collagen-polyurethane-dextran hydrogels enhance wound healing by inhibiting inflammation and promoting collagen fibrillogenesis. J Biomed Mater Res A 2024; 112:1760-1777. [PMID: 38623028 DOI: 10.1002/jbm.a.37724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Diabetic foot ulcers are a serious complication of uncontrolled diabetes, emphasizing the need to develop wound healing strategies that are not only effective but also biocompatible, biodegradable, and safe. We aimed to create biomatrices composed of semi-interpenetrated polymer networks of collagen, polyurethane, and dextran, to enhance the wound healing process. The hydrogels were extensively characterized by various analytical techniques, including analysis of their structure, crystallinity, thermal properties, gelation process, reticulation, degradation, cell proliferation, and healing properties, among others. Semi-interpenetrated hydrogels containing dextran at levels of 10%, 20%, and 30% exhibited porous interconnections between collagen fibers and entrapped dextran granules, with a remarkable crosslinking index of up to 94% promoted by hydrogen bonds. These hydrogels showed significant improvements in mechanical properties, swelling, and resistance to proteolytic and hydrolytic degradation. After 24 h, there was a significant increase in the viability of several cell types, including RAW 264.7 cells, human peripheral blood mononuclear cells, and dermal fibroblasts. In addition, these hydrogels demonstrated an increased release of interleukin-10 and transforming growth factor-beta1 while inhibiting the release of monocyte chemotactic protein-1 and tumor necrosis factor-alpha after 72 h. Furthermore, these hydrogels accelerated the wound healing process in diabetic rats after topical application. Notably, the biomaterial with 20% dextran (D20) facilitated wound closure in only 21 days. These results highlight the potential of the D20 hydrogel, which exhibits physicochemical and biological properties that enhance wound healing by inhibiting inflammation and fibrillogenesis while remaining safe for application to the skin.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Luis E Cobos-Puc
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | | | | | - Gonzalo Ramírez-García
- Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
4
|
Sadeghian A, Kharaziha M, Khoroushi M. Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration. Int J Biol Macromol 2023; 234:123771. [PMID: 36812970 DOI: 10.1016/j.ijbiomac.2023.123771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
The study aims to develop a novel dentin extracellular matrix (dECM) loaded gelatin methacrylate (GelMA)-5 wt% bioactive glass (BG) (Gel-BG) hydrogel for dental pulp regeneration. We investigate the role of dECM content (2.5, 5, and 10 wt%) on the physicochemical characteristics and biological responses of Gel-BG hydrogel in contact with stem cells isolated from human exfoliated deciduous teeth (SHED). Results showed that the compressive strength of Gel-BG/dECM hydrogel significantly enhanced from 18.9 ± 0.5 kPa (at Gel-BG) to 79.8 ± 3.0 kPa after incorporation of 10 wt% dECM. Moreover, we found that in vitro bioactivity of Gel-BG improved and the degradation rate and swelling ratio reduced with increasing dECM content. The hybrid hydrogels also revealed effectual biocompatibility, >138 % cell viability after 7 days of culture; where Gel-BG/5%dECM was most suitable. In addition, the incorporation of 5 wt% dECM within Gel-BG considerably improved alkaline phosphatase (ALP) activity and osteogenic differentiation of SHED cells. Taken together, the novel bioengineered Gel-BG/dECM hydrogels having appropriate bioactivity, degradation rate, osteoconductive and mechanical properties represent the potential applications for clinical practice in the future.
