1
|
Sonaye SY, Dal-Fabbro R, Bottino MC, Sikder P. Osseointegration of 3D-Printable Polyetheretherketone-Magnesium Phosphate Bioactive Composites for Craniofacial and Orthopedic Implants. ACS Biomater Sci Eng 2025; 11:1060-1071. [PMID: 39840765 DOI: 10.1021/acsbiomaterials.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity. However, one major limitation is that the bioceramic particles embedded in the PEEK matrix can degrade over time, compromising the implant's long-term bioactivity and mechanical properties. To address this limitation, in this study, we utilized a unique bioceramic known as amorphous magnesium phosphate (AMP). AMP is a metastable phase of magnesium phosphate that nanocrystallizes in a physiological medium to stable bioactive phases exhibiting low degradation kinetics and high bioactivity. Thus, based on this property of AMP, we hypothesize that AMP-PEEK composites will exhibit sustained biodegradation kinetics, help maintain long-term osseointegration, and inhibit mechanical property degradation. Herein, we reported on a detailed in vitro degradation analysis of the developed AMP-PEEK composite 3D-printable filaments and the osseointegration capacity when implanted in a rat femoral model. The AMP-PEEK composite demonstrates controlled degradation kinetics, with tensile strength progressively decreasing from 120 to 70 MPa over a 28-day period due to hydrolytic degradation, which aligns with its role as a bioresorbable material. Notably, our findings confirm that AMP-PEEK composite osseointegration is on par with clinical gold-standard titanium implants. Thus, this study establishes a unique magnesium phosphate and PEEK-based bioactive composite material with promising potential for developing standalone dental and craniofacial implants.
Collapse
Affiliation(s)
- Surendrasingh Y Sonaye
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109-1078, United States
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
2
|
Dini C, Yamashita KM, Sacramento CM, Borges MHR, Takeda TTS, Silva JPDS, Nagay BE, Costa RC, da Cruz NC, Rangel EC, Ruiz KGS, Barão VAR. Tailoring magnesium-doped coatings for improving surface and biological properties of titanium-based dental implants. Colloids Surf B Biointerfaces 2025; 246:114382. [PMID: 39591849 DOI: 10.1016/j.colsurfb.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Physicochemical modifications of biomaterials have been proposed to overcome bone integration impairment and microbial infections. The magnesium (Mg) incorporation on dental implant surfaces has shown positive results in bone-to-implant contact and in the reduction of microbial colonization. Here, we explored the potential of using different Mg precursors to synthesize coatings via plasma electrolytic oxidation (PEO) on commercially pure titanium (cpTi), aiming to optimize the surface and biological properties. For this, we investigated Mg acetate and Mg nitrate precursors in different concentrations (0.04 M and 0.12 M), using calcium (Ca) and phosphorus (P) as the base electrolyte for all groups. Coatings with only the CaP base electrolyte were used as the control group. The surfaces were characterized by confocal laser scanning microscopy, scanning electron microscopy, film thickness measurement, profilometry, wettability, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electrochemical behavior, and ion release. For biological analyses, the adhesion (2 h) of Streptococcus sanguinis was evaluated, as well as MC3T3-E1 osteoblastic cells proliferation at 1 and 3 days, and mineralization of calcium phosphates after 28 days. PEO treatment using different Mg precursors promoted physicochemical modifications of cpTi. The experimental groups MgN 0.04 and MgN 0.12 exhibited higher surface roughness and wettability compared to the other surfaces. Regardless of the Mg precursor, the higher the ion concentration in the electrolyte solution, the higher the Mg atomic concentration on the surfaces. Concerning the electrochemical behavior, the results indicated that the incorporation of Mg in the coatings may enhance the electrochemical performance. Mg treated surfaces did not promote greater bacterial adherence when compared to the control. MgAc 0.04 and MgAc 0.12 coatings displayed improved MC3T3-E1 pre-osteoblastic cells proliferation at day 3 compared to other groups. The hydroxyapatite formation on MgAc 0.12 surfaces was higher than in the other groups. Our data indicate that Mg precursor selection positively influences physicochemical and biological properties of coatings. Specifically, MgAc 0.12 surfaces showed the most promising surface features with greater cell proliferation, without affecting microbial colonization, being an excellent candidate for surface treatment of titanium-based dental implants.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karen Midori Yamashita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Dos Santos Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, Minas Gerais 37130-001, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Karina Gonzalez Silverio Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
3
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
4
|
Zhang Y, Xu T, Li T, Chen H, Xu G, Hu W, Li Y, Dong Y, Liu Z, Han B. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio 2024; 29:101356. [PMID: 39687799 PMCID: PMC11648807 DOI: 10.1016/j.mtbio.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
We have developed a novel three-phase strategy for osteomyelitis treatment, structured into three distinct phases: the "strong antimicrobial" phase, the "monitoring and osteogenesis" phase and the "bone repair" phase. To implement this staged therapeutic strategy, we engineered a bionic drug reservoir scaffold carrying a dual-drug combination of antimicrobial peptides (AMPs) and simvastatin (SV). The scaffold integrated a bilayer gel drug-carrying structure, based on an induced membrane and combined with a 3D-printed rigid bone graft using a layer-by-layer modification strategy. The mechanical strength of the composite scaffold (73.40 ± 22.44 MPa) is comparable to that of cancellous bone. This scaffold enables controlled, sequential drug release through a spatial structure design and nanoparticle drug-carrying strategy. AMPs are released rapidly, with the release efficiency of 74.90 ± 8.19 % at 14 days (pH = 7.2), thus enabling rapid antimicrobial therapy. Meanwhile, SV is released over a prolonged period, with a release efficiency of 98.98 ± 0.05 % over 40 days in vitro simulations, promoting sustained osteogenesis and facilitating the treatment of intracellular infections by activating macrophage extracellular traps (METs). The antimicrobial, osteogenic and immunomodulatory effects of the scaffolds were verified through in vitro and in vivo experiments. It was demonstrated that composite scaffolds were able to combat the chronic recurrence of osteomyelitis after debridement, by providing rapid sterilization, stimulating METs formation, and supporting osteogenic repair.
Collapse
Affiliation(s)
- Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
| | - Hening Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Guangzhe Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenxin Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yongting Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yue Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
5
|
Martínková M, Zárybnická L, Viani A, Killinger M, Mácová P, Sedláček T, Oralová V, Klepárník K, Humpolíček P. Polyetheretherketone bioactivity induced by farringtonite. Sci Rep 2024; 14:12186. [PMID: 38806564 PMCID: PMC11133311 DOI: 10.1038/s41598-024-61941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024] Open
Abstract
Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.
Collapse
Affiliation(s)
- Martina Martínková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01, Zlín, Czech Republic
| | - Lucie Zárybnická
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00, Praha 9, Czech Republic.
| | - Alberto Viani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Via Campi, 103, 41125, Modena, Italy
| | - Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Petra Mácová
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, Prosecká 809/76, 190 00, Praha 9, Czech Republic
| | - Tomáš Sedláček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01, Zlín, Czech Republic
| | - Veronika Oralová
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01, Zlín, Czech Republic.
- Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic.
| |
Collapse
|
6
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
7
|
Bradford JP, Hernandez-Moreno G, Pillai RR, Hernandez-Nichols AL, Thomas V. Low-Temperature Plasmas Improving Chemical and Cellular Properties of Poly (Ether Ether Ketone) Biomaterial for Biomineralization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:171. [PMID: 38204023 PMCID: PMC10780010 DOI: 10.3390/ma17010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.
Collapse
Affiliation(s)
- John P. Bradford
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Gerardo Hernandez-Moreno
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Renjith R. Pillai
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
| | - Alexandria L. Hernandez-Nichols
- Department of Cellular and Molecular Pathology, Heersink School of Medicine, The University of Alabama, Birmingham, AL 35294, USA;
- Center for Free Radical Biology, The University of Alabama, Birmingham, AL 35294, USA
| | - Vinoy Thomas
- Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA; (J.P.B.); (G.H.-M.); (R.R.P.)
