1
|
Bernardi B, Malafatti JOD, Moreira AJ, de Almeida Nascimento AC, Lima JB, Vermeersch LAF, Paris EC. Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release. DISCOVER NANO 2025; 20:8. [PMID: 39808365 PMCID: PMC11732827 DOI: 10.1186/s11671-024-04161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m2 g-1), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of Staphylococcus aureus bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L-1. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.
Collapse
Affiliation(s)
- Bárbara Bernardi
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - João Otávio Donizette Malafatti
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Andressa Cristina de Almeida Nascimento
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Juliana Bruzaca Lima
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Lilian Aparecida Fiorini Vermeersch
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil
| | - Elaine Cristina Paris
- National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
2
|
Lu X, Zhou L, Song W. Recent Progress of Electrospun Nanofiber Dressing in the Promotion of Wound Healing. Polymers (Basel) 2024; 16:2596. [PMID: 39339060 PMCID: PMC11435701 DOI: 10.3390/polym16182596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The nanofiber materials of three-dimensional spatial structure synthesized by electrospun have the characteristics of high porosity, high specific surface area, and high similarity to the natural extracellular matrix (ECM) of the human body. These are beneficial for absorbing wound exudate, effectively blocking the invasion of external bacteria, and promoting cell respiration and proliferation, which provides an ideal microenvironment for wound healing. Moreover, electrospun nanofiber dressings can flexibly load drugs according to the condition of the wound, further promoting wound healing. Recently, electrospun nanofiber materials have shown promising application prospects as medical dressings in clinical. Based on current research, this article reviewed the development history of wound dressings and the principles of electrospun technology. Subsequently, based on the types of base material, polymer-based electrospun nanofiber dressing and electrospun nanofiber dressing containing drug-releasing factors were discussed. Furthermore, the application of electrospun nanofiber dressing on skin tissue is highlighted. This review aims to provide a detailed overview of the current research on electrospun nanomaterials for wound healing, addressing challenges and suggesting future research directions to advance the field of electrospun dressings in wound healing.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Libo Zhou
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weiye Song
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
3
|
Han Y, Wei H, Ding Q, Ding C, Zhang S. Advances in Electrospun Nanofiber Membranes for Dermatological Applications: A Review. Molecules 2024; 29:4271. [PMID: 39275118 PMCID: PMC11396802 DOI: 10.3390/molecules29174271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
In recent years, a wide variety of high-performance and versatile nanofiber membranes have been successfully created using different electrospinning methods. As vehicles for medication, they have been receiving more attention because of their exceptional antibacterial characteristics and ability to heal wounds, resulting in improved drug delivery and release. This quality makes them an appealing choice for treating various skin conditions like wounds, fungal infections, skin discoloration disorders, dermatitis, and skin cancer. This article offers comprehensive information on the electrospinning procedure, the categorization of nanofiber membranes, and their use in dermatology. Additionally, it delves into successful case studies, showcasing the utilization of nanofiber membranes in the field of skin diseases to promote their substantial advancement.
Collapse
Affiliation(s)
- Yuanyuan Han
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Hewei Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| |
Collapse
|
4
|
Dai X, Nie W, Duan C, Shen Y. Preparation of microspheres with sustained ketoprofen release by electrospray for the treatment of aseptic inflammation. Front Bioeng Biotechnol 2024; 12:1416659. [PMID: 39100621 PMCID: PMC11294161 DOI: 10.3389/fbioe.2024.1416659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The treatment of aseptic inflammation has always been a clinical challenge. At present, non-steroidal drug-loaded microspheres have been widely used in the treatment of aseptic inflammation due to their excellent injectable and sustained release capabilities. In this study, ketoprofen-loaded shellac microspheres (Keto-SLAC) were prepared by electrospray. Alterations of Keto-SLAC morphology was observed in response to changed shellac concentration in ethanol solution through electrospray. Further examination revealed that ketoprofen presented as amorphous solid dispersion in the shellac microspheres. Most importantly, it was also shown that ketoprofen can be slowly released from the shellac matrix for up to 3 weeks. In vitro cell experiments verified that the microspheres had favorable cell compatibility. We therefore proposed that the prepared microspheres, being readily available in use in a variety of clinical settings through topical application, have promising therapeutic potential for the treatment of aseptic inflammation.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | | | - Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Norouzi MR, Ghasemi-Mobarakeh L, Itel F, Schoeller J, Fashandi H, Fortunato G, Rossi RM. Dual Functional Antibacterial-Antioxidant Core/Shell Alginate/Poly(ε-caprolactone) Nanofiber Membrane: A Potential Wound Dressing. ACS OMEGA 2024; 9:25124-25134. [PMID: 38882148 PMCID: PMC11170714 DOI: 10.1021/acsomega.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Core/shell nanofibers offer the advantage of encapsulating multiple drugs with different hydrophilicity in the core and shell, thus allowing for the controlled release of pharmaceutic agents. Specifically, the burst release of hydrophilic drugs from such fiber membranes causes an instantaneous high drug concentration, whereas a long and steady release is usually desired. Herein, we tackle the problem of the initial burst release by the generation of core/shell nanofibers with the hydrophilic antibiotic drug gentamycin loaded within a hydrophilic alginate core surrounded by a hydrophobic shell of poly(ε-caprolactone). Emulsion electrospinning was used as the nanofibrous mesh generation procedure. This process also allows for the loading of a hydrophobic compound, where we selected a natural antioxidant molecule, betulin (BTL), to detoxify the radicals. The resulting nanofibers exhibited a cylindrical shape with a core/shell structure. In vitro tests showed a controlled release of gentamicin from nanofibers via diffusion. The drug reached 93% release in an alginate hydrogel film but only 50% release in the nanofibers, suggesting its potential to minimize the initial burst release. Antibacterial tests revealed significant activity against both Gram-negative and Gram-positive bacteria. The antioxidant property of betulin was confirmed through the DPPH assay, where the incorporation of 20% BTL revealed 37.3% DPPH scavenging. The nanofibers also exhibited favorable biocompatibility in cell culture studies, and no harmful effects on cell viability were observed. Overall, this research offers a promising approach to producing core/shell nanofibrous mats with antibacterial and antioxidant properties, which could effectively address the requirements of wound dressings, including infection prevention and wound healing acceleration.