Collapse
Affiliation(s)
- Aida Sadeghian
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Maryam Khoroushi
- Torabinejad Dental Research Institute, Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
5
|
Caldera-Villalobos M, Claudio-Rizo JA, Rodríguez-Estrada VA, Cabrera Munguía DA, Becerra-Rodríguez JJ. Effect of the content of starch on the biocompatibility, bacterial inhibition, and drug release performance of semi-IPN collagen-polyurethane hydrogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2166842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- M. Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - J. A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - V. A. Rodríguez-Estrada
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | - D. A. Cabrera Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, México
| | | |
Collapse
|
6
|
Amaya-Chantaca NJ, Caldera-Villalobos M, Claudio-Rizo JA, Flores-Guía TE, Becerra-Rodríguez JJ, Soriano-Corral F, Herrera-Guerrero A. Semi-IPN hydrogels of collagen and gum arabic with antibacterial capacity and controlled release of drugs for potential application in wound healing. Prog Biomater 2022; 12:25-40. [PMID: 36346576 PMCID: PMC9958214 DOI: 10.1007/s40204-022-00210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
The preparation of hydrogels based on biopolymers like collagen and gum arabic gives a chance to provide novel options that can be used in biomedical field. Through a polymeric semi-interpenetration technique, collagen-based polymeric matrices can be associated with gum arabic while controlling its physicochemical and biological properties. To create novel hydrogels with their potential use in the treatment of wounds, the semi-interpenetration process, altering the concentration (0-40% by wt) of gum arabic in a collagen matrix is explored. The ability of gum arabic to create intermolecular hydrogen bonds in the collagen matrix enables the development of semi-interpenetrating polymeric networks (semi-IPN)-based hydrogels with a faster gelation time and higher crosslinking. Amorphous granular surfaces with linked porosity are present in matrices with 30% (by wt) of gum arabic, enhancing the storage modulus and thermal degradation resistance. The hydrogels swell to very high extent in hydrolytic and proteolytic environments, good hemocompatibility, and suppression of growth of pathogens like E. coli, and all it is enhanced by gum arabic included them, in addition to enabling the controlled release of ketorolac. The chemical composition of theses semi-IPN matrices have no deleterious effects on monocytes or fibroblasts, promoting their proliferation, and lowering alpha tumor necrosis factor (α-TNF) secretion in human monocytes.
Collapse
Affiliation(s)
- Nadia J. Amaya-Chantaca
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila Mexico
| | - Martin Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila Mexico
| | - Tirso E. Flores-Guía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila Mexico
| | - Juan J. Becerra-Rodríguez
- Universidad Politécnica de Pénjamo, Carretera Irapuato-La Piedad Km 44, 36921 Pénjamo, Guanajuato Mexico
| | - Florentino Soriano-Corral
- Centro de Investigación en Química Aplicada, Enrique Reyna H. No. 140, San José de los Cerritos, 25294 Saltillo, Coahuila Mexico
| | - Adán Herrera-Guerrero
- Centro de Investigación en Química Aplicada, Enrique Reyna H. No. 140, San José de los Cerritos, 25294 Saltillo, Coahuila Mexico
| |
Collapse
|
7
|
Caldera-Villalobos M, Claudio-Rizo JA, Cabrera-Munguía DA, Burciaga-Montemayor NG. Biobased hydrogels and their composite containing MgMOF74 for the removal of textile dyes and wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10785. [PMID: 36112044 DOI: 10.1002/wer.10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of a biobased hydrogel comprised of collagen, chitosan, and polyurethane for the removal of textile dyes. The adsorption capacity of this hydrogel was improved by adding a magnesium metal-organic framework to the semi-interpenetrating polymer matrix yielding a composite hydrogel. Removal of Bismarck Brown and Congo red was studied, and the experimental results fit Freundlich's model. Both hydrogel formulations were tested for the removal of textiles dyes from wastewaters. The magnesium-metal organic framework improved the efficiency of the biobased hydrogel for the removal of direct and mordant dyes reaching up to 89 ± 2%. The composite hydrogel was tested for the removal of Congo Red in a fixed bed column observing the breakthrough point after 168 min. Also, a flocculant material was prepared from collagen and chitosan and was tested for the removal of direct red dye from wastewater removing up to 80 ± 1%. The pretreated wastewater by coagulation-flocculation was treated by adsorption yielding a global removal efficiency of 99%. Finally, the studied hydrogels are potentially biodegradable being completely degraded by the proteolytic action after 22 days. PRACTITIONER POINTS: Composite hydrogels of collagen, chitosan, and MgMOF74 removed efficiently textile dyes from wastewater in batch systems and fixed bed columns. A biobased flocculant of collagen and chitosan significantly improved water quality after coagulation flocculation. Hydrogels were reusable for four cycles, and they can be proteolytically degraded after 22 days.
