1
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
2
|
Liu H, Chen H, Han Q, Sun B, Liu Y, Zhang A, Fan D, Xia P, Wang J. Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Mater Today Bio 2023; 23:100858. [PMID: 38024843 PMCID: PMC10679779 DOI: 10.1016/j.mtbio.2023.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bone is one of the most vascular network-rich tissues in the body and the vascular system is essential for the development, homeostasis, and regeneration of bone. When segmental irreversible damage occurs to the bone, restoring its vascular system by means other than autogenous bone grafts with vascular pedicles is a therapeutic challenge. By pre-generating the vascular network of the scaffold in vivo or in vitro, the pre-vascularization technique enables an abundant blood supply in the scaffold after implantation. However, pre-vascularization techniques are time-consuming, and in vivo pre-vascularization techniques can be damaging to the body. Critical bone deficiencies may be filled quickly with immediate implantation of a supporting bone tissue engineered scaffold. However, bone tissue engineered scaffolds generally lack vascularization, which requires modification of the scaffold to aid in enhancing internal vascularization. In this review, we summarize the relationship between the vascular system and osteogenesis and use it as a basis to further discuss surgical and cytotechnology-based pre-vascularization strategies and to describe the preparation of vascularized bone tissue engineered scaffolds that can be implanted immediately. We anticipate that this study will serve as inspiration for future vascularized bone tissue engineered scaffold construction and will aid in the achievement of clinical vascularized bone.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Qin Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Bin Sun
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Danyang Fan
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China
| |
Collapse
|
3
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Esmaeilzadeh J, Borhan S, Haghbin M, Khorsand Zak A. Assessments of EISA-synthesized mesoporous bioactive glass incorporated in chitosan-gelatin matrix as potential nanocomposite scaffolds for bone regeneration. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2191200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Wang J, Chen G, Chen ZM, Wang FP, Xia B. Current strategies in biomaterial-based periosteum scaffolds to promote bone regeneration: A review. J Biomater Appl 2023; 37:1259-1270. [PMID: 36251764 DOI: 10.1177/08853282221135095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of periosteum rich in a variety of bone cells and growth factors in the treatment of bone defects has gradually been discovered. However, due to the limited number of healthy transplantable periosteum, there are still major challenges in the clinical treatment of critical-size bone defects. Various techniques for preparing biomimetic periosteal scaffolds that are similar in composition and structure to natural periosteal scaffold have gradually emerged. This article reviews the current preparation methods of biomimetic periosteal scaffolds based on various biomaterials, which are mainly divided into natural periosteal materials and various polymer biomaterials. Several preparation methods of biomimetic periosteal scaffolds with different principles are listed, their strengths and weaknesses are also discussed. It aims to provide a more systematic perspective for the preparation of biomimetic periosteal scaffolds in the future.
Collapse
Affiliation(s)
- Jinsong Wang
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Zhong M Chen
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Fu P Wang
- School of Pharmacy and Bioengineering, 232838Chongqing University of Technology, Chongqing, China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, 66530Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
6
|
Singh AK, Pramanik K. Fabrication and investigation of physicochemical and biological properties of
3D
printed sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amit Kumar Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| | - Krishna Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India
| |
Collapse
|
7
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
8
|
Development of Gelatin Thin Film Reinforced by Modified Gellan Gum and Naringenin-Loaded Zein Nanoparticle as a Wound Dressing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
10
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
11
|
Mohseni M, Shokrollahi P, Barzin J. Impact of Supramolecular Interactions on Delivery of Dexamethasone from a Physical Network of Gelatin/ZnHAp Composite Scaffold. Int J Pharm 2022; 615:121520. [DOI: 10.1016/j.ijpharm.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
12
|
Piaia L, Silva SS, Gomes JM, R Franco A, Fernandes EM, Lobo FCM, Rodrigues LC, Leonor IB, Fredel MC, Salmoria GV, Hotza D, Reis RL. Chitosan/ β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomed Mater 2021; 17. [PMID: 34785622 DOI: 10.1088/1748-605x/ac355a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/01/2021] [Indexed: 11/12/2022]
Abstract
Bone regeneration and natural repair are long-standing processes that can lead to uneven new tissue growth. By introducing scaffolds that can be autografts and/or allografts, tissue engineering provides new approaches to manage the major burdens involved in this process. Polymeric scaffolds allow the incorporation of bioactive agents that improve their biological and mechanical performance, making them suitable materials for bone regeneration solutions. The present work aimed to create chitosan/beta-tricalcium phosphate-based scaffolds coated with silk fibroin and evaluate their potential for bone tissue engineering. Results showed that the obtained scaffolds have porosities up to 86%, interconnectivity up to 96%, pore sizes in the range of 60-170 μm, and a stiffness ranging from 1 to 2 MPa. Furthermore, when cultured with MC3T3 cells, the scaffolds were able to form apatite crystals after 21 d; and they were able to support cell growth and proliferation up to 14 d of culture. Besides, cellular proliferation was higher on the scaffolds coated with silk. These outcomes further demonstrate that the developed structures are suitable candidates to enhance bone tissue engineering.