Collapse
Affiliation(s)
- Mohammad-Reza Norouzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen CH-9014, Switzerland
- Department of Health Science and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
7
|
Ulker Turan C, Derviscemaloglu M, Guvenilir Y. Herbal active ingredient-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin nanofibrous membranes. Eur J Pharm Biopharm 2024; 194:62-73. [PMID: 38042509 DOI: 10.1016/j.ejpb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Recently, there has been an accelerating interest in novel biocompatible wound dressings made of nano-sized materials, especially nanofibers. Electrospun nanofibers provide high surface area and mimic the extracellular matrix which enhances biocompatibility. Besides, nanofibrous structures have high active ingredient loading capacity as a result of their high surface-to-volume ratio and porosity. In the present study, curcumin-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin (PDL-VL/Gel) nanofibrous membranes were fabricated to be used for healing skin wounds. Poly(ω-pentadecalactone-co-δ-valerolactone) copolymer has been enzymatically synthesized in previous studies, thus it improves the originality of the membrane. It was aimed to obtain a synergetic effect and increase the novelty of the work by blending synthetic and natural polymers. Moreover, it was preferred to provide antibacterial activity by the incorporation of a herbal ingredient (curcumin) as a natural alternative to commercial antibiotics. Varied amounts of curcumin (5-25 %, w:v) were electrospun together with PDL-VL/Gel (equal volume ratio) polymer blend (fiber diameters ranged between 554 and 1074 nm) and several characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to examine the curcumin incorporation. Afterwards, in vitro curcumin release studies were carried out and mathematical modeling was applied to release data to clarify the transport mechanism. Curcumin release profiles comprised of an initial burst release in the first hour followed by a sustained release through 24 h. Based on the antibacterial activity test results, 15 % curcumin loading ratio was found to be sufficient for the treatment of skin wounds infected by Gram-negative (E. coli) and Gram-positive (S. aureus and B. subtilis) bacteria. Additionally, nanofibrous membranes did not lead to cytotoxicity, and curcumin content further enhanced the viability of fibroblasts. Thus, the presented antibacterial nanofibrous membrane is suggested to be applied for the treatment of wound infections and accelerating the healing process.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Gebze Technical University, Department of Bioengineering, Kocaeli 41400, Turkey.
| | - Mete Derviscemaloglu
- Istanbul Technical University, Department of Molecular Biology and Genetics, Istanbul 34369, Turkey
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul 34369, Turkey
| |
Collapse
|
8
|
Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofiber Composites for Enhanced Wound Healing. AAPS PharmSciTech 2023; 24:246. [PMID: 38030812 DOI: 10.1208/s12249-023-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Sawsan Monir
- Production Sector, Semisolid Department, Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt
| | - Mahmoud H M Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
9
|
El-Habashy SE, El-Kamel AH, Mehanna RA, Abdel-Bary A, Heikal L. Engineering tanshinone-loaded, levan-biofunctionalized polycaprolactone nanofibers for treatment of skin cancer. Int J Pharm 2023; 645:123397. [PMID: 37690657 DOI: 10.1016/j.ijpharm.2023.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ahmed Abdel-Bary
- Department of Dermatology, Andrology, Venerology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
10
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
11
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Mirek A, Grzeczkowicz M, Belaid H, Bartkowiak A, Barranger F, Abid M, Wasyłeczko M, Pogorielov M, Bechelany M, Lewińska D. Electrospun UV-cross-linked polyvinylpyrrolidone fibers modified with polycaprolactone/polyethersulfone microspheres for drug delivery. BIOMATERIALS ADVANCES 2023; 147:213330. [PMID: 36773381 DOI: 10.1016/j.bioadv.2023.213330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Electrospun fibers, often used as drug delivery systems, have two drawbacks - in the first stage of their action a sudden active substance burst release occurs and they have a relatively small capacity for a drug. In this work the fibers are modified by the addition of drug-loaded microspheres acting as micro-containers for the drug and increasing the total drug capacity of the system. Its release from such a structure is slowed down by placing the microspheres inside the fibers so they are covered with an outer layer of fiber-forming polymer. The work presents a new method (microsphere suspension electrospinning) of obtaining polyvinylpyrrolidone fibers cross-linked with UV light modified with polycaprolactone/polyethersulphone microspheres loaded with active substance - rhodamine 640 as a marker or ampicillin as a drug example. The influence of UV-cross-linking time and the microspheres addition on the degradation, mechanical strength and transport properties of fibrous mats was investigated. The mats were insoluble in water, in some cases mechanically stronger, their drug capacity was increased and the burst effect was eliminated. The antibacterial properties of ampicillin-loaded mats were confirmed. The product of proposed suspension electrospinning process has application potential as a drug delivery system.
Collapse
Affiliation(s)
- Adam Mirek
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland; Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Marcin Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Habib Belaid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Aleksandra Bartkowiak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Fanny Barranger
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mahmoud Abid
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | - Maksym Pogorielov
- Sumy State University, Medical Institute, 40018 Sumy, Ukraine; NanoPrime, 32-900 Dębica, Poland
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Dorota Lewińska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| |
Collapse
|
13
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
14
|
Centrifugal Force-Spinning to Obtain Multifunctional Fibers of PLA Reinforced with Functionalized Silver Nanoparticles. Polymers (Basel) 2023; 15:polym15051240. [PMID: 36904481 PMCID: PMC10006974 DOI: 10.3390/polym15051240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.