- Department of Physics, Center for Nanoscale Materials and Bio-Integration (CNMB), The University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Chen T, Jinno Y, Atsuta I, Tsuchiya A, Stocchero M, Bressan E, Ayukawa Y. Current surface modification strategies to improve the binding efficiency of emerging biomaterial polyetheretherketone (PEEK) with bone and soft tissue: A literature review. J Prosthodont Res 2023; 67:337-347. [PMID: 36372438 DOI: 10.2186/jpr.jpr_d_22_00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE The aim of this study was to review the literature on current surface modification strategies used to improve the binding efficiency of an emerging biological material, polyetheretherketone (PEEK), with bone and soft tissues. STUDY SELECTION This review was based on articles retrieved from PubMed, Google Scholar, Web of Science, and ScienceDirect databases. The main keywords used during the search were "polyetheretherketone (PEEK)," "implant," "surface modification," "biomaterials," "bone," "osseointegration," and "soft tissue." RESULTS The suitability of PEEK surface modification strategies has been critically analyzed and summarized here. Many cell and in vivo experiments in small animals have shown that the use of advanced modification technologies with appropriate surface modification strategies can effectively improve the surface inertness of PEEK, thereby improving its binding efficiency with bone and soft tissues. CONCLUSIONS Surface modifications of PEEK have revealed new possibilities for implant treatment; however, most results are based on in vitro or short-term in vivo evaluations in small animals. To achieve a broad application of PEEK in the field of oral implantology, more in vivo experiments and long-term clinical evaluations are needed to investigate the effects of various surface modifications on the tissue integration ability of PEEK to develop an ideal implant material.
Collapse
Affiliation(s)
- Tianjie Chen
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yohei Jinno
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michele Stocchero
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Eriberto Bressan
- Department of Neurosciences, Section of Dentistry, University of Padova, Padova, Italy
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater 2023; 23:234-246. [DOI: 10.1016/j.bioactmat.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
|
10
|
Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater 2023; 20:16-28. [PMID: 35633876 PMCID: PMC9123089 DOI: 10.1016/j.bioactmat.2022.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyetheretherketone (PEEK) has been an alternative material for titanium in bone defect repair, but its clinical application is limited by its poor osseointegration. In this study, a porous structural design and activated surface modification were used to enhance the osseointegration capacity of PEEK materials. Porous PEEK scaffolds were manufactured via fused deposition modeling and a polydopamine (PDA) coating chelated with magnesium ions (Mg2+) was utilized on the surface. After surface modification, the hydrophilicity of PEEK scaffolds was significantly enhanced, and bioactive Mg2+ could be released. In vitro results showed that the activated surface could promote cell proliferation and adhesion and contribute to osteoblast differentiation and mineralization; the released Mg2+ promoted angiogenesis and might contribute to the formation of osteogenic H-type vessels. Furthermore, porous PEEK scaffolds were implanted in rabbit femoral condyles for in vivo evaluation of osseointegration. The results showed that the customized three-dimensional porous structure facilitated vascular ingrowth and bone ingrowth within the PEEK scaffolds. The PDA coating enhanced the interfacial osseointegration of porous PEEK scaffolds and the released Mg2+ accelerated early bone ingrowth by promoting early angiogenesis during the coating degradation process. This study provides an efficient solution for enhancing the osseointegration of PEEK materials, which has high potential for translational clinical applications. PEEK materials were modified by structural porosification and surface activation simultaneously. Bioactive Mg2+ released by surface-activated porous PEEK scaffolds enhanced angiogenesis and osteogenesis. Customized three-dimensional porous structure of PEEK scaffolds facilitated vascular ingrowth and bone ingrowth. Surface-activated porous PEEK scaffolds achieved satisfactory osseointegration in vivo.
Collapse
|
11
|
Alimohammadi M, Ramazani S A A. Surface modification of polyether ether ketone implant with a novel nanocomposite coating containing poly (vinylidene fluoride) toward improving piezoelectric and bioactivity performance. Colloids Surf B Biointerfaces 2023; 222:113098. [PMID: 36529036 DOI: 10.1016/j.colsurfb.2022.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Polyether ether ketone (PEEK) is an appropriate biomaterial for orthopedic implant applications due to its superior mechanical properties, chemical resistance, nontoxicity, and Magnetic resonance imaging (MRI) compatibility. Unfortunately, the inherent bio-inertness of PEEK restricted its application and required some modification to provide better bioactivity. Besides it, the generated electrical signals in the bone due to its piezoelectricity features have a vital role in regulating bone repair and regeneration. We aimed to modify the surface of PEEK with a dual-functionality nanocomposite that provides surface bioactivity and simulates the piezoelectricity of bone. So, we introduced a novel piezoelectric-bioactive nanocomposite of dispersed poly (vinylidene fluoride) (PVDF) in a sulfonated PEEK (SPEEK) matrix containing Nanohydroxyapatite (nHA) and Carbon nanofiber (CNF) fillers for coating on PEEK substrate to improve its biological activity and simulate the electrical microenvironment for bone tissue. Furthermore, sulfonation of the PEEK surface was conducted as an intermediate layer to prepare better adhesion between the coating nanocomposite and the PEEK sublayer. Surface and cross-section morphology, apatite formation, and cell attachment were investigated on the different treated PEEK surfaces using field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX). Also, piezoelectric performance, electrical conductivity, contact angle, and mechanical properties were examined on the prepared samples. Moreover, cell viability and cell morphology were investigated for biological evaluation with human osteoblast-like MG-63 cells. Collectively, the hydrophilicity of modified PEEK (mPEEK) coated with nanocomposite was improved due to the synergistic effects of SPEEK functional groups and nHA. Also, comprehensive investigation on the mPEEK treated with nanocomposite indicated a noticeably better bone-like apatite formation, cell proliferation, and cell attachments in the presence of nHA. The transfer of induced piezoelectric charges from dispersed PVDF in the matrix to the surface of nanocomposite containing 2 wt% of CNF increased output voltage to 1893 mV. On the other hand, the presence of CNF in nanocomposites enhanced tensile strength and Young's modulus by 92% and 117%, respectively.
Collapse
Affiliation(s)
| | - Ahmad Ramazani S A
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
12
|
Cheng X, Yang X, Liu C, Li Y, Zhang Y, Wang J, Zhang X, Jian X. Stabilization of Apatite Coatings on PPENK Surfaces by Mechanical Interlocking to Promote Bioactivity and Osseointegration In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:697-710. [PMID: 36571180 DOI: 10.1021/acsami.2c20633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Apatite coatings with high stability can effectively improve the surface bioactivity and osteogenic activity of implant materials. In clinical practice, the ability of apatite coatings to bond with the substrate is critical to the effect of implants. Here, we propose a strategy to construct a three-dimensional (3D) nanoporous structure on the surface of a poly(phthalazinone ether nitrile ketone) (PPENK) substrate and introduce a polydopamine (PDA) coating with grafted phosphonate groups to enhance the overall deposition of a bone-like apatite coating in the 3D nanoporous structure during mineralization. This method leads to a mechanical interlocking between the apatite coating and the substrate, which increases the stability of the apatite coating. The apatite coating confers a better bioactive surface to PPENK and also promotes osteogenic differentiation and adhesion of MC3T3-E1 osteoblasts in vitro. The samples are then implanted into rat femurs to characterize in vivo osseointegration. Micro-CT data and histological staining of tissue sections reveal that PPENK with a stable apatite coating induces less fibrous capsule formation and no inflammatory response and promotes osteogenic differentiation and bone-bonding strength. This enhances the long-term use of PPENK implant materials and shows great potential for clinical application as orthopedic implants.