Collapse
Affiliation(s)
- Lya Piaia
- Laboratory of Innovation on Additive Manufacturing and Molding (NIMMA), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.,Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana M Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albina R Franco
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Flávia C M Lobo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Isabel B Leonor
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Márcio C Fredel
- Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.,Laboratory of Ceramic Materials and Composites (CERMAT), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Gean V Salmoria
- Laboratory of Innovation on Additive Manufacturing and Molding (NIMMA), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.,Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Dachamir Hotza
- Interdisciplinary Laboratory for the Development of Nanostructures (LINDEN), Department of Chemical Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.,Laboratory of Ceramic Materials and Composites (CERMAT), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
13
|
Singh YP, Dasgupta S, Bhaskar R, Agrawal AK. Monetite addition into gelatin based freeze-dried scaffolds for improved mechanical and osteogenic properties. Biomed Mater 2021; 16. [PMID: 34624878 DOI: 10.1088/1748-605x/ac2e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022]
Abstract
This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 μm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 μm for pure gelatin GM0scaffold and 118 μm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | | |
Collapse
|
14
|
Ali A, Bano S, Poojary S, Chaudhary A, Kumar D, Negi YS. Effect of cellulose nanocrystals on chitosan/PVA/nano β-TCP composite scaffold for bone tissue engineering application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:1-19. [PMID: 34463203 DOI: 10.1080/09205063.2021.1973709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The need for an ideal tissue construct has lead to the search of a myriad of polymer composites with desirable properties. The nature, location and type of tissue to be regenerated determines the type of material to be used. A bone construct has its own requirements such as osteoconductivity, mineralization tendency, synchronized degradation rate, osteogenic differentiation potential etc, which results in search of new possible combination of materials aimed to improve tissue response. The present study involves fabrication of Chitosan/Polyvinyl alcohol (PVA)/β-Tricalcium Phosphate (β-TCP)/Cellulose nanocrystals (CNC) porous composite by freeze drying process to be used as bone tissue engineering matrix. CNCs were isolated by acid hydrolysis of cellulose derived from pistachio shells. The prepared scaffold samples were characterized by Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-RAY Diffraction analysis (XRD). The scaffolds exhibited refinement in pore morphology and increased mineralization tendency on increasing CNC concentration. Samples with 1% and 5% CNC concentration have deposited apatite crystals with Ca/P ratio of 1.61 and 1.66 which is very close to the stoichiometric ratio of natural bone apatite. Compressive modulus of CS/PVA/β-TCP/CNC composite increased on increasing the CNC concentration to 5%. The highest cell viability was recorded in scaffolds with 5% CNC content. Though cell attachment tendency was observed in all samples but the samples with 5 and 10% CNC content demonstrated higher cell densities with significant calcium depositions when cultured for 72 h. Samples with 5% CNC concentration also possessed highest cell differentiation capabilities.