Collapse
|
15
|
Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The importance of electrospinning to produce biomimicking micro- and nano-fibrous matrices is realized by many who work in the area of fibers. Based on the solubility of the materials to be spun, organic solvents are typically utilized. The toxicity of the utilized organic solvent could be extremely important for various applications, including tissue engineering, biomedical, agricultural, etc. In addition, the high viscosities of such polymer solutions limit the use of high polymer concentrations and lower down productivity along with the limitations of obtaining desired fiber morphology. This emphasizes the need for a method that would allay worries about safety, toxicity, and environmental issues along with the limitations of using concentrated polymer solutions. To mitigate these issues, the use of emulsions as precursors for electrospinning has recently gained significant attention. Presence of dispersed and continuous phase in emulsion provides an easy route to incorporate sensitive bioactive functional moieties within the core-sheath fibers which otherwise could only be hardly achieved using cumbersome coaxial electrospinning process in solution or melt based approaches. This review presents a detailed understanding of emulsion behavior during electrospinning along with the role of various constituents and process parameters during fiber formation. Though many polymers have been studied for emulsion electrospinning, poly(ε-caprolactone) (PCL) is one of the most studied polymers for this technique. Therefore, electrospinning of PCL based emulsions is highlighted as unique case-study, to provide a detailed theoretical understanding, discussion of experimental results along with their suitable biomedical applications.
Collapse
|
16
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
17
|
Duan X, Chen HL, Guo C. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:78. [PMID: 36462118 PMCID: PMC9719450 DOI: 10.1007/s10856-022-06700-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
With the rapid development of biomaterials and biotechnologies, various functional materials-based drug delivery systems (DDS) are developed to overcome the limitations of traditional drug release formulations, such as uncontrollable drug concentration in target organs/tissues and unavoidable adverse reactions. Polymer nanofibers exhibit promising characteristics including easy preparation, adjustable features of wettability and elasticity, tailored surface and interface properties, and surface-to-volume ratio, and are used to develop new DDS. Different kinds of drugs can be incorporated into the polymer nanofibers. Additionally, their release kinetics can be modulated via the preparation components, component proportions, and preparation processes, enabling their applications in several fields. A timely and comprehensive summary of polymeric nanofibers for DDS is thus highly needed. This review first describes the common methods for polymer nanofiber fabrication, followed by introducing controlled techniques for drug loading into and release from polymer nanofibers. Thus, the applications of polymer nanofibers in drug delivery were summarized, particularly focusing on the relation between the physiochemical properties of polymeric nanofibers and their DDS performance. It is ended by listing future perspectives. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoge Duan
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Hai-Lan Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
18
|
Su S, Bedir T, Kalkandelen C, Sasmazel HT, Basar AO, Chen J, Ekren N, Gunduz O. A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. EMERGENT MATERIALS 2022; 5:1617-1627. [DOI: 10.1007/s42247-022-00418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2025]
|
19
|
Mohamadi PS, Hivechi A, Bahrami SH, Nezari S, B Milan P, Amoupour M. Fabrication and investigating in vivo wound healing property of coconut oil loaded nanofiber/hydrogel hybrid scaffold. BIOMATERIALS ADVANCES 2022; 142:213139. [PMID: 36242859 DOI: 10.1016/j.bioadv.2022.213139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Obtaining a sustainable drug delivery system is a challenging issue in biomedical science. This became even more important in the wound regeneration process due to its long treatment process. In this study, the calcium alginate (CaAlg) hydrogel is coated on the surface of polycaprolactone (PCL)/gelatin (Gel) nanofibers containing coconut oil (CO) using the impregnation method. The physical, chemical, and morphological properties of produced samples are investigated using different characterization techniques to verify the influence of hydrogel. Water contact angle, swelling ratio, and water vapor permeability measurements are used to evaluate the effect of hydrogel on the hydrophilicity of the proposed system. The cell viability test showed that the nanocomposite hydrogel is biocompatible and could improve wound healing. According to drug release studies, hydrogel addition to the nanofiber system plays an essential role in controlling CO release rate in the first 250 h. In vivo studies also indicated faster skin regeneration.
Collapse
Affiliation(s)
- Parian S Mohamadi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Ahmad Hivechi
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran; Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Saeed Nezari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Norouzi MR, Ghasemi-Mobarakeh L, Itel F, Schoeller J, Fashandi H, Borzi A, Neels A, Fortunato G, Rossi RM. Emulsion electrospinning of sodium alginate/poly(ε-caprolactone) core/shell nanofibers for biomedical applications. NANOSCALE ADVANCES 2022; 4:2929-2941. [PMID: 36131996 PMCID: PMC9416811 DOI: 10.1039/d2na00201a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Electrospun nanofibers have shown great potential as drug vehicles and tissue engineering scaffolds. However, the successful encapsulation of multiple hydrophilic/hydrophobic therapeutic compounds is still challenging. Herein, sodium alginate/poly(ε-caprolactone) core/shell nanofibers were fabricated via water-in-oil emulsion electrospinning. The sodium alginate concentration, water-to-oil ratio, and surfactant concentration were optimized for the maximum stability of the emulsion. The results demonstrated that an increasing water-to-oil ratio results in more deviation from Newtonian fluid and leads to a broader distribution of the fibers' diameters. Moreover, increasing poly(ε-caprolactone) concentration increases loss and storage moduli and increases the diameter of the resulting fibers. The nanofibers' characteristics were investigated by scanning electron microscopy, transmission electron microscopy, confocal laser scanning microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. It was observed that using an emulsion composition of 10% (w/v) PCL and a water-to-oil ratio of 0.1 results in smooth, cylindrical, and uniform core/shell nanofibers with PCL in the shell and ALG in the core. The in vitro cell culture study demonstrated the favorable biocompatibility of nanofibers. Overall, this study provides a promising and trustworthy material for biomedical applications.