Collapse
Affiliation(s)
- Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chengde Liu
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| |
Collapse
|
13
|
dos Santos FSF, Rodrigues JFB, da Silva MC, Barreto MEV, da Silva HN, de Lima Silva SM, Fook MVL. Use of Piranha Solution as An Alternative Route to Promote Bioactivation of PEEK Surface with Low Functionalization Times. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010074. [PMID: 36615270 PMCID: PMC9822504 DOI: 10.3390/molecules28010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to achieve bioactivity on the PEEK surface using piranha solution through a lower functionalization time. For this purpose, the functionalization occurred with piranha solution and 98% sulfuric acid in the proportions of 1:2, 1:1, and 2:1 at periods of 30, 60, and 90 s. The samples treated for longer times at higher concentrations registered the characteristic spectroscopy band associated with sulfonation. Additionally, both chemical treatments allowed the opening of the aromatic ring, increasing the number of functional groups available and making the surface more hydrophilic. The piranha solution treatments with higher concentrations and longer times promoted greater heterogeneity in the surface pores, which affected the roughness of untreated PEEK. Furthermore, the treatments induced calcium deposition on the surface during immersion in SBF fluid. In conclusion, the proposed chemical modifications using sulfuric acid SPEEK 90 and, especially, the piranha solution PEEK-PS 2:1-90, were demonstrated to be promising in promoting the rapid bioactivation of PEEK-based implants.
Collapse
|
14
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
15
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
16
|
Çayır Bozoğlu Ü, Kiremitçi A, Yurtsever MÇ, Gümüşderelioğlu M. Peek dental implants coated with boron-doped nano-hydroxyapatites: Investigation of in-vitro osteogenic activity. J Trace Elem Med Biol 2022; 73:127026. [PMID: 35797924 DOI: 10.1016/j.jtemb.2022.127026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/16/2022] [Accepted: 06/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND PEEK is a high-performance thermoplastic that has many potential uses in orthopaedics and dentistry, and it has been shown to be a substitute for titanium (Ti) implants. However, PEEK is an inherently inert material, and that characteristic limits its cellular adhesion and bone integration. The aim of this study is to determine a suitable surface modification method for increasing the osteogenic potential of polyetheretherketone (PEEK) implants used in periodontal applications. METHODS In this work, a nanostructured porous surface is created on PEEK material by sulfonation, in sulfuric acid at room temperature for 20 min, and thus SPEEK samples were obtained. Then, PEEK and SPEEK samples were coated with boron (B) doped hydroxyapatite (HAp) nanoparticles (B-nHAp) precipitated from concentrated synthetic body fluid (10xSBF) by a microwave-assisted method conducted at 600 W. In vitro cell culture studies were carried out with periodontal ligament cells (PDL) on the samples. Osteogenic differentiation of PDL cells on PEEK, SPEEK and SPEEK-B-nHAp was evaluated using ALP activity assay, hydroxyproline assay, and RT-qPCR. RESULTS In vitro cell culture studies disclosed improved adhesion and proliferation of PDL cells on the SPEEK and B-nHAp coated SPEEK surfaces (SPEEK-B-nHAp). Results of these assays confirmed that treated PEEK surfaces, especially SPEEK-B-nHAp, significantly enhanced osteogenic differentiation of PDL cells in vitro compared with untreated PEEK surfaces. CONCLUSION Here a simple, easy to-use, and efficient modification method based on the properties of boron is proposed for increasing osteogenic potential of PEEK implants.
Collapse
Affiliation(s)
- Ü Çayır Bozoğlu
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Department of Molecular Biology and Genetics/Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - A Kiremitçi
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Restorative Dentistry/Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | | | - M Gümüşderelioğlu
- Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey; Bioengineering Department, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Luo F, Mao R, Huang Y, Wang L, Lai Y, Zhu X, Fan Y, Wang K, Zhang X. Femtosecond laser optimization of PEEK: efficient bioactivity achieved by synergistic surface chemistry and structures. J Mater Chem B 2022; 10:7014-7029. [PMID: 36043488 DOI: 10.1039/d2tb01142e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly-ether-ether-ketone (PEEK) is considered a potential orthopedic material due to the excellent mechanical properties and chemical resistance, but its biological inertness hampers its further clinical application. In this study, advanced femtosecond laser microfabrication technology was utilized to induce the change of the surface characteristics of PEEK to improve its bioactivity. Meanwhile, the mechanism of surface reaction and improved bioactivity was interpreted in detail from the perspective of material science. The surface physical-chemical characterization results showed that femtosecond laser etching could increase the surface energy, and the contents of active sites including amorphous carbon and carbon-hydroxyl on PEEK surfaces. In vitro validation experiments demonstrated that the samples etched with a femtosecond laser had a better ability to induce apatite deposition and cell proliferation than those treated with popular sulfonation modification, which would lead to better bioactivity and osteointegration. The current work fully presents the mechanism of the femtosecond laser low-temperature plasma effect on PEEK and the resulting surface characteristics, which could broaden the application of PEEK in the orthopedic field. Moreover, it has great potential in the surface design and modification of other biomaterials with enhanced bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yixiang Lai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
The Single-Step Fabrication of a Poly (Sodium Vinylsulfonate)-Grafted Polyetheretherketone Surface to Ameliorate Its Osteogenic Activity. COATINGS 2022. [DOI: 10.3390/coatings12060868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polyetheretherketone (PEEK) is considered a potential material for replacing traditional biomedical metals used in orthopedic implants because of its similar elastic modulus to human bone. However, the poor osteogenic activity of PEEK itself hinders its clinical application. In this study, a PEEK surface was grafted with poly (sodium vinylsulfonate) through a single-step ultraviolet-initiated graft polymerization method to ameliorate its osteogenic activity. X-ray photoelectron spectroscopy and water contact angle measurements confirmed that different amounts of poly (sodium vinylsulfonate) were grafted onto the PEEK surface upon varying the ultraviolet irradiation time. Atomic force microscopy revealed that the surface topography and roughness of PEEK before and after surface grafting did not change significantly. The in vitro results showed that grafting with poly (sodium vinylsulfonate) rendered the PEEK surface with improved MC3T3-E1 osteoblast compatibility and osteogenic activity. Moreover, a PEEK surface with a higher grafting amount of poly (sodium vinylsulfonate) was observed to be more beneficial to the proliferation and osteogenic differentiation of MC3T3-E1 osteoblasts. Collectively, by employing this simple and one-step method, the osteogenic activity of PEEK can be enhanced, paving the way for the clinical application of PEEK in orthopedic implants.
Collapse
|
19
|
Han X, Sharma N, Spintzyk S, Zhou Y, Xu Z, Thieringer FM, Rupp F. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization. Dent Mater 2022; 38:1083-1098. [PMID: 35562293 DOI: 10.1016/j.dental.2022.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study was to determine the effect of two plasma surface treatments on the biologic responses of PEEK medical implants manufactured by fused filament fabrication (FFF) 3D printing technology. METHODS This study created standard PEEK samples using an FFF 3D printer. After fabrication, half of the samples were polished to simulate a smooth PEEK surface. Then, argon (Ar) or oxygen (O2) plasma was used to modify the bioactivity of FFF 3D printed and polished PEEK samples. Scanning electron microscopy (SEM) and a profilometer were used to determine the microstructure and roughness of the sample surfaces. The wettability of the sample surface was assessed using a drop shape analyzer (DSA) after plasma treatment and at various time points following storage in a closed environment. Cell adhesion, metabolic activity, proliferation, and osteogenic differentiation of SAOS-2 osteoblasts were evaluated to determine the in vitro osteogenic activity. RESULTS SEM analysis revealed that several spherical nanoscale particles and humps appeared on sample surfaces following plasma treatment. The wettability measurement demonstrated that plasma surface treatment significantly increased the surface hydrophilicity of PEEK samples, with only a slight aging effect found after 21 days. Cell adhesion, spreading, proliferation, and differentiation of SAOS-2 osteoblasts were also up-regulated after plasma treatment. Additionally, PEEK samples treated with O2 plasma demonstrated a higher degree of bioactivation than those treated with Ar. SIGNIFICANCE Plasma-modified PEEK based on FFF 3D printing technology was a feasible and prospective bone grafting material for bone/dental implants.