Collapse
Affiliation(s)
- Asif Ali
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur, UP, India
| | - Saleheen Bano
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur, UP, India
| | - Satish Poojary
- Amity School of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
| | - Ananya Chaudhary
- Amity School of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
| | - Dhruv Kumar
- Amity School of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, India
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur, UP, India
| |
Collapse
|
15
|
Mohonta SK, Maria KH, Rahman S, Das H, Hoque SM. Synthesis of hydroxyapatite nanoparticle and role of its size in hydroxyapatite/chitosan–gelatin biocomposite for bone grafting. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00347-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
He M, Hou Y, Zhu C, He M, Jiang Y, Feng G, Liu L, Li Y, Chen C, Zhang L. 3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjug Chem 2021; 32:1915-1925. [PMID: 34247477 DOI: 10.1021/acs.bioconjchem.1c00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A three-dimensional (3D) printed biodegradable hydrogel scaffold with a strong self-expanding ability to conform to the contour of irregular bone defects and be closely adjacent to host tissues is reported herein. The scaffold has a triple cross-linked network structure consisting of photo-cross-linked polyacrylamide (PAAM) and polyurethane (PU) as the primary IPN network and chemical cross-linked gelatin (Gel) as the secondary network, which confers the scaffold with good mechanical properties. The addition of PU in the polymerization process of acrylamide (AAM) can improve the ultraviolet (UV) photocuring efficiency of the hydrogel and incorporate abundant hydrogen bonds between the PAAM copolymer chain and the PU chain. The results show that the hydrogel scaffold contains regular structures with smooth morphology, excellent dimensional stability, and uniform aperture. The degradation rate of the hydrogel scaffold is controllable through adjusting cross-linking agents and can be up to about 60% after degradation for 28 days. More importantly, the rapid self-inflating characteristic of the scaffold in water, that is, the volume of hydrogel scaffold can increase to about 8 times that of their own in an hour and can generate a slight compressive stress on the surrounding host tissue, thus stimulating the reconstruction and growth of new bone tissues. The in vitro experiment indicates that the scaffold is nontoxic and biocompatible. The in vivo experiment shows that the PU/PAAM/Gel chemically cross-linked scaffold displays the desirable osteogenic capability. This UV-curable 3D printed self-adaptive and degradable hydrogel scaffold holds great potential for nonload-bearing bone repair.
Collapse
Affiliation(s)
- Meiling He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Miaomiao He
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yulin Jiang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yubao Li
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Chen Chen
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
17
|
Salahuddin B, Wang S, Sangian D, Aziz S, Gu Q. Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS APPLIED BIO MATERIALS 2021; 4:2886-2906. [PMID: 35014383 DOI: 10.1021/acsabm.0c01630] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin based hydrogels are often incorporated with supporting materials such as chitosan, poly(vinyl alcohol), alginate, carbon nanotubes, and hyaluronic acid. These hybrid materials are specifically of interest in diversified nanomedicine fields as they exhibit unique physicochemical properties, antimicrobial activity, biodegradability, and biocompatibility. The applications include drug delivery, wound healing, cell culture, and tissue engineering. This paper reviews the various up-to-date methods to fabricate gelatin-based hydrogels, including UV photo-cross-linking, electrospinning, and 3D bioprinting. This paper also includes physical, chemical, mechanical, and biocompatibility characterization studies of several hybrid gelatin hydrogels and discusses their relevance in nanomedicine based applications. Challenges associated with the fabrication of hybrid materials for nanotechnology implementation, specifically in nanomedicine development, are critically discussed, and some future recommendations are provided.