Collapse
Affiliation(s)
- Mohammad-Reza Norouzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
| | - Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology Isfahan 84156-83111 Iran
| | - Aurelio Borzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics CH-8600 Dübendorf Switzerland
| | - Antonia Neels
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics CH-8600 Dübendorf Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles Lerchenfeldstrasse 5 CH-9014 St. Gallen Switzerland
- ETH Zürich, Department of Health Science and Technology 8092 Zürich Switzerland
| |
Collapse
|
21
|
Cytocompatibility and Antibacterial Properties of Coaxial Electrospun Nanofibers Containing Ciprofloxacin and Indomethacin Drugs. Polymers (Basel) 2022; 14:polym14132565. [PMID: 35808610 PMCID: PMC9269477 DOI: 10.3390/polym14132565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
A coaxial nanofibrous scaffold of poly (ε-caprolactone) and gelatin/cellulose acetate encapsulating anti-inflammatory and antibacterial drugs was co-electrospun for skin tissue regeneration. Indomethacin and ciprofloxacin as model drugs were added to the core and the shell solutions, respectively. The effect of the drugs’ presence and crosslinking on the scaffold properties was investigated. TEM images confirmed the core−shell structure of the scaffold. The fiber diameter and the pore size of the scaffold increased after crosslinking. The tensile properties of the scaffold improved after crosslinking. The crosslinked scaffold illustrated a higher rate of swelling, and a lower rate of degradation and drug release compared to the uncrosslinked one. Fitting the release data into the Peppas equation showed that Fickian diffusion was the dominant mechanism of drug release from the scaffolds. The results of biocompatibility evaluations showed no cytotoxicity and suitable adhesion and cell growth on the prepared core−shell structure. The antibacterial activity of the scaffolds was studied against one of the most common pathogens in skin wounds, where the existence of ciprofloxacin could prevent the growth of the Staphylococcus aureus bacteria around the scaffold. The obtained results suggested a new coaxial nanofibrous scaffold as a promising candidate for simultaneous tissue regeneration and controlled drug release.
Collapse
|
22
|
Leonés A, Peponi L, García-Martínez JM, Collar EP. Compositional Influence on the Morphology and Thermal Properties of Woven Non-Woven Mats of PLA/OLA/MgO Electrospun Fibers. Polymers (Basel) 2022; 14:polym14102092. [PMID: 35631974 PMCID: PMC9144131 DOI: 10.3390/polym14102092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
In the present work, a statistical study of the morphology and thermal behavior of poly(lactic acid) (PLA)/oligomer(lactic acid) (OLA)/magnesium oxide nanoparticles (MgO), electrospun fibers (efibers) has been carried out. The addition of both, OLA and MgO, is expected to modify the final properties of the electrospun PLA-based nanocomposites for their potential use in biomedical applications. Looking for the compositional optimization of these materials, a Box−Wilson design of experiment was used, taking as dependent variables the average fiber diameter as the representative of the fiber morphologies, as well as the glass transition temperature (Tg) and the degree of crystallinity (Xc) as their thermal response. The results show <r2> values of 73.76% (diameter), 88.59% (Tg) and 75.61% (Xc) for each polynomial fit, indicating a good correlation between both OLA and MgO, along with the morphological as well as the thermal behavior of the PLA-based efibers in the experimental space scanned.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Jesús-María García-Martínez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| | - Emilia P. Collar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| |
Collapse
|
23
|
Effect of Ionic and Non-Ionic Surfactant on Bovine Serum Albumin Encapsulation and Biological Properties of Emulsion-Electrospun Fibers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103232. [PMID: 35630708 PMCID: PMC9143061 DOI: 10.3390/molecules27103232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Emulsion electrospinning is a method of modifying a fibers’ surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate–S) or nonionic (Tween 80–T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4–9 µm for S and 8–13 µm for T). The appearance of anionic surfactant micelles reduced the diameter of the fiber (100–700 nm) and the wettability of the nonwoven surface (up to 77°) compared to un-modified PCL polymer fibers (100–900 nm and 130°). The use of a non-ionic surfactant resulted in better loading efficiency of micelles with albumin (about 90%), lower wettability of the nonwoven fabric (about 25°) and the formation of larger fibers (100–1100 nm). X-ray photoelectron spectroscopy (XPS) was used to detect the presence of the protein, and UV-Vis spectrophotometry was used to determine the loading efficiency and the nature of the release. The results showed that the location of the micelles influenced the release profiles of the protein, and the materials modified with micelles with the nonionic surfactant showed no burst release. The release kinetics was characteristic of the zero-order release model compared to anionic surfactants. The selected surfactant concentrations did not adversely affect the biological properties of fibrous substrates, such as high viability and low cytotoxicity of RAW macrophages 264.7.
Collapse
|
24
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
25
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
26
|
Joy A, Unnikrishnan G, Megha M, Haris M, Thomas J, Kolanthai E, Muthuswamy S. Polycaprolactone/Graphene Oxide–Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02180-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
28
|
Ulker Turan C, Guvenilir Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur J Pharm Sci 2022; 170:106113. [PMID: 34986416 DOI: 10.1016/j.ejps.2021.106113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
In recent years, there is an increasing attention on biocompatible electrospun nanofibers for drug delivery applications since they provide high surface area, controlled and sustained drug release, and they mimic the extracellular matrix. In the present study, tetracycline hydrochloride (TCH) antibiotic loaded poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan nanofibrous membranes were fabricated as a controlled drug delivery system. Poly(ω-pentadecalactone-co-ε-caprolactone) copolymer has been enzymatically synthesized in previous studies, thus it provides an originality to the membrane. Combination of a synthetic polymer, a protein, and a polysaccharide in order to obtain a synergetic effect is another novelty of this work and there exists limited examples for such electrospun membrane. Varied amounts of TCH was electrospun together with poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan (50/40/10 vol ratio) polymer blend (fiber diameters ranged between 85.7-225.2 nm) and several characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to examine the drug incorporation. Subsequently, in vitro drug release studies were conducted and mathematical modeling was applied for the detection of transport mechanism of drug. TCH release proceeded 14 days through an initial burst release in first hour and followed by a sustained release. 1% TCH-loaded sample was shown as optimal preparation with 96.5% total drug release and 11.8% initial burst release. TCH-loaded preparations demonstrated a good antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria and a limited effect (no inhibition zone observed below 3% TCH concentration) against Gram-negative (Escherichia coli) bacterium. Thus, TCH concentrations of ≥ 3% could be preferred to obtain a wide-spectrum effectiveness. The presented drug delivery system is suggested to be applied for treatment of skin infections as a wound dressing device.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey.