Collapse
|
8
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
9
|
Orozco-Vega A, Montes-Rodríguez MI, Luévano-Colmenero GH, Barros-Gómez J, Muñoz-González PU, Flores-Moreno M, Delgadillo-Holtfort I, Vega-González A, Rojo FJ, Guinea GV, Mendoza-Novelo B. Decellularization of porcine esophageal tissue at three diameters and the bioscaffold modification with EETs-ECM gel. J Biomed Mater Res A 2022; 110:1669-1680. [PMID: 35703732 DOI: 10.1002/jbm.a.37416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/07/2022]
Abstract
Damaged complex modular organs repair is a current clinical challenge in which one of the primary goals is to keep their biological response. An interesting case of study it is the porcine esophagus since it is a tubular muscular tissue selected as raw material for tissue engineering. The design of esophageal constructs can draw on properties of the processed homologous extracellular matrix (ECM). In this work, we report the decellularization of multilayered esophagus tissue from 1-, 21- and 45-days old piglets through the combination of reversible alkaline swelling and detergent perfusion. The bioscaffolds were characterized in terms of their residual composition and tensile mechanical properties. The biological response to esophageal submucosal derived bioscaffolds modified with ECM gel containing epoxyeicosatrienoic acids (EETs) was then evaluated. Results suggest that the composition (laminin, fibronectin, and sulphated glycosaminoglycans/sGAG) depends on the donor age: a better efficiency of the decellularization process combined with a higher retention of sGAG and fibronectin is observed in piglet esophageal scaffolds. The heterogeneity of this esophageal ECM is maintained, which implied the preservation of anisotropic tensile properties. Coating of bioscaffolds with ECM gel is suitable for carrying esophageal epithelial cells and EETs. Bioactivity of EETs-ECM gel modified esophageal submucosal bioscaffolds is observed to promote neovascularization and antiinflammatory after rabbit full-thickness esophageal defect replacement.
Collapse
Affiliation(s)
- Adriana Orozco-Vega
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | - Metzeri I Montes-Rodríguez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico.,Hospital Gineco-Pediatra No 48, Centro Médico Nacional del Bajío, UMAE, Instituto Mexicano del Seguro Social, León, Gto, Mexico
| | - Guadalupe H Luévano-Colmenero
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico.,Unidad Profesional Interdisciplinaria de Ingeniería, Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria, Gto, Mexico
| | - Jimena Barros-Gómez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | | | | | | | - Arturo Vega-González
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, Mexico
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain.,Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | | |
Collapse
|
10
|
Muñoz-González PU, Lona-Ramos MC, Gutiérrez-Verdín LD, Luévano-Colmenero GH, Tenorio-Rocha F, García-Contreras R, González-García G, Rosillo-de la Torre A, Delgado J, Castellano LE, Mendoza-Novelo B. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing. Biomed Mater 2022; 17. [PMID: 35483345 DOI: 10.1088/1748-605x/ac6b70] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/12/2022]
Abstract
Cutaneous wound healing is a complex process that leads the skin reparation with the formation of scar tissue that typically lacks skin appendages. This fact drives us to find new strategies to improve regenerative healing of the skin. This study outlines, the contribution of colloidal silica particles and oligourethane crosslinking on the collagen material properties and the effect on skin wound healing in rats. We characterized the gel properties that are key forin-situgelation, which is accomplished by the latent reactivity of oligourethane bearing blocked isocyanate groups to crosslink collagen while entrapping silica particles. The swelling/degradation behavior and the elastic modulus of the composite gel were consistent with the modification of collagen type I with oligourethane and silica. On the other hand, these gels were characterized as scaffold for murine macrophages and human stem cells. The application of a composite gel dressing on cutaneous wounds showed a histological appearance of the recovered skin as intact skin; featured by the epidermis, hair follicles, sebaceous glands, subcutaneous adipose layer, and dermis. The results suggest that the collagen-based composite dressings are promising modulators in skin wound healing to achieve a regenerative skin closure with satisfactory functional and aesthetic scars.