Collapse
Affiliation(s)
- Xingting Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany.
| | - Neha Sharma
- Medical Additive Manufacturing Research Group, Hightech Research Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland.
| | - Sebastian Spintzyk
- University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany; ADMiRE Lab - Additive Manufacturing, intelligent Robotics, Sensors and Engineering, School of Engineering and IT, Carinthia University of Applied Sciences, Villach, Austria.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Zeqian Xu
- University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany; Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China.
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group, Hightech Research Center, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland.
| | - Frank Rupp
- University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany.
| |
Collapse
|
20
|
Gu X, Li Y, Qi C, Cai K. Biodegradable magnesium phosphates in biomedical applications. J Mater Chem B 2022; 10:2097-2112. [DOI: 10.1039/d1tb02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an essential element, magnesium is involved in a variety of physiological processes. Magnesium is the second most abundant cation in cells and the fourth most abundant cation in living...
Collapse
|
21
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Zhang ZQ, Yang YX, Li JA, Zeng RC, Guan SK. Advances in coatings on magnesium alloys for cardiovascular stents - A review. Bioact Mater 2021; 6:4729-4757. [PMID: 34136723 PMCID: PMC8166647 DOI: 10.1016/j.bioactmat.2021.04.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg) and its alloys, as potential biodegradable materials, have drawn wide attention in the cardiovascular stent field because of their appropriate mechanical properties and biocompatibility. Nevertheless, the occurrence of thrombosis, inflammation, and restenosis of implanted Mg alloy stents caused by their poor corrosion resistance and insufficient endothelialization restrains their anticipated clinical applications. Numerous surface treatment tactics have mainly striven to modify the Mg alloy for inhibiting its degradation rate and enduing it with biological functionality. This review focuses on highlighting and summarizing the latest research progress in functionalized coatings on Mg alloys for cardiovascular stents over the last decade, regarding preparation strategies for metal oxide, metal hydroxide, inorganic nonmetallic, polymer, and their composite coatings; and the performance of these strategies in regulating degradation behavior and biofunction. Potential research direction is also concisely discussed to help guide biological functionalized strategies and inspire further innovations. It is hoped that this review can give assistance to the surface modification of cardiovascular Mg-based stents and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Zhao-Qi Zhang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yong-Xin Yang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jing-An Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shao-Kang Guan
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| |
Collapse
|
23
|
He M, Huang Y, Xu H, Feng G, Liu L, Li Y, Sun D, Zhang L. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater 2021; 129:18-32. [PMID: 34020056 DOI: 10.1016/j.actbio.2021.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Polyetheretherketone (PEEK) is a popular thermoplastic material widely used in engineering applications due to its favorable mechanical properties and stability at high temperatures. With the first implantable grade PEEK being commercialized in 1990s, the use of PEEK has since grown exponentially in the biomedical field and has rapidly transformed a large section of the medical devices landscape. Nowadays, PEEK is a standard biomaterial used across a wide range of implant applications, however, its bioinertness remains a limitation for bone repair applications. The increasing demand for enhanced treatment efficacy/improved patient quality of life, calls for next-generation implants that can offer fast bone integration as well as other desirable therapeutic functions. As such, modification of PEEK implants has progressively shifted from offering desirable mechanical properties, enhancing bioactivity/fast osteointegration, to more recently, tackling post-surgery bacterial infection/biofilm formation, modulation of inflammation and management of bone cancers. Such progress is also accompanied by the evolution of the PEEK manufacturing technologies, to meet the ever increasing demand for more patient specific devices. However, no review has comprehensively covered the recently engaged application areas to date. This paper provides an up-to-date review on the development of PEEK-based biomedical devices in the past 10 years, with particularly focus on modifying PEEK for multi-modal therapeutics. The aim is to provide the peers with a timely update, which may guide and inspire the research and development of next generation PEEK-based healthcare products. STATEMENT OF SIGNIFICANCE: Significant progress has been made in PEEK processing and modification techniques in the past decades, which greatly contributed to its wide applications in the biomedical field. Despite the high volume of published literature on PEEK implant related research, there is a lack of review on its emerging applications in multi-modal therapeutics, which involve bone regeneration, anti-bacteria/anti-inflammation, and cancer inhibition, etc. This timely review covers the state-of-the-art in these exciting areas and provides the important guidance for next generation PEEK based biomedical device research and development.
Collapse
|
24
|
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound-Its synthesis, properties and applications in orthopedics. Acta Biomater 2021; 127:41-55. [PMID: 33812072 DOI: 10.1016/j.actbio.2021.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
This review recognizes a unique calcium phosphate (CaP) phase known as monetite or dicalcium phosphate anhydrous (DCPA, CaHPO4), and presents an overview of its properties, processing, and applications in orthopedics. The motivation for the present effort is to highlight the state-of-the-art research and development of monetite and propel the research community to explore more of its potentials in orthopedics. After a brief introduction of monetite, we provide a summary of its various synthesis routes like dehydration, solvent-based, energy-assisted processes and also discuss the formation of different crystal structures with respect to the synthesis conditions. Subsequently, we discuss the material's noteworthy physico-chemical properties including the crystal structure, vibrational spectra, solubility, thermal decomposition, and conversion to other phases. Of note, we focus on the biological (in vitro and in vivo) properties of monetite, given its ever-increasing popularity as a biomaterial for medical implants. Appropriately, we discuss various orthopedic applications of monetite as bone cement, implant coatings, granules for defect fillers, and scaffolds. Many in vitro and in vivo studies confirmed the favorable osteointegration and osteoconduction properties of monetite products, along with a better balance between implant resorption and new bone formation as compared to other CaP phases. The review ends with translational aspects of monetite and presents thoughts about its possible future research directions. Further research may explore but not limited to improvements in mechanical strength of monetite-based scaffolds, using monetite particles as a therapeutic agent delivery, and tissue engineering strategies where monetite serves as the biomaterial. STATEMENT OF SIGNIFICANCE: This is the first review that focusses on the favorable potential of monetite for hard tissue repair and regeneration. The article accurately covers the "Synthesis-Structure-Property-Applications" correlations elaborating on monetite's diverse material properties. Special focus is put on the in vitro and in vivo properties of the material highlighting monetite as an orthopedic material-of-choice. The synthesis techniques are discussed which provide important information about the different fabrication routes for monetite. Most importantly, the review provides comprehensive knowledge about the diverse biomedical applications of monetite as granules, defect--specific scaffolds, bone cements and implant coatings. This review will help to highlight monetite's potential as an effective regenerative medicine and catalyze the continuing translation of this bioceramic from the laboratory to clinics.