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
| |
Collapse
|
29
|
Sun M, Chen S, Ling P, Ma J, Wu S. Electrospun Methacrylated Gelatin/Poly(L-Lactic Acid) Nanofibrous Hydrogel Scaffolds for Potential Wound Dressing Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:6. [PMID: 35009955 PMCID: PMC8746433 DOI: 10.3390/nano12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Electrospun nanofiber mats have attracted intense attention as advanced wound dressing materials. The objective of this study was to fabricate methacrylated gelatin (MeGel)/poly(L-lactic acid) (PLLA) hybrid nanofiber mats with an extracellular matrix (ECM) mimicking nanofibrous structure and hydrogel-like properties for potential use as wound dressing materials. MeGel was first synthesized via the methacryloyl substitution of gelatin (Gel), a series of MeGel and PLLA blends with various mass ratios were electrospun into nanofiber mats, and a UV crosslinking process was subsequently utilized to stabilize the MeGel components in the nanofibers. All the as-crosslinked nanofiber mats exhibited smooth and bead-free fiber morphologies. The MeGel-containing and crosslinked nanofiber mats presented significantly improved hydrophilic properties (water contact angle = 0°; 100% wettability) compared to the pure PLLA nanofiber mats (~127°). The swelling ratio of crosslinked nanofiber mats notably increased with the increase of MeGel (143.6 ± 7.4% for PLLA mats vs. 875.0 ± 17.1% for crosslinked 1:1 MeGel/PLLA mats vs. 1135.2 ± 16.0% for crosslinked MeGel mats). The UV crosslinking process was demonstrated to significantly improve the structural stability and mechanical properties of MeGel/PLLA nanofiber mats. The Young's modulus and ultimate strength of the crosslinked nanofiber mats were demonstrated to obviously decrease when more MeGel was introduced in both dry and wet conditions. The biological tests showed that all the crosslinked nanofiber mats presented great biocompatibility, but the crosslinked nanofiber mats with more MeGel were able to notably promote the attachment, growth, and proliferation of human dermal fibroblasts. Overall, this study demonstrates that our MeGel/PLLA blend nanofiber mats are attractive candidates for wound dressing material research and application.
Collapse
Affiliation(s)
- Mingchao Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China;
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; (M.S.); (S.C.)
- Shandong Academy of Pharmaceutical Science, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Jinan 250101, China;
| |
Collapse
|
30
|
Zhou L, Liu N, Feng L, Zhao M, Wu P, Chai Y, Liu J, Zhu P, Guo R. Multifunctional electrospun asymmetric wettable membrane containing black phosphorus/Rg1 for enhancing infected wound healing. Bioeng Transl Med 2021; 7:e10274. [PMID: 35600652 PMCID: PMC9115714 DOI: 10.1002/btm2.10274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering Jinan University Guangzhou China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering Jinan University Guangzhou China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Peng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Yunfei Chai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Jian Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou Guangdong China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering Jinan University Guangzhou China
| |
Collapse
|
31
|
Li C, Qiu Y, Li R, Li M, Qin Z, Yin X. Preparation of poly (N-isopropylacrylamide)/polycaprolactone electrospun nanofibres as thermoresponsive drug delivery systems in wound dressing. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Yuheng Qiu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Rongguo Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan, China
| |
Collapse
|
32
|
Ndlovu SP, Ngece K, Alven S, Aderibigbe BA. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers (Basel) 2021; 13:2959. [PMID: 34502997 PMCID: PMC8434607 DOI: 10.3390/polym13172959] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.
Collapse
Affiliation(s)
| | | | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, South Africa; (S.P.N.); (K.N.); (S.A.)
| |
Collapse
|
33
|
Chelidoniummajus L. Incorporated Emulsion Electrospun PCL/PVA_PEC Nanofibrous Meshes for Antibacterial Wound Dressing Applications. NANOMATERIALS 2021; 11:nano11071785. [PMID: 34361171 PMCID: PMC8308255 DOI: 10.3390/nano11071785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Presently, there are many different types of wound dressings available on the market. Nonetheless, there is still a great interest to improve the performance and efficiency of these materials. Concerning that, new dressing materials containing natural products, such as medicinal plants that protect the wound from infections but also enhance skin regeneration have been or are being developed. Herein, we used for the first time a needleless emulsion electrospinning technique for incorporating Chelidoniummajus L. (C. majus), a medicinal plant widely known for its traditional therapeutic properties, in Polycaprolactone (PCL)/Polyvinyl Alcohol (PVA)_Pectin (PEC) nanofibrous meshes. Moreover, the potential use of these electrospun nanofibers as a carrier for C. majus was also explored. The results obtained revealed that the produced PCL/PVA_PEC nanofibrous meshes containing C. majus extract displayed morphological characteristics similar to the natural extracellular matrix of the skin (ECM). Furthermore, the produced meshes showed beneficial properties to support the healing process. Additionally, the C. majus-loaded PCL/PVA_PEC nanofibrous meshes inhibited Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth, reaching a 3.82 Log reduction, and showed to be useful for controlled release, without causing any cytotoxic effect on the normal human dermal fibroblasts (NHDF) cells. Hence, these findings suggest the promising suitability of this novel wound dressing material for prevention and treatment of bacterial wound infections.
Collapse
|
34
|
Bellu E, Medici S, Coradduzza D, Cruciani S, Amler E, Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:7095. [PMID: 34209468 PMCID: PMC8268279 DOI: 10.3390/ijms22137095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy;
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Evzen Amler
- UCEEB, Czech Technical University, Trinecka 1024, 27343 Bustehrad, Czech Republic;
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Interuniversity Consortium I.N.B.B., Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
35
|
Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13132104. [PMID: 34206747 PMCID: PMC8271691 DOI: 10.3390/polym13132104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
The management of chronic wounds is challenging. The factors that impede wound healing include malnutrition, diseases (such as diabetes, cancer), and bacterial infection. Most of the presently utilized wound dressing materials suffer from severe limitations, including poor antibacterial and mechanical properties. Wound dressings formulated from the combination of biopolymers and synthetic polymers (i.e., poly (vinyl alcohol) or poly (ε-caprolactone) display interesting properties, including good biocompatibility, improved biodegradation, good mechanical properties and antimicrobial effects, promote tissue regeneration, etc. Formulation of these wound dressings via electrospinning technique is cost-effective, useful for uniform and continuous nanofibers with controllable pore structure, high porosity, excellent swelling capacity, good gaseous exchange, excellent cellular adhesion, and show a good capability to provide moisture and warmth environment for the accelerated wound healing process. Based on the above-mentioned outstanding properties of nanofibers and the unique properties of hybrid wound dressings prepared from poly (vinyl alcohol) and poly (ε-caprolactone), this review reports the in vitro and in vivo outcomes of the reported hybrid nanofibers.