Collapse
Affiliation(s)
- Pedro U Muñoz-González
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - María C Lona-Ramos
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Luis D Gutiérrez-Verdín
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México.,Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Guadalupe H Luévano-Colmenero
- Interdisciplinary Professional Engineering Unit Campus Guanajuato, National Polytechnic Institute. Mineral de Valenciana # 200, Col. Fraccionamiento industrial puerto interior, C.P. 36275 Silao de la Victoria, GTO, México
| | - Fernando Tenorio-Rocha
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - René García-Contreras
- ENES León, National University Autonomous of Mexico, Boulevard UNAM #2011, Col. Predio el saucillo y el potrero, C.P. 37689 León, GTO, México
| | - Gerardo González-García
- Natural and Exact Sciences Division, University of Guanajuato. Noria alta S/N, Col. Noria alta, C.P. 36050 Guanajuato, GTO, México
| | - Argelia Rosillo-de la Torre
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Jorge Delgado
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Laura E Castellano
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| | - Birzabith Mendoza-Novelo
- Science and Engineering Division, University of Guanajuato. Loma del bosque # 103, Col. Lomas del campestre, C.P. 37150 León, GTO, México
| |
Collapse
|
11
|
Hydrogels for Biomedicine Based on Semi-Interpenetrating Polymeric Networks of Collagen/Guar Gum: Synthesis and Physicochemical Characterization. Macromol Res 2022. [DOI: 10.1007/s13233-022-0047-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Lopéz-Martínez EE, Claudio-Rizo JA, Caldera-Villalobos M, Becerra-Rodríguez JJ, Cabrera-Munguía DA, Cano-Salazar LF, Betancourt-Galindo R. Hydrogels for Biomedicine Based on Semi-Interpenetrating Polymeric Networks of Collagen/Guar Gum: Applications in Biomedical Field and Biocompatibility. Macromol Res 2022. [DOI: 10.1007/s13233-022-0048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Francés-Herrero E, Rodríguez-Eguren A, Gómez-Álvarez M, de Miguel-Gómez L, Ferrero H, Cervelló I. Future Challenges and Opportunities of Extracellular Matrix Hydrogels in Female Reproductive Medicine. Int J Mol Sci 2022; 23:3765. [PMID: 35409119 PMCID: PMC8998701 DOI: 10.3390/ijms23073765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioengineering and reproductive medicine have progressed shoulder to shoulder for several decades. A key point of overlap is the development and clinical translation of technologies to support reproductive health, e.g., scaffold-free constructs, polymeric scaffolds, bioprinting or microfluidics, and hydrogels. Hydrogels are the focus of intense study, and those that are derived from the extracellular matrix (ECM) of reproductive tissues and organs are emerging as promising new players given their results in pre-clinical models. This literature review addresses the recent advances in the use of organ-specific ECM hydrogels in reproductive medicine, considering the entire female reproductive tract. We discuss in-depth papers describing the development of ECM hydrogels, their use in in vitro models, and their in vivo application in preclinical studies. We also summarize the functions of hydrogels, including as grafts, carriers for cell transplantation, or drug depots, and present the potential and possible scope for use of ECM hydrogels in the near future based on recent scientific advances.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Adolfo Rodríguez-Eguren
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - María Gómez-Álvarez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Lucía de Miguel-Gómez
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
| | - Hortensia Ferrero
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| | - Irene Cervelló
- Fundación IVI, IVI-RMA Global, 46026 Valencia, Spain; (A.R.-E.); (M.G.-Á.); (L.d.M.-G.); (H.F.)