Collapse
Affiliation(s)
- H Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - L Yang
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China; International Research Center for Translational Orthopaedics (IRCTO), Jiangsu, China
| | - U Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Würzburg, Germany
| | - S B Bhaduri
- Department of Mechanical, Industrial & Manufacturing Engineering, The University of Toledo, Toledo, OH, USA; ENG-EEC Division, The National Science Foundation (NSF), Alexandria, VA, USA
| | - P Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT. 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. Colloids Surf B Biointerfaces 2021; 203:111726. [PMID: 33865088 DOI: 10.1016/j.colsurfb.2021.111726] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Poly ether-ether-ketone (PEEK) is a polymer with better lignin biocompatibility than other polymers. It is good for biomedical engineering applications. This research summarises the outcomes of an evaluation conducted on PEEK material composites, such as cellular calcium hydroxyapatite (CHAp) for medical applications. Prospects of PEEK for medical implant are highlighted. Critical analysis and review on 3D printing of PEEK, CHAp and their biological macromolecular behaviours are presented. An electronic search was carried out on Scupos database, Google search and peer-reviewed papers published in the last ten years. Because of the extraordinary strength and biological behaviours of PEEK and its composite of CHAp, 3D-printed PEEK has several biomedical applications, and its biological macromolecular behaviour leads to health sustainability. This work highlights its biological macromolecular behaviours as a bone implant material and the optimum 3D printing process for PEEK and CHAp for medical applications. The current problems with printing PEEK and CHAp are investigated along with their possible uses. Possible solutions to improve the 3D printability of PEEK and CHAp are explained based on scientific mechanisms. This detailed report stands to benefit both scientific community and medical industry to enhance 3D printing concepts for PEEK and CHAp.
Collapse
Affiliation(s)
- Bankole I Oladapo
- School of Engineering and Sustainable Development, De Montfort University, UK.
| | - S Abolfazl Zahedi
- School of Engineering and Sustainable Development, De Montfort University, UK
| | - Sikiru O Ismail
- School of Physics, Engineering and Computer Science, University of Hertfordshire, AL10 9AB, England, UK
| | - Francis T Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, UK
| |
Collapse
|
26
|
Verma S, Sharma N, Kango S, Sharma S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Pang Z, Pan Z, Ma M, Xu Z, Mei S, Jiang Z, Yin F. Nanostructured Coating of Non-Crystalline Tantalum Pentoxide on Polyetheretherketone Enhances RBMS Cells/HGE Cells Adhesion. Int J Nanomedicine 2021; 16:725-740. [PMID: 33542627 PMCID: PMC7853447 DOI: 10.2147/ijn.s286643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.
Collapse
Affiliation(s)
- Zhiying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| |
Collapse
|
28
|
Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 8:631616. [PMID: 33511108 PMCID: PMC7835420 DOI: 10.3389/fbioe.2020.631616] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, polyetheretherketone (PEEK) has been increasingly employed as an implant material in clinical applications. Although PEEK is biocompatible, chemically stable, and radiolucent and has an elastic modulus similar to that of natural bone, it suffers from poor integration with surrounding bone tissue after implantation. To improve the bioactivity of PEEK, numerous strategies for functionalizing the PEEK surface and changing the PEEK structure have been proposed. Inspired by the components, structure, and function of bone tissue, this review discusses strategies to enhance the biocompatibility of PEEK implants and provides direction for fabricating multifunctional implants in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
29
|
Bhaduri SB, Sikder P. Biomaterials for Dental Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Antibacterial calcium phosphate composite cements reinforced with silver-doped magnesium phosphate (newberyite) micro-platelets. J Mech Behav Biomed Mater 2020; 110:103934. [DOI: 10.1016/j.jmbbm.2020.103934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 11/23/2022]
|
31
|
RhBMP-2 immobilized on poly(phthalazinone ether nitrile ketone) via chemical and physical modification for promoting in vitro osteogenic differentiation. Colloids Surf B Biointerfaces 2020; 194:111173. [DOI: 10.1016/j.colsurfb.2020.111173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
32
|
Dubey N, Ferreira JA, Daghrery A, Aytac Z, Malda J, Bhaduri SB, Bottino MC. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater 2020; 113:164-176. [PMID: 32540497 PMCID: PMC7482137 DOI: 10.1016/j.actbio.2020.06.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
One of the most damaging pathologies that affects the health of both soft and hard tissues around the tooth is periodontitis. Clinically, periodontal tissue destruction has been managed by an integrated approach involving elimination of injured tissues followed by regenerative strategies with bone substitutes and/or barrier membranes. Regrettably, a barrier membrane with predictable mechanical integrity and multifunctional therapeutic features has yet to be established. Herein, we report a fiber-reinforced hydrogel with unprecedented tunability in terms of mechanical competence and therapeutic features by integration of highly porous poly(ε-caprolactone) fibrous mesh(es) with well-controlled 3D architecture into bioactive amorphous magnesium phosphate-laden gelatin methacryloyl hydrogels. The presence of amorphous magnesium phosphate and PCL mesh in the hydrogel can control the mechanical properties and improve the osteogenic ability, opening a tremendous opportunity in guided bone regeneration (GBR). Results demonstrate that the presence of PCL meshes fabricated via melt electrowriting can delay hydrogel degradation preventing soft tissue invasion and providing the mechanical barrier to allow time for slower migrating progenitor cells to participate in bone regeneration due to their ability to differentiate into bone-forming cells. Altogether, our approach offers a platform technology for the development of the next-generation of GBR membranes with tunable mechanical and therapeutic properties to amplify bone regeneration in compromised sites. STATEMENT OF SIGNIFICANCE: In this study, we developed a fiber-reinforced hydrogel platform with unprecedented tunability in terms of mechanical competence and therapeutic features for guided bone regeneration. We successfully integrated highly porous poly(ε-caprolactone) [PCL] mesh(es) into amorphous magnesium phosphate-laden hydrogels. The stiffness of the engineered hydrogel was significantly enhanced, and this reinforcing effect could be modulated by altering the number of PCL meshes and tailoring the AMP concentration. Furthermore, the fiber-reinforced hydrogel showed favorable cellular responses, significantly higher rates of mineralization, upregulation of osteogenic-related genes and bone formation. In sum, these fiber-reinforced membranes in combination with therapeutic agent(s) embedded in the hydrogel offer a robust, highly tunable platform to amplify bone regeneration not only in periodontal defects, but also in other craniomaxillofacial sites.
Collapse
Affiliation(s)
- Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Zeynep Aytac
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA; EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Dutta S, Gupta S, Roy M. Recent Developments in Magnesium Metal-Matrix Composites for Biomedical Applications: A Review. ACS Biomater Sci Eng 2020; 6:4748-4773. [PMID: 33455211 DOI: 10.1021/acsbiomaterials.0c00678] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, there is a growing interest in developing magnesium (Mg) based degradable biomaterial. Although corrosion is a concern for Mg, other physical properties, such as low density and Young's modulus, combined with good biocompatibility, lead to significant research and development in this area. To address the issues of corrosion and low yield strength of pure Mg, several approaches have been adopted, such as, composite preparation with suitable bioactive reinforcements, alloying, or surface modifications. This review specifically focuses on recent developments in Mg-based metal matrix composites (MMCs) for biomedical applications. Much effort has gone into finding suitable bioactive, bioresorbable reinforcements and processing techniques that can improve upon existing materials. In summary, this review provides a comprehensive overview of existing Mg-based composite preparation and their mechanical and corrosion properties and biological responses and future perspectives on the development of Mg-based composite biomaterials.