Collapse
Affiliation(s)
- Bidita Salahuddin
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China
| | - Danial Sangian
- Mechatronic Systems Laboratory, Faculty of Mechanical Engineering and Transport Systems, Technical University of Berlin, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Don Nicklin Building (74), St. Lucia, QLD 4072, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 3 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| |
Collapse
|
18
|
Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res 2021; 385:65-85. [PMID: 33760948 DOI: 10.1007/s00441-021-03430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
A thermosensitive quaternary ammonium chloride chitosan/β-glycerophosphate (HACC/β-GP) hydrogel scaffold combined with bone marrow mesenchymal stem cells (BMSCs) transfected with an adenovirus containing the glial cell-derived neurotrophic factor (GDNF) gene (Ad-rGDNF) was applied to spinal cord injury (SCI) repair. The BMSCs from rats were transfected with Ad-rGDNF, resulting in the expression of GDNF mRNA in the BMSCs increasing and their spontaneous differentiation into neural-like cells expressing neural markers such as NF-200 and GFAP. After incubation with HACC/β-GP hydrogel scaffolds for 2 weeks, neuronal differentiation of the BMSCs was confirmed using immunofluorescence (IF), and the expression of GDNF by the BMSCs was detected by Western blot at different time points. MTT assay and scanning electron microscopy confirmed that the HACC scaffold provides a non-cytotoxic microenvironment that supports cell adhesion and growth. Rats with SCI were treated with BMSCs, BMSCs carried by the HACC/β-GP hydrogel (HACC/BMSCs), Ad-rGDNF-BMSCs, or Ad-rGDNF-BMSCs carried by the hydrogel (HACC/GDNF-BMSCs). Animals were sacrificed at 2, 4, and 6 weeks of treatment. IF staining and Western blot were performed to detect the expression of NeuN, NF-200, GFAP, CS56, and Bax in the lesion sites of the injured spinal cord. Upon treatment with HACC/BMSCs, NF200 and GFAP were upregulated but CS56 and Bax were downregulated in the SCI lesion site. Furthermore, transplantation of HACC/GDNF-BMSCs into an SCI rat model significantly improved BBB scores and regeneration of the spinal cord. Thus, HACC/β-GP hydrogel scaffolds show promise for functional recovery in spinal cord injury patients.
Collapse
|
19
|
Niu X, Qin M, Xu M, Zhao L, Wei Y, Hu Y, Lian X, Chen S, Chen W, Huang D. Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering. Biomed Mater 2021; 16:025014. [PMID: 33361571 DOI: 10.1088/1748-605x/abd68a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyamide-6 (PA6) is a synthetic polymer that bears resemblance to collagen in its backbone and has excellent stability in human body fluid. Chitosan (CS) with the similar structure to that of the polysaccharides existing in the extracellular matrix (ECM), has a more suitable biodegradation rate for the formation of new-bone. Electrospun fiber have nanoscale structure, high porosity and large specific surface area, can simulate the structure and biological function of the natural ECM. To meet the requirements of mechanical properties and biocompatibility of bone tissue engineering, electrospun PA6/CS scaffolds were fabricated by electrospinning technology. The mineralized PA6/CS scaffolds were obtained through immersion in 1.5× simulated body fluid (1.5SBF), which allowed the hydroxyapatite (HA) layer to grow into the thickness range under very mild reaction conditions without the need of a prior chemical modification of the substrate surface. The results showed that electrospun PA6/CS fibrous scaffolds in the diameter range of 60-260 nm mimic the nanostructure of the ECM. The tensile strength and modulus of 10PA6/CS fibrous scaffolds reach up to 12.67 ± 2.31 MPa and 95.52 ± 6.78 MPa, respectively. After mineralization, HA particles uniformly distributed on the surface of PA6/CS fibrous scaffolds in a porous honeycomb structure, and the content of mineral was about 40%. In addition, cell culture study indicated that the mineralized PA6/CS composite scaffolds were non-cytotoxic, and had a good biocompatibility and an ability to promote MC3T3-E1 cell attachment and proliferation.
Collapse
Affiliation(s)
- Xiaolian Niu
- Research Center for Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Freeze Dried Biodegradable Polycaprolactone/Chitosan/Gelatin Porous Scaffolds for Bone Substitute Applications. Macromol Res 2021. [DOI: 10.1007/s13233-020-8170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Liu L, Zhang T, Li C, Jiang G, Wang F, Wang L. Regulating surface roughness of electrospun poly(ε-caprolactone)/β-tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Jeong JE, Park SY, Shin JY, Seok JM, Byun JH, Oh SH, Kim WD, Lee JH, Park WH, Park SA. 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering. Macromol Biosci 2020; 20:e2000256. [PMID: 33164317 DOI: 10.1002/mabi.202000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Indexed: 02/01/2023]
Abstract
3D printed scaffolds composed of gelatin and β-tri-calcium phosphate (β-TCP) as a biomimetic bone material are fabricated, thereby providing an environment appropriate for bone regeneration. The Ca2+ in β-TCP and COO- in gelatin form a stable electrostatic interaction, and the composite scaffold shows suitable rheological properties for bioprinting. The gelatin/β-TCP scaffold is crosslinked with glutaraldehyde vapor and unreacted aldehyde groups which can cause toxicity to cells is removed by a glycine washing. The stable binding of the hydrogel is revealed as a result of FTIR and degradation rate. It is confirmed that the composite scaffold has compressive strength similar to that of cancellous bone and 60 wt% β-TCP groups containing 40 wt% gelatin have good cellular activity with preosteoblasts. Also, in the animal experiments, the gelatin/β-TCP scaffold confirms to induce bone formation without any inflammatory responses. This study suggests that these fabricated scaffolds can serve as a potential bone substitute for bone regeneration.