- Reproductive Medicine Research Group, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
14
|
Caldera-Villalobos M, Cabrera-Munguía DA, Becerra-Rodríguez JJ, Claudio-Rizo JA. Tailoring biocompatibility of composite scaffolds of collagen/guar gum with metal-organic frameworks. RSC Adv 2022; 12:3672-3686. [PMID: 35425396 PMCID: PMC8979324 DOI: 10.1039/d1ra08824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-organic frameworks (MOFs) are microporous materials with high potential for biomedical applications. They are useful as drug delivery systems, antibacterials, and biosensors. Recently, composite materials comprised of polymer matrixes and MOFs have gained relevance in the biomedical field due to their high potential as materials to accelerate wound healing. In this work, we studied the potential applications of composite hydrogels containing MgMOF74, CaMOF74, and Zn(Atz)(Py). The composite hydrogels are biodegradable, being completely degraded after 15 days by the action of collagenase and papain. The composites showed high biocompatibility reaching cell viabilities up to 165.3 ± 8.6% and 112.3 ± 12.8% for porcine fibroblasts and human monocytes, respectively. The composites did not show hemolytic character and they showed antibacterial activity against Escherichia coli reaching up to 84 ± 5% of inhibition compared with amoxicillin (20 ppm). Further, the immunological assays revealed that the composites produce a favorable cell signaling stimulating the secretion of the TGF-β and MCP-1 cytokines and maintaining the secretion of TNF-α in normal levels. Finally, the composites showed potential to be used as controlled drug delivery systems reaching a release efficiency of 30.5 ± 2.5% for ketorolac. Finally, results revealed that ColGG-Zn(Atz)(Py) was the best formulation evaluated.
Collapse
Affiliation(s)
- Martín Caldera-Villalobos
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Denis A Cabrera-Munguía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| | - Juan J Becerra-Rodríguez
- Universidad Politécnica de Pénjamo Carretera Irapuato - La Piedad Km 44 Pénjamo 36921 Guanajuato México
| | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila Ing. Cárdenas Valdez S/N Saltillo Coahuila México
| |
Collapse
|
15
|
Caldera-Villalobos M, Cabrera-Munguía DA, Flores-Guía TE, Viramontes-Gamboa G, Vargas-Correa JA, Cano-Salazar LF, Claudio-Rizo JA. Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02767-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater 2021; 133:17-33. [PMID: 33905946 DOI: 10.1016/j.actbio.2021.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Research on the foreign body response (FBR) to biomaterial implants has been focused on the roles that the innate immune system has on mediating tolerance or rejection of implants. However, the immune system also involves the adaptive immune response and it must be included in order to form a complete picture of the response to biomaterials and medical implants. In this review, we explore recent understanding about the roles of adaptive immune cells, specifically T cells, in modulating the immune response to biomaterial implants. The immune response to implants elicits a delicate balance between tissue repair and fibrosis that is mainly regulated by three types of T helper cell responses -T helper type 1, T helper type 2, and T helper type 17- and their crosstalk with innate immune cells. Interestingly, many T cell response mechanisms to implants overlap with the process of fibrosis or repair in different tissues. This review explores the fibrotic and regenerative T cell biology and draws parallels to T cell responses to biomaterials. Additionally, we also explore the biomedical engineering advancements in biomaterial applications in designing particle and scaffold systems to modulate T cell activity for therapeutics and devices. Not only do the deliberate engineering design of physical and chemical material properties and the direct genetic modulation of T cells not only offer insights to T cell biology, but they also present different platforms to develop immunomodulatory biomaterials. Thus, an in-depth understanding of T cells' roles can help to navigate the biomaterial-immune interactions and reconsider the long-lasting adaptive immune response to implants, which, in the end, contribute to the design of immunomodulatory medical implants that can advance the next generation of regenerative therapy. STATEMENT OF SIGNIFICANCE: This review article integrates knowledge of adaptive immune responses in tissue damage, wound healing, and medical device implantation. These three fields, often not discussed in conjunction, are important to consider when evaluating and designing biomaterials. Through incorporation of basic biological research alongside engineering research, we provide an important lens through which to evaluate adaptive immune contributions to regenerative medicine and medical device development.