Collapse
Affiliation(s)
- Sourav Dutta
- Advanced Technology Development Centre, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
34
|
Microwave processing of calcium phosphate and magnesium phosphate based orthopedic bioceramics: A state-of-the-art review. Acta Biomater 2020; 111:29-53. [PMID: 32447068 DOI: 10.1016/j.actbio.2020.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023]
Abstract
The main theme of this paper is to review microwave-assisted synthesis and processing of calcium and magnesium phosphate bioceramics. Microwave processing of advanced materials has been an active field of research for the last three decades and has been already reviewed in the literature. Microwave processing of bioceramics is being pursued for almost the same period of time. Unfortunately, to the best of our knowledge, we are not aware of any comprehensive review in the literature. Our group has been a significant contributor to the field, and we feel that it is an appropriate time for reviewing the state-of-the-art of the field. The paper is divided into several sections. After rationalizing the motivation behind writing this paper in the introduction, the second section builds on some fundamental aspects of microwave-matter interactions. The third section, representing the synthesis aspects, is subdivided into five sub-sections focusing on various calcium and magnesium phosphates in both crystalline and amorphous forms. The fourth section focuses on magnesium phosphate-based bioceramics. The fifth and the sixth section describe results on the utility of microwave assistance in developing multi-functional coatings on medical implants and orthopedic cements respectively. The subsequent section reviews results on microwave sintering of calcium and magnesium phosphates. The paper concludes with remarks on unresolved issues and future directions of research. It is expected that this comprehensive review on the interdisciplinary topic will further propel the exploration of other novel applications of microwave technology in processing biomaterials by a diverse group of scientists and engineers. STATEMENT OF SIGNIFICANCE: 1. This review highlights the broad-spectrum capabilities of microwave applications in processing orthopedic bioceramics. 2. The article covers "processing" in the broadest sense of the word, comprising of material synthesis, sintering, coating formation, and setting of orthopedic cements. It also expands beyond conventional calcium phosphates to include the emergent family of magnesium phosphates. 3. In vitro/in vivo responses of microwave-processed bioceramics are discussed thus providing an integral understanding of biological aspects of these materials. 4. The comprehensive review on this interdisciplinary topic will help researchers in various disciplines to appreciate the significance and usefulness of microwaves in biomaterials processing. Further, we also believe that it will propel the exploration of other novel applications of microwave technology in the biomaterials sector.
Collapse
|
35
|
Sikder P, Ferreira JA, Fakhrabadi EA, Kantorski KZ, Liberatore MW, Bottino MC, Bhaduri SB. Bioactive amorphous magnesium phosphate-polyetheretherketone composite filaments for 3D printing. Dent Mater 2020; 36:865-883. [PMID: 32451208 PMCID: PMC7359049 DOI: 10.1016/j.dental.2020.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to develop bioactive and osseointegrable polyetheretherketone (PEEK)-based composite filaments melt-blended with novel amorphous magnesium phosphate (AMP) particles for 3D printing of dental and orthopedic implants. MATERIALS AND METHODS A series of materials and biological analyses of AMP-PEEK were performed. Thermal stability, thermogravimetric and differential scanning calorimetry curves of as-synthesized AMP were measured. Complex viscosity, elastic modulus and viscous modulus were determined using a rotational rheometer. In vitro bioactivity was analyzed using SBF immersion method. SEM, EDS and XRD were used to study the apatite-forming ability of the AMP-PEEK filaments. Mouse pre-osteoblasts (MC3T3-E1) were cultured and analyzed for cell viability, proliferation and gene expression. For in vivo analyses, bare PEEK was used as the control and 15AMP-PEEK was chosen based on its in vitro cell-related results. After 4 or 12 weeks, animals were euthanized, and the femurs were collected for micro-computed tomography (μ-CT) and histology. RESULTS The collected findings confirmed the homogeneous dispersion of AMP particles within the PEEK matrix with no phase degradation. Rheological studies demonstrated that AMP-PEEK composites are good candidates for 3D printing by exhibiting high zero-shear and low infinite-shear viscosities. In vitro results revealed enhanced bioactivity and superior pre-osteoblast cell function in the case of AMP-PEEK composites as compared to bare PEEK. In vivo analyses further corroborated the enhanced osseointegration capacity for AMP-PEEK implants. SIGNIFICANCE Collectively, the present investigation demonstrated that AMP-PEEK composite filaments can serve as feedstock for 3D printing of orthopedic and dental implants due to enhanced bioactivity and osseointegration capacity.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karla Z Kantorski
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Post-Graduate Program in Oral Science (Periodontology Unit), School of Dentistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606, USA; EEC Division, Directorate of Engineering, The National Science Foundation, Alexandria, VA 22314, USA.
| |
Collapse
|
36
|
Deng Y, Shi X, Chen Y, Yang W, Ma Y, Shi XL, Song P, Dargusch MS, Chen ZG. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Deng
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U. K
| | - Yong Chen
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Matthew S. Dargusch
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
37
|
Sun J, Cai S, Li Q, Li Z, Xu G. UV-irradiation induced biological activity and antibacterial activity of ZnO coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110997. [PMID: 32994024 DOI: 10.1016/j.msec.2020.110997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
In order to improve the biological activity and antibacterial activity of magnesium alloy, the single zinc oxide (ZnO) coating was prepared on magnesium alloys using microwave aqueous synthesis method and followed heat treatment. Then, the coated magnesium alloys were irradiated with ultraviolet (UV) light for different time and subsequently immersed in simulated body fluids (SBF). The influences of UV-irradiated time on the morphology, composition, in vitro biological activity and antibacterial activity were investigated. The results indicated that the ability of the apatite formation on the ZnO coated magnesium alloys surface was significantly enhanced as UV irradiation time prolonged, and the bone-like apatite was formed after UV irradiation for 24 h and then immersing into SBF for 2 weeks, the newly formed apatite was dense and integrate, implying that UV irradiation could activate ZnO coating to improve the biological activity. Moreover, after immersing in SBF for 2 weeks, the antibacterial experiment results demonstrated that ZnO coated magnesium alloys with UV irradiation time of 24 h exhibited more effective antibacterial activity than those of naked magnesium alloys and ZnO coated magnesium alloys which were not irradiated by ultraviolet (UV) light. This work afforded a surface strategy for designing magnesium alloy implant with desirable osseointegration ability and antibacterial property simultaneously for orthopedic and dental applications.
Collapse
Affiliation(s)
- Jin'e Sun
- Tianjin College, Beijing University of Science and Technology, Tianjin 301800, China
| | - Shu Cai
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Qianqian Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Li
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
38
|
Niu Y, Guo L, Hu F, Ren L, Zhou Q, Ru J, Wei J. Macro-Microporous Surface with Sulfonic Acid Groups and Micro-Nano Structures of PEEK/Nano Magnesium Silicate Composite Exhibiting Antibacterial Activity and Inducing Cell Responses. Int J Nanomedicine 2020; 15:2403-2417. [PMID: 32308391 PMCID: PMC7155204 DOI: 10.2147/ijn.s238287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose To improve the surface bio-properties of polyetheretherketone (PEEK)/nano magnesium silicate (n-MS) composite (PC). Materials and Methods The surface of PC was firstly treated by particle impact (PCP) and subsequently modified by concentrated sulfuric acid (PCPS). Results PCPS surface exhibited not only macropores with sizes of about 150 μm (fabricated by particle impact) but also micropores with sizes of about 2 μm (created by sulfonation of PEEK) on the macroporous walls, and sulfonic acid (-SO3H) groups were introduced on PCPS surface. In addition, many n-MS nanoparticles were exposed on the microporous walls, which formed micro-nano structures. Moreover, the surface roughness and hydrophilicity of PCPS were obviously enhanced as compared with PC and PCP. Moreover, the apatite mineralization of PCPS in simulated body fluid (SBF) was obviously improved as compared with PC. Furthermore, compared with PC and PCP, PCPS exhibited antibacterial performances due to the presence of -SO3H groups. In addition, the responses (eg, adhesion and proliferation as well as differentiation) of bone marrow mesenchymal stem cell of rat to PCPS were significantly promoted as compared with PC and PCP. Conclusion PCPS with macro-microporous surface containing -SO3H groups and micro-nano structures exhibited antibacterial activity and induced cell responses, which might possess large potential for bone substitute and repair.