Collapse
|
36
|
Ulker Turan C, Metin A, Guvenilir Y. Controlled release of tetracycline hydrochloride from poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibers. Eur J Pharm Biopharm 2021; 162:59-69. [PMID: 33727142 DOI: 10.1016/j.ejpb.2021.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
Abstract
Development of drug delivery systems is an extensively researched area in biomedical field. In recent years, there is an increasing interest on fabrication of biocompatible nanofibrous drug delivery systems. In the present study, poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin nanofibrous membranes were fabricated for the controlled delivery and release of tetracycline hydrochloride (TCH) antibiotic. Poly(ω-pentadecalactone-co-ε-caprolactone) content provides an originality to the membrane, since it has been synthesized enzymatically previously. Varied amounts of tetracycline hydrochloride including poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin (1:1, v:v) binary polymer blend was electrospun and characterizations (morphological and molecular structure, wettability characteristics, and thermal behavior) were applied to investigate the incorporation of drug molecule. Afterwards, in vitro drug release studies were carried out and mathematical modelling was applied to drug release data in order to clarify the transport mechanism of drug. TCH release profile comprised of an initial burst release in first hour and followed by a sustained release through 14 days which allowed sufficient antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. The presented drug delivery system may be applied as an antibacterial wound dressing device for skin infections.
Collapse
Affiliation(s)
- Cansu Ulker Turan
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey.
| | - Ayse Metin
- Istanbul Technical University, Polymer Science and Technology, Istanbul, Turkey
| | - Yuksel Guvenilir
- Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
| |
Collapse
|
37
|
Fereydouni N, Movaffagh J, Amiri N, Darroudi S, Gholoobi A, Goodarzi A, Hashemzadeh A, Darroudi M. Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Sci Rep 2021; 11:1902. [PMID: 33479286 PMCID: PMC7820604 DOI: 10.1038/s41598-020-73678-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Curcumin contains many biological activities as a natural bioactive substance, however, its low solubility stands as a huge bioavailability disadvantage. Recently, different methods have been developed for utilizing the tremendous medicinal properties of this material. In this study, an Oil/Water nano-emulsion of curcumin (Nano-CUR) has been woven in zein polymer at three percentages of 5%, 10%, and 15% (v/v). We have investigated the physicochemical properties of nanofibers (NFs) including FESEM, FTIR, tensile strength, encapsulation efficiency, and release profile, as well as biological properties. According to the data, the NFs have been observed to become significantly thinner and more uniformed as the involved percentage of Nano-CUR had been increased from 5 to 15%. It is considerable that the tensile strength can be increased by heightening the existing Nano-CUR from 5% towards 15%. The resultant NFs of zein/Nano-CUR 15% have exhibited higher in vitro release and lower encapsulation efficiency than the other evaluated zein/Nano-CUR NFs. It has been confirmed through the performed viability and antioxidant studies that zein/Nano-CUR 10% NFs are capable of providing the best conditions for cell proliferation. Considering the mentioned facts, this work has suggested that Nano-CUR can be successfully woven in zein NFs and maintain their biological properties.
Collapse
Affiliation(s)
- Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran. .,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran. .,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jebrail Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafise Amiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Darroudi
- Student Research Committee, International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Hashemzadeh
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
39
|
Polak-Kraśna K, Mazgajczyk E, Heikkilä P, Georgiadis A. Parametric Finite Element Model and Mechanical Characterisation of Electrospun Materials for Biomedical Applications. MATERIALS 2021; 14:ma14020278. [PMID: 33430450 PMCID: PMC7826732 DOI: 10.3390/ma14020278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023]
Abstract
Electrospun materials, due to their unique properties, have found many applications in the biomedical field. Exploiting their porous nanofibrous structure, they are often used as scaffolds in tissue engineering which closely resemble a native cellular environment. The structural and mechanical properties of the substrates need to be carefully optimised to mimic cues used by the extracellular matrix to guide cells’ behaviour and improve existing scaffolds. Optimisation of these parameters is enabled by using the finite element model of electrospun structures proposed in this study. First, a fully parametric three-dimensional microscopic model of electrospun material with a random fibrous network was developed. Experimental results were obtained by testing electrospun poly(ethylene) oxide materials. Parameters of single fibres were determined by atomic force microscopy nanoindentations and used as input data for the model. The validation was performed by comparing model output data with tensile test results obtained for electrospun mats. We performed extensive analysis of model parameters correlations to understand the crucial factors and enable extrapolation of a simplified model. We found good agreement between the simulation and the experimental data. The proposed model is a potent tool in the optimisation of electrospun structures and scaffolds for enhanced regenerative therapies.