Collapse
|
17
|
León-Campos MI, Claudio-Rizo JA, Rodriguez-Fuentes N, Cabrera-Munguía DA, Becerra-Rodriguez JJ, Herrera-Guerrero A, Soriano-Corral F. Biocompatible interpenetrating polymeric networks in hydrogel state comprised from jellyfish collagen and polyurethane. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Alekseev ES, Alentiev AY, Belova AS, Bogdan VI, Bogdan TV, Bystrova AV, Gafarova ER, Golubeva EN, Grebenik EA, Gromov OI, Davankov VA, Zlotin SG, Kiselev MG, Koklin AE, Kononevich YN, Lazhko AE, Lunin VV, Lyubimov SE, Martyanov ON, Mishanin II, Muzafarov AM, Nesterov NS, Nikolaev AY, Oparin RD, Parenago OO, Parenago OP, Pokusaeva YA, Ronova IA, Solovieva AB, Temnikov MN, Timashev PS, Turova OV, Filatova EV, Philippov AA, Chibiryaev AM, Shalygin AS. Supercritical fluids in chemistry. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep 2020; 10:18751. [PMID: 33127964 PMCID: PMC7603317 DOI: 10.1038/s41598-020-75921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammation leads to chondrocyte senescence and cartilage degeneration, resulting in osteoarthritis (OA). Adipose‐derived stem cells (ADSCs) exert paracrine effects protecting chondrocytes from degenerative changes. However, the lack of optimum delivery systems for ADSCs limits its use in the clinic. The use of extracellular matrix based injectable hydrogels has gained increased attention due to their unique properties. In the present study, we developed hydrogels from amnion tissue as a delivery system for ADSCs. We investigated the potential of amnion hydrogel to maintain ADSC functions, the synergistic effect of AM with ADSC in preventing the catabolic responses of inflammation in stimulated chondrocytes. We also investigated the role of Wnt/β-catenin signaling pathway in IL-1β induced inflammation in chondrocytes and the ability of AM-ADSC to inhibit Wnt/β-catenin signaling. Our results showed that AM hydrogels supported cell viability, proliferation, and stemness. ADSCs, AM hydrogels and AM-ADSCs inhibited the catabolic responses of IL-1β and inhibited the Wnt/β-catenin signaling pathway, indicating possible involvement of Wnt/β-catenin signaling pathways in IL-1β induced inflammation. The results also showed that the synergistic effect of AM-ADSCs was more pronounced in preventing catabolic responses in activated chondrocytes. In conclusion, we showed that AM hydrogels can be used as a potential carrier for ADSCs, and can be developed as a potential therapeutic agent for treating OA.
Collapse
|
20
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
21
|
Claudio‐Rizo JA, Hernandez‐Hernandez NG, Cano‐Salazar LF, Flores‐Guía TE, Cruz‐Durán FN, Cabrera‐Munguía DA, Becerra‐Rodríguez JJ. Novel semi‐interpenetrated networks based on collagen‐polyurethane‐polysaccharides in hydrogel state for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jesús A. Claudio‐Rizo
- Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Coahuila Mexico
| | | | - Lucia F. Cano‐Salazar
- Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Coahuila Mexico
| | - Tirso E. Flores‐Guía
- Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Coahuila Mexico
| | - Fabiola N. Cruz‐Durán
- Facultad de Ciencias Químicas Universidad Autónoma de Coahuila Saltillo Coahuila Mexico
| | | | | |
Collapse
|
22
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
23
|
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos EM, Lopez-Badillo CM. Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Los hidrogeles basados en colágeno son redes tridimensionales (3D) con la capacidad de absorber agua y una alta biocompatibilidad para utilizarlos en la reparación de tejidos dañados. Estos materiales presentan pobres propiedades mecánicas y velocidades de degradación rápidas, limitando su aplicación a estrategias de ingeniería tisular y biomedicina; por ésto, la incorporación de fases inorgánicas en la matriz 3D del colágeno como la hidroxiapatita ha contribuido en la mejora de sus propiedades, incrementado la eficiencia de los hidrogeles híbridos obtenidos. Este trabajo, presenta las contribuciones más relevantes relacionadas con los sistemas de hidrogeles basados en colágeno y partículas de hidroxiapatita dispersas dentro de la matriz colagénica, lo que evidencia que la combinación de los materiales no altera la biocompatibilidad y biodegradabilidad típicas del colágeno, permitiendo la adhesión, proliferación, crecimiento celular y control del metabolismo de las células implicadas en los procesos de una reparación ósea, presentando a los hidrogeles como una estrategia para su uso potencial en la ingeniería tisular.