Collapse
Affiliation(s)
- Yunfei Niu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Lieping Guo
- Department of Oncology, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, People's Republic of China
| | - Fangyong Hu
- Department of Orthopaedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Lishu Ren
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qirong Zhou
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jiangying Ru
- Department of Orthopaedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
39
|
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A 2020; 108:1634-1661. [PMID: 32196913 DOI: 10.1002/jbm.a.36931] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Due to the excellent restoration of masticatory function, satisfaction on aesthetics and other superiorities, dental implants represent an effective method to resolve tooth losing and damaging. Current dental implant systems still have problems waiting to be addressed, and problems are centralized on the materials of implant bodies. This review aims to summarize major developments in the field of dental implant materials, starting with an overview on structures, procedures of dental implants and challenges of implant materials. Next, implant materials are examined in three categories, that is, metals, ceramics, and polymers, their mechanical properties, biocompatibility, and bioactivity are summarized. And as an important aspect, strategies of surface modification are also reviewed, along with some finite element analysis to guiding the research direction of implant materials. Finally, the conclusive remarks are outlined to provide an outlook on the future research directions and prospects of dental implants.
Collapse
Affiliation(s)
- Xunyuan Jiang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yitong Yao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiming Tang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ke Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
40
|
Yakufu M, Wang Z, Wang Y, Jiao Z, Guo M, Liu J, Zhang P. Covalently functionalized poly(etheretherketone) implants with osteogenic growth peptide (OGP) to improve osteogenesis activity. RSC Adv 2020; 10:9777-9785. [PMID: 35498607 PMCID: PMC9050223 DOI: 10.1039/d0ra00103a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 11/21/2022] Open
Abstract
Polyetheretherketone (PEEK), as the most promising implant material for orthopedics and dental applications, has bone-like stiffness, excellent fatigue resistance, X-ray transparency, and near absence of immune toxicity. However, due to biological inertness, its bone conduction and bone ingrowth performance is limited. The surface modification of PEEK is an option to overcome these shortcomings and retain most of its favorable properties, especially when excellent osseointegration is desired. In this study, a simple reaction procedure was employed to bind the osteogenic growth peptide (OGP) on the surface of PEEK materials by covalent chemical grafting to construct a bioactive interface. The PEEK surface was activated by N,N′-disuccinimidyl carbonate (DSC) after hydroxylation, and then OGP was covalently grafted with amino groups. The functionalized surface of PEEK samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle measurement and biological evaluation in vitro. OGP-functionalized PEEK surface significantly promoted the attachment, proliferation, alkaline phosphatase (ALP) activity and mineralization of pre-osteoblast cells (MC3T3-E1). The in vivo rat tibia implantation model is adopted and micro-CT analyses demonstrated that the OGP coating significantly promoted new bone formation around the samples. The in vitro and in vivo results reveal that the modification by covalent chemical functionalization with OGP on PEEK surface can augment new bone formation surrounding implants compared to bare PEEK and PEEK implant modified by covalently attached OGP is promising in orthopedic and dental applications. Polyetheretherketone (PEEK), as the most promising implant material for orthopedics and dental applications, has bone-like stiffness, excellent fatigue resistance, X-ray transparency, and near absence of immune toxicity.![]()
Collapse
Affiliation(s)
- Maihemuti Yakufu
- Department of Orthopaedics
- The First Hospital of Jilin University
- Changchun
- China
- Key Laboratory of Polymer Ecomaterials
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jianguo Liu
- Department of Orthopaedics
- The First Hospital of Jilin University
- Changchun
- China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
41
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
42
|
Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Sikder P, Bhaduri SB, Ong JL, Guda T. Silver (Ag) doped magnesium phosphate microplatelets as next‐generation antibacterial orthopedic biomaterials. J Biomed Mater Res B Appl Biomater 2019; 108:976-989. [DOI: 10.1002/jbm.b.34450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/06/2019] [Accepted: 07/11/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Sarit B. Bhaduri
- Department of Mechanical Industrial and Manufacturing Engineering The University of Toledo Toledo Ohio
| | - Joo L. Ong
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| | - Teja Guda
- Department of Biomedical Engineering The University of Texas at San Antonio San Antonio Texas
| |
Collapse
|
44
|
Wang X, Yan L, Ye T, Cheng R, Tian J, Ma C, Wang Y, Cui W. Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:415-426. [PMID: 31147012 DOI: 10.1016/j.msec.2019.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/01/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023]
Abstract
Ti and titanium alloy have been extensively utilized in the areas of orthopedics and other related fields, however, limited abilities in antibiosis, ossification and vascularization restrict the application of these materials in clinical. In this research, pulse electrochemical deposition was used as a method to make chitosan regulate Ag+ and Ca2+ in situ, achieving ions' dual regulations and coprecipitation of HA nanoparticles (HA-NPs) and Ag nanoparticles (Ag-NPs) on the surface of Ti. The spherical nanoparticles with even distribution were fabricated by optimizing deposition potential and the concentration of Ag+. The physical stabilities of coatings were significantly improved by the chelation among CS, Ag+ and Ca2+ reducing the release rate of Ag+, Ca2+. The coatings also exhibited noticeable abilities in anti-bacteria. Bone marrow mesenchymal stem cells (BMSCs) displayed adhesion, proliferation and differentiation abilities on the surface of coatings, at the same time the composite coatings revealed promising capability in inducing BMSCs differentiation to osteoblast, which is proved by the results of fluorescent dye. Similar results also can be found in investigations about vascular endothelial cells, desirable adhesion between cells and materials and proliferation are able to prove that this kind of materials has outstanding biocompatibility with VECs cells. The animal experiments indicated that the composite coatings were biocompatible with smooth muscle, myocardium and lung with slightly negative impacts on liver and kidney. According to the results of alizarin red staining, the calcified nodules were dyed red, which reveal that this material can promote bone formation. Electrochemical method was utilized in this research to successfully construct multifunctional composite coatings, such as antibiosis, osteogenesis and angiogenesis, on the surface of Ti.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Ling Yan
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Tingjun Ye
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Ruoyu Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Juling Tian
- Laboratory Department of the First People's Hospital of Urumqi, 1 Jiankang Road, Urumqi 830002, PR China
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
45
|
Jiang S, Cai S, Zhang F, Xu P, Ling R, Li Y, Jiang Y, Xu G. Synthesis and characterization of magnesium phytic acid/apatite composite coating on AZ31 Mg alloy by microwave assisted treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:218-227. [DOI: 10.1016/j.msec.2018.05.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 01/20/2023]
|
46
|
Brum RS, Monich PR, Fredel MC, Contri G, Ramoa SDAS, Magini RS, Benfatti CAM. Polymer coatings based on sulfonated-poly-ether-ether-ketone films for implant dentistry applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:132. [PMID: 30094472 DOI: 10.1007/s10856-018-6139-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Poly-ether-ether-ketone (PEEK) is one of the most important biocompatible polymers and its sulfonation has been studied for biomedical applications. The aim of the present study is to produce, to characterize and to assess bioactivity of PEEK coatings with sulfonated PEEK (SPEEK) films. Biomedical grade PEEK (Invibio®, Batch: D0602, grade: NI1) was functionalized using sulfuric acid 98%. SPEEK was dissolved into DMSO or into DMF, both at 10% mass/volume. PEEK bars (N = 18) and cylinders (N = 27) were manufactured by compression molding and heating. SPEEK/DMSO and SPEEK/DMF were drop casted at PEEK bars and dip coated at PEEK cylinders (PEEK + SPEEK/DMSO and PEEK + SPEEK/DMF). Characterization was performed through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and contact angle measurements. Bioactivity was assessed by immersion of samples at SBF for 1, 7 and 21 days, followed by SEM, energy-dispersive analysis (EDX) and FTIR analysis. Statistical analysis was carried out by one-way analysis of variance (ANOVA) (p = 0.05). Characteristic bands of PEEK and SPEEK, were identified through FTIR spectrum analysis, while semicrystallinity was confirmed by XRD. PEEK + SPEEK/DMF showed more evident physicochemical modifications. PEEK + SPEEK/DMSO provided a more regular and hydrophobic surface, observed through SEM and contact angle measurements. SEM/EDX showed that precipitates of calcium were formed at PEEK + SPEEK/DMSO and PEEK + SPEEK/DMF at all experimental times, but materials were not considered bioactive. Interesting surface properties were achieved with SPEEK coatings but the production of SPEEK films at PEEK surface has to be further improved and biologically tested. Schematic diagram showing the methodology applied in this study to prepare PEEK and SPEEK samples, as well as the promising application of the material.