Collapse
Affiliation(s)
- Katarzyna Polak-Kraśna
- Biomechanics Research Centre, National University of Ireland, H91 TK33 Galway, Ireland
- Institute of Product and Process Innovation, Leuphana University Lüneburg, 21339 Lower Saxony, Germany
| | - Emilia Mazgajczyk
- Faculty of Mechanical Engineering, Centre of Advanced Manufacturing Technologies-Fraunhofer Project Center (CAMT-FPC), Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd., FI-02044 VTT Tampere, Finland
| | - Anthimos Georgiadis
- Institute of Product and Process Innovation, Leuphana University Lüneburg, 21339 Lower Saxony, Germany
| |
Collapse
|
40
|
Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110158] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Faezeh Ghahreman, Semnani D, Khorasani SN, Varshosaz J, Khalili S, Mohammadi S, Kaviannasab E. Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20330020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Gutschmidt D, Hazra RS, Zhou X, Xu X, Sabzi M, Jiang L. Electrospun, sepiolite-loaded poly(vinyl alcohol)/soy protein isolate nanofibers: Preparation, characterization, and their drug release behavior. Int J Pharm 2020; 594:120172. [PMID: 33321171 DOI: 10.1016/j.ijpharm.2020.120172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Wound management and drug release are important applications for electrospun nanofibers. In this study, poly(vinyl alcohol)/soy protein isolate (PVA/SPI) nanofiber mats were produced by electrospinning and used as drug carriers. The mats were loaded with ketoprofen by dissolving the drug in the solutions for nanofiber electrospinning. To improve drug release control of the nanofiber mats, a natural tubular nanoparticle, sepiolite, was used as a secondary release control tool. Three types of nanofiber mats were fabricated by electrospinning the solutions prepared by 1) direct mixing of PVA, SPI, and ketoprofen, 2) direct mixing of PVA, SPI, sepiolite, and ketoprofen, and 3) mixing PVA, SPI, and ketoprofen-preloaded sepiolite. The drug release behavior of the mats was studied using UV-vis spectroscopy and the mechanical properties of the mats were investigated by tensile testing. The results showed that sepiolite had a high impact on the release of ketoprofen, with the drug-loaded sepiolite leading to the slowest release. The incorporation of SPI and sepiolite into the PVA nanofibers also increased the mechanical strength of the mats, making them easier to handle and potentially longer-lasting. This study demonstrated the potential of using natural biomaterials and nanomaterials as the components of controlled-release drug delivery vehicles.
Collapse
Affiliation(s)
- David Gutschmidt
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States.
| | - Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States; Program of Materials and Nanotechnology, North Dakota State University, Fargo, ND 58108, United States
| | - Xiaoyi Zhou
- Department of Statistics, North Dakota State University, Fargo, ND 58108, United States
| | - Xuezhu Xu
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States; Program of Materials and Nanotechnology, North Dakota State University, Fargo, ND 58108, United States.
| | - Mohammad Sabzi
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States.
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States; Program of Materials and Nanotechnology, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
43
|
Sharma A, Puri V, Kumar P, Singh I. Biopolymeric, Nanopatterned, Fibrous Carriers for Wound Healing Applications. Curr Pharm Des 2020; 26:4894-4908. [DOI: 10.2174/1381612826666200701152217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
Background:
Any sort of wound injury leads to skin integrity and further leads to wound formation.
Millions of deaths are reported every year, which contributes to an economical hamper world widely, this accounts
for 10% of death rate that insight into various diseases.
Current Methodology:
Rapid wound healing plays an important role in effective health care. Wound healing is a
multi-factorial physiological process, which helps in the growth of new tissue to render the body with the imperative
barrier from the external environment. The complexity of this phenomenon makes it prone to several abnormalities.
Wound healing, as a normal biological inherent process occurs in the body, which is reaped through four
highly defined programmed phases, such as hemostasis, inflammation, proliferation, and remodeling and these
phases occur in the proper progression. An overview, types, and classification of wounds along with the stages of
wound healing and various factors affecting wound healing have been discussed systematically. Various biopolymers
are reported for developing nanofibers and microfibers in wound healing, which can be used as a therapeutic
drug delivery for wound healing applications. Biopolymers are relevant for biomedical purposes owing to
biodegradability, biocompatibility, and non- toxicity. Biopolymers such as polysaccharides, proteins and various
gums are used for wound healing applications. Patents and future perspectives have been given in the concluding
part of the manuscript. Overall, applications of biopolymers in the development of fibers and their applications in
wound healing are gaining interest in researchers to develop modified biopolymers and tunable delivery systems
for effective management and care of different types of wounds.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vivek Puri
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
44
|
Ning Y, Shen W, Ao F. Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Adv 2020; 10:37246-37265. [PMID: 35521229 PMCID: PMC9057162 DOI: 10.1039/d0ra06865a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The fiber obtained by electrospinning technology is a kind of biomaterial with excellent properties, which not only has a unique micro-nanostructure that gives it a large specific surface area and porosity, but also has satisfactory biocompatibility and degradability (if the spinning material used is a degradable polymer). These biomaterials provide a suitable place for cell attachment and proliferation, and can also achieve immobilization. On the other hand, its large porosity and three-dimensional spatial structure show unique blocking properties in drug delivery applications in order to achieve the purpose of slow release or even controlled release. The immobilization effect or blocking effect of these materials is mainly reflected in the hollow or core-shell structure. The purpose of this paper is to understand the application of the electrospun fiber based on biodegradable polymers (aliphatic polyesters) in the biomedical field, especially the immobilization or blocking effect of the electrospun fiber membrane on cells, drugs or enzymes. This paper focuses on the performance of these materials in tissue engineering, wound dressing, drug delivery system, and enzyme immobilization technology. Finally, based on the existing research basis of the electrospun fiber in the biomedical field, a potential research direction in the future is put forward, and few suggestions are also given for the technical problems that urgently need to be solved.
Collapse
Affiliation(s)
- Yuanlan Ning
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| |
Collapse
|
45
|
Nun N, Cruz M, Jain T, Tseng YM, Menefee J, Jatana S, Patil PS, Leipzig ND, McDonald C, Maytin E, Joy A. Thread Size and Polymer Composition of 3D Printed and Electrospun Wound Dressings Affect Wound Healing Outcomes in an Excisional Wound Rat Model. Biomacromolecules 2020; 21:4030-4042. [PMID: 32902971 DOI: 10.1021/acs.biomac.0c00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored. Using a modular polymer platform, four polyester direct-write 3D printed scaffolds and electrospun mats were fabricated into wound dressings. The dressings were applied to splinted, full thickness skin wounds in an excisional wound rat model and evaluated against control wounds to which no dressing was applied. Wound closure rates and reduction of the wound bed width were not affected by the thread size or polymer composition. However, epidermal thickness was larger in wounds treated with electrospun dressings and was slightly affected by the polymer composition. Two of the four tested polymer compositions lead to delayed reorganization of granulation tissues. Moreover, enhanced angiogenesis was seen in wounds treated with 3D printed dressings compared to those treated with electrospun dressings. The results from this study can be used to inform the choice of dressing architecture and polymer compositions to achieve positive wound healing outcomes.