Collapse
|
24
|
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16:2014-2028. [PMID: 32549750 PMCID: PMC7294938 DOI: 10.7150/ijbs.44943] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complicated, multistep process that is responsible for over 90% of cancer-related death. Metastatic disease or the movement of cancer cells from one site to another requires dramatic remodeling of the cytoskeleton. The regulation of cancer cell migration is determined not only by biochemical factors in the microenvironment but also by the biomechanical contextual information provided by the extracellular matrix (ECM). The responses of the cytoskeleton to chemical signals are well characterized and understood. However, the mechanisms of response to mechanical signals in the form of externally applied force and forces generated by the ECM are still poorly understood. Furthermore, understanding the way cellular mechanosensors interact with the physical properties of the microenvironment and transmit the signals to activate the cytoskeletal movements may help identify an effective strategy for the treatment of cancer. Here, we will discuss the role of tumor microenvironment during cancer metastasis and how physical forces remodel the cytoskeleton through mechanosensing and transduction.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, 100044, China
| |
Collapse
|
25
|
Claudio-Rizo JA, González-Lara IA, Flores-Guía TE, Cano-Salazar LF, Cabrera-Munguía DA, Becerra-Rodríguez JJ. Study of the polyacrylate interpenetration in a collagen-polyurethane matrix to prepare novel hydrogels for biomedical applications. Int J Biol Macromol 2020; 156:27-39. [PMID: 32251751 DOI: 10.1016/j.ijbiomac.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Currently, the control of the properties of collagen based hydrogels represents a promising area of research to develop novel materials for biomedical applications. The crosslinking of the collagen with trifunctional polyurethane (PU) allows a hybrid matrix to be formed by improving the coupling with exogenous polymeric chains to generate innovative semi-interpenetrated network (semi-IPN) hydrogels. The incorporation of polyacrylate (PA) within a hybrid matrix of collagen-PU allows to regulate the structure and physicochemical properties such as polymerization rate, physicochemical crosslinking, thermal stability, storage module and swelling/degradation behavior of the 3D matrices in the hydrogel state, also exhibiting modulation of their in vitro biocompatibility properties. This work contemplates the study of the effect of PA concentration on the physicochemical properties and the in vitro biological response of these novel semi-IPN hydrogels based on collagen-PU-PA. The results indicate that semi-IPN hydrogels that include 20 wt% of PA exhibit improved swelling with respect to the collagen-PU hydrogel, controlling the degradation rate in acidic, alkaline and proteolytic media; showing E. coli inhibition capacity, high hemocompatibility and not altering the metabolism of monocytes and fibroblasts growing on them. Therefore, these novel hydrogels represent biomaterials with potential application in biomedical strategies such as wound healing dressings.