Collapse
Affiliation(s)
- R S Brum
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil.
| | - P R Monich
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| | - M C Fredel
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| | - G Contri
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| | - S D A S Ramoa
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| | - R S Magini
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| | - C A M Benfatti
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianopolis/SC, 88040-900, Brazil
| |
Collapse
|
47
|
Kong F, Nie Z, Liu Z, Hou S, Ji J. Developments of nano-TiO 2 incorporated hydroxyapatite/PEEK composite strut for cervical reconstruction and interbody fusion after corpectomy with anterior plate fixation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 187:120-125. [PMID: 30142584 DOI: 10.1016/j.jphotobiol.2018.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
Abstract
The technique of anterior cervical corpectomy and fusion (ACCF) for strut grafting has become a widespread and actively applied for many cervical complaints including cervical degeneration of the intervertebral disks, cervical trauma, cancer, rheumatoid arthritis and multilevel cervical spondylotic diseases. To avoid the complications of the old techniques, the construct stability and long anterior screw-plate designs of the bone strut have been improved by using effective biomaterials. The nanostructured hydroxyapatite (HAp) incorporated with biocompatible polymer matrixes is an effective biomedical material and creating a functional properties applied for different tissue replacements such as dental, hips, knees, tendon and ligaments and tissue repair for maxillofacial reconstruction, stabilization of the jaw bone and spinal fusion. In the present investigation, we have successfully designed cylindrical nano titanium dioxide (n-TiO2) interbody fusion with anterior plate fixation. The n-TiO2 incorporated HAp/ Polyetheretherketone (PEEK) nanocomposite strut has a superior mechanical properties and larger contact area with high fusion rates as compared with the HAp/PEEK strut in the absence of n-TiO2 nanoparticles. It is highly able to provide appropriate strength and biological activity similar to the conventional titanium cage and also mainly it has been minimizes subsidence value. The synthesized novel material of n-TiO2 incorporated HAp/PEEK nanocomposite strut is scientifically given effective outcomes for fusion and reconstruction of the ACCF.
Collapse
Affiliation(s)
- Fanlei Kong
- The Department of Spine Surgery, Xingtai People's Hospital, Xingtai, Hebei Province 054000, China.
| | - Zhihong Nie
- The Department of Spine Surgery, Xingtai People's Hospital, Xingtai, Hebei Province 054000, China
| | - Zhongpo Liu
- The Department of Spine Surgery, Xingtai People's Hospital, Xingtai, Hebei Province 054000, China
| | - Shibin Hou
- The Department of Spine Surgery, Xingtai People's Hospital, Xingtai, Hebei Province 054000, China
| | - Jiangfeng Ji
- The Department of Spine Surgery, Xingtai People's Hospital, Xingtai, Hebei Province 054000, China
| |
Collapse
|
48
|
Koju N, Sikder P, Gaihre B, B Bhaduri S. Smart Injectable Self-Setting Monetite Based Bioceramics for Orthopedic Applications. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1258. [PMID: 30037147 PMCID: PMC6073613 DOI: 10.3390/ma11071258] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 11/22/2022]
Abstract
The present study is the first of its kind dealing with the development of a specific bioceramic which qualifies as a potential material in hard-tissue replacements. Specifically, we report the synthesis and evaluation of smart injectable calcium phosphate bone cement (CPC) which we believe will be suitable for various kinds of orthopedic and spinal-fusion applications. The smart nature of this next generation orthopedic implant is attained by incorporating piezoelectric barium titanate (BT) particles into monetite-based (dicalcium phosphate anhydrous, DCPA) CPC composition. The main goal is to take advantage of the piezoelectric properties of BT, as electromechanical effect plays a vital role in fracture healing at the defect site and bone integration with the implant. Furthermore, radiopacity of BT would help in easy detection of the CPC presence at the fracture site during surgery. Results reveal that BT addition favors important properties of bone cement such as good compressive strength, injectability, bioactivity, biocompatibility, and even washout resistance. Most importantly, the self-setting nature of the bone cements are not compromised with BT incorporation. The in vitro results confirm that the developed bone-cement abides by the standard orthopedic requirements making it apt for real-time prosthetic materials.
Collapse
Affiliation(s)
- Naresh Koju
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| | - Prabaha Sikder
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| | - Bipin Gaihre
- Department of Bioengineering, the University of Toledo, Toledo, OH 43606, USA.
| | - Sarit B Bhaduri
- Department of Mechanical Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
49
|
Sikder P, Grice CR, Lin B, Goel VK, Bhaduri SB. Single-Phase, Antibacterial Trimagnesium Phosphate Hydrate Coatings on Polyetheretherketone (PEEK) Implants by Rapid Microwave Irradiation Technique. ACS Biomater Sci Eng 2018; 4:2767-2783. [PMID: 33435002 DOI: 10.1021/acsbiomaterials.8b00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Article reports the fabrication and evaluation of single-phase, silver-doped trimagnesium phosphate hydrate (Ag-TMPH) nanosheet coatings on polyetheretherketone (PEEK), a well-known material used to fabricate orthopedic and spinal implants. While PEEK has better biomechanical compatibility with bone compared to metallic implants, it is also quite inert. Therefore, it is a common practice to coat PEEK implants with conventional calcium phosphates (CaPs) to enhance cell attachment, proliferation and differentiation. As opposed to well-studied CaP compounds, relatively less-explored magnesium phosphates (MgPs) are also becoming interesting orthopedic biomaterials and is the prime focus in this research. The novel aspects of this paper are as follows. First, we report developing TMPH coatings within minutes with the help of microwave irradiation technology. Microwave irradiation plays an important role in the coating formation with accelerated kinetics. Scanning electron microscopy (SEM) confirmed the fabrication of approximately 650 nm thick TMPH coatings. The coatings resulted in submicron level surface roughness and in vitro cell studies confirmed enhanced MC3T3 cell adhesion within 4 h on such surfaces. The coatings also resulted in significant apatite formation after immersing in simulated body fluid for 7 days. Second, multifunctionality was achieved by doping TMPH coatings with Ag, thus rendering the coatings antibacterial. The antibacterial properties were evaluated against two most common infection-causing bacterial strains-Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The results indicated good bacterial resistance and bactericidal properties of the Ag-TMPH coatings. Third, in spite of Ag doping, the single-phase nature of the coatings were retained (without forming composite systems) with the help of the low-processing temperature of the microwave irradiation. The inductive coupled plasma technique confirmed that the doped single-phase TMPH coatings supported a uniform and controlled release of Ag+ ions over a period of 3 weeks. MTT assay evaluations and SEM micrographs confirmed no signs of cytotoxicity and healthy proliferation of cells in all cases. Quantitative real time PCR (qRT-PCR) indicated a significant rise in collagen (Col1) and osteocalcin (OCN) gene expression levels in the case of TMPH coated PEEK. Thus, microwave irradiation was successfully employed in forming multifunctional, that is, bioactive, cytocompatible, and antibacterial MgP coatings on PEEK.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Corey R Grice
- Department of Physics & Astronomy, The University of Toledo, Toledo, Ohio 43606, United States
| | - Boren Lin
- Department of Bioengineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Vijay K Goel
- Department of Bioengineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|