Collapse
Affiliation(s)
- Nicholas Nun
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Megan Cruz
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tanmay Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yen-Ming Tseng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Josh Menefee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Samreen Jatana
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Pritam S Patil
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical, Biomolecular and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Edward Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio 44106, United States.,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
46
|
Castillo-Henríquez L, Vargas-Zúñiga R, Pacheco-Molina J, Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET AND DMPK 2020; 8:325-353. [PMID: 35300196 PMCID: PMC8915594 DOI: 10.5599/admet.844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Electrospinning is a novel and sophisticated technique for the production of nanofibers with high surface area, extreme porous structure, small pore size, and surface morphologies that make them suitable for biomedical and bioengineering applications, which can provide solutions to current drug delivery issues of poorly water-soluble drugs. Electrospun nanofibers can be obtained through different methods asides from the conventional one, such as coaxial, multi-jet, side by side, emulsion, and melt electrospinning. In general, the application of an electric potential to a polymer solution causes a charged liquid jet that moves downfield to an oppositely charged collector, where the nanofibers are deposited. Plenty of polymers that differ in their origin, degradation character and water affinity are used during the process. Physicochemical properties of the drug, polymer(s), and solvent systems need to be addressed to guarantee successful manufacturing. Therefore, this review summarizes the recent progress in electrospun nanofibers for their use as a nanotechnological tool for dissolution optimization and drug delivery systems for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
| | - Rolando Vargas-Zúñiga
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jorge Pacheco-Molina
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, 11501-2060, San José, Costa Rica
| | - Jose Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), 1174-1200, San José, Costa Rica
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, 86-3000, Heredia, Costa Rica
| |
Collapse
|
47
|
Abstract
Currently, due to uprising concerns about wound infections, healing agents have been regarded as one of the major solutions in the treatment of different skin lesions. The usage of temporary barriers can be an effective way to protect wounds or ulcers from dangerous agents and, using these carriers can not only improve the healing process but also they can minimize the scarring and the pain suffered by the human. To cope with this demand, researchers struggled to develop wound dressing agents that could mimic the structural and properties of native skin with the capability to inhibit bacterial growth. Hence, asymmetric membranes that can impair bacterial penetration and avoid exudate accumulation as well as wound dehydration have been introduced. In general, synthetic implants and tissue grafts are expensive, hard to handle (due to their fragile nature and poor mechanical properties) and their production process is very time consuming, while the asymmetric membranes are affordable and their production process is easier than previous epidermal substitutes. Motivated by this, here we will cover different topics, first, the comprehensive research developments of asymmetric membranes are reviewed and second, general properties and different preparation methods of asymmetric membranes are summarized. In the two last parts, the role of chitosan based-asymmetric membranes and electrospun asymmetric membranes in hastening the healing process are mentioned respectively. The aforementioned membranes are inexpensive and possess high antibacterial and satisfactory mechanical properties. It is concluded that, despite the promising current investigations, much effort is still required to be done in asymmetric membranes.
Collapse
|
48
|
Mulholland EJ. Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Front Bioeng Biotechnol 2020; 8:481. [PMID: 32582653 PMCID: PMC7283777 DOI: 10.3389/fbioe.2020.00481] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is a promising method for the rapid and cost-effective production of nanofibers from a wide variety of polymers given the high surface area morphology of these nanofibers, they make excellent wound dressings, and so have significant potential in the prevention and treatment of scars. Wound healing and the resulting scar formation are exceptionally well-characterized on a molecular and cellular level. Despite this, novel effective anti-scarring treatments which exploit this knowledge are still clinically absent. As the process of electrospinning can produce fibers from a variety of polymers, the treatment avenues for scars are vast, with therapeutic potential in choice of polymers, drug incorporation, and cell-seeded scaffolds. It is essential to show the new advances in this field; thus, this review will investigate the molecular processes of wound healing and scar tissue formation, the process of electrospinning, and examine how electrospun biomaterials can be utilized and adapted to wound repair in the hope of reducing scar tissue formation and conferring an enhanced tensile strength of the skin. Future directions of the research will explore potential novel electrospun treatments, such as gene therapies, as targets for enhanced tissue repair applications. With this class of biomaterial gaining such momentum and having such promise, it is necessary to refine our understanding of its process to be able to combine this technology with cutting-edge therapies to relieve the burden scars place on world healthcare systems.
Collapse
Affiliation(s)
- Eoghan J. Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Jain R, Shetty S, Yadav KS. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101604] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Croitoru AM, Ficai D, Ficai A, Mihailescu N, Andronescu E, Turculet CF. Nanostructured Fibers Containing Natural or Synthetic Bioactive Compounds in Wound Dressing Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2407. [PMID: 32456196 PMCID: PMC7287851 DOI: 10.3390/ma13102407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
The interest in wound healing characteristics of bioactive constituents and therapeutic agents, especially natural compounds, is increasing because of their therapeutic properties, cost-effectiveness, and few adverse effects. Lately, nanocarriers as a drug delivery system have been actively investigated and applied in medical and therapeutic applications. In recent decades, researchers have investigated the incorporation of natural or synthetic substances into novel bioactive electrospun nanofibrous architectures produced by the electrospinning method for skin substitutes. Therefore, the development of nanotechnology in the area of dressings that could provide higher performance and a synergistic effect for wound healing is needed. Natural compounds with antimicrobial, antibacterial, and anti-inflammatory activity in combination with nanostructured fibers represent a future approach due to the increased wound healing process and regeneration of the lost tissue. This paper presents different approaches in producing electrospun nanofibers, highlighting the electrospinning process used in fabricating innovative wound dressings that are able to release natural and/or synthetic substances in a controlled way, thus enhancing the healing process.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania; (A.-M.C.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania; (A.-M.C.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania; (A.-M.C.); (D.F.); (A.F.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| | - Natalia Mihailescu
- Laser Department, National Institute for Laser, Plasma & Radiation Physics, Atomistilor St. 409, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania; (A.-M.C.); (D.F.); (A.F.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| | - Claudiu Florin Turculet
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania;
- Emergency Hospital Floreasca Bucharest, Calea Floreasca St. 8, 014461 Bucharest, Romania
| |
Collapse
|