Collapse
Affiliation(s)
- Jesús A Claudio-Rizo
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico.
| | - Irving A González-Lara
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Tirso E Flores-Guía
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Lucía F Cano-Salazar
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Denis A Cabrera-Munguía
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Ing. J. Cárdenas Valdez S/N, República, 25280 Saltillo, Coahuila, Mexico
| | - Juan J Becerra-Rodríguez
- Universidad Politécnica de Pénjamo, Carretera Irapuato - La Piedad Km 44, 36921 Pénjamo, Guanajuato, Mexico
| |
Collapse
|
26
|
Grebenik EA, Gafarova ER, Istranov LP, Istranova EV, Ma X, Xu J, Guo W, Atala A, Timashev PS. Mammalian Pericardium-Based Bioprosthetic Materials in Xenotransplantation and Tissue Engineering. Biotechnol J 2020; 15:e1900334. [PMID: 32077589 DOI: 10.1002/biot.201900334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Bioprosthetic materials based on mammalian pericardium tissue are the gold standard in reconstructive surgery. Their application range covers repair of rectovaginal septum defects, abdominoplastics, urethroplasty, duraplastics, maxillofacial, ophthalmic, thoracic and cardiovascular reconstruction, etc. However, a number of factors contribute to the success of their integration into the host tissue including structural organization, mechanical strength, biocompatibility, immunogenicity, surface chemistry, and biodegradability. In order to improve the material's properties, various strategies are developed, such as decellularization, crosslinking, and detoxification. In this review, the existing issues and long-term achievements in the development of bioprosthetic materials based on the mammalian pericardium tissue, aimed at a wide-spectrum application in reconstructive surgery are analyzed. The basic technical approaches to preparation of biocompatible forms providing continuous functioning, optimization of biomechanical and functional properties, and clinical applicability are described.
Collapse
Affiliation(s)
- Ekaterina A Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Weisheng Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Photonic Technologies, Research center "Crystallography and Photonics" RAS, Moscow, 142190, Russia.,N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
27
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
28
|
Grebenik EA, Istranov LP, Istranova EV, Churbanov SN, Shavkuta BS, Dmitriev RI, Veryasova NN, Kotova SL, Kurkov AV, Shekhter AB, Timashev PS. Chemical cross‐linking of xenopericardial biomeshes: A bottom‐up study of structural and functional correlations. Xenotransplantation 2019; 26:e12506. [DOI: 10.1111/xen.12506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina A. Grebenik
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Leonid P. Istranov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Elena V. Istranova
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Semyon N. Churbanov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Boris S. Shavkuta
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology University College Cork Cork Ireland
| | - Nadezhda N. Veryasova
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Svetlana L. Kotova
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
| | - Alexander V. Kurkov
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Anatoly B. Shekhter
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University Moscow Russia
- Research Center “Crystallography and Photonics” Institute of Photonic Technologies, Russian Academy of Sciences Moscow Russia
- Department of Polymers and Composites N.N.Semenov Institute of Chemical Physics Moscow Russia
| |
Collapse
|
29
|
Rangel-Argote M, Claudio-Rizo JA, Mata-Mata JL, Mendoza-Novelo B. Characteristics of Collagen-Rich Extracellular Matrix Hydrogels and Their Functionalization with Poly(ethylene glycol) Derivatives for Enhanced Biomedical Applications: A Review. ACS APPLIED BIO MATERIALS 2018; 1:1215-1228. [DOI: 10.1021/acsabm.8b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Magdalena Rangel-Argote
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Venustiano Carranza s/n, 25280 Saltillo, Coahuila, México
| | - José L. Mata-Mata
- Departamento de Química, DCNE, Universidad de Guanajuato, Noria alta s/n, 36050 Guanajuato, Guanajuato, México
| | - Birzabith Mendoza-Novelo
- Departamento de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Guanajuato, México
| |
Collapse
|
30
|
Golser AV, Röber M, Börner HG, Scheibel T. Engineered Collagen: A Redox Switchable Framework for Tunable Assembly and Fabrication of Biocompatible Surfaces. ACS Biomater Sci Eng 2017; 4:2106-2114. [DOI: 10.1021/acsbiomaterials.7b00583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrian V. Golser
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Matthias Röber
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|