Collapse
Affiliation(s)
- Jae Eun Jeong
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea.,Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shin Young Park
- Department of Dental Science and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji Youn Shin
- Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Min Seok
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - June Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Wan Doo Kim
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Jun Hee Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| | - Won Ho Park
- Department of Advanced Organic Materials and Textile System Engineering, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon, 34103, Republic of Korea
| |
Collapse
|
23
|
Montanheiro TLDA, Ribas RG, Montagna LS, Menezes BRCD, Schatkoski VM, Rodrigues KF, Thim GP. A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1869-1893. [PMID: 32579490 DOI: 10.1080/09205063.2020.1781527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) have been studied for a wide variety of applications, due to the elevated surface area and outstanding properties. Several types of NPs are available nowadays, each one with particular characteristics and challenges. Bionanocomposites, especially composed by polymer matrices, are gaining attention in the biomedical field. Although, several studies have shown the potential of adding NPs into these materials, some investigation is still needed until their clinical use for in vivo application is consummated. Besides that, is essential to evaluate whether the addition of nanoparticles changes the matrix property. In this review, we summarize the latest advances concerning polymeric bionanocomposites incorporated with organic (polymeric, cellulosic, carbon-based), and inorganic (metallic, magnetics, and metal oxide) NPs.
Collapse
Affiliation(s)
- Thaís Larissa do Amaral Montanheiro
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Renata Guimarães Ribas
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Larissa Stieven Montagna
- Technology Laboratory of Polymers and Biopolymers (TecPBio), Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Beatriz Rossi Canuto de Menezes
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Vanessa Modelski Schatkoski
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Karla Faquine Rodrigues
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| | - Gilmar Patrocínio Thim
- Plasmas and Processes Laboratory (LPP), Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
24
|
Tonda-Turo C, Carmagnola I, Chiappone A, Feng Z, Ciardelli G, Hakkarainen M, Sangermano M. Photocurable chitosan as bioink for cellularized therapies towards personalized scaffold architecture. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00082] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Pinto RV, Gomes PS, Fernandes MH, Costa ME, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110557. [DOI: 10.1016/j.msec.2019.110557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
|
26
|
Ding X, Li A, Yang F, Sun K, Sun X. β-tricalcium phosphate and octacalcium phosphate composite bioceramic material for bone tissue engineering. J Biomater Appl 2020; 34:1294-1299. [PMID: 32028822 DOI: 10.1177/0885328220903989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xinxin Ding
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, China
| | - Aimin Li
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, China
| | - Fushuai Yang
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, China
| | - Kangning Sun
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, China
| | - Xiaoning Sun
- Key Laboratory of Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Engineering Ceramics, School of Materials Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
27
|
Singh YP, Dasgupta S, Bhaskar R. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1756-1778. [PMID: 31526176 DOI: 10.1080/09205063.2019.1663474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gelatin, chitosan and nano calcium phosphate based composite scaffold with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the physico chemical, mechanical and osteogenic properties of 3D porous scaffold by incorporation of dihydrogen calcium phosphate anhydrous (DCPA) nanoparticles into biopolymer matrix with variation in composition in the prepared scaffolds. Scaffolds were prepared from the slurry containing gelatin, chitosan and synthesized nano DCPA particle using lyophilization technique. DCPA nano particles were synthesized using calcium carbonate and phosphoric acid in water-ethanol medium. XRD pattern showed phase pure DCPA in synthesized nanopowder. Scaffolds were prepared by addition of DCPA nanoparticles to the extent of 5-10 wt% of total polymer into gelatin-chitosan solution with solid loading varying between 2.5 and 2.75 wt%. The prepared scaffold showed interconnected porosity with pore size varying between 110 and 200 micrometer. With addition of DCPA nanoparticles, average pore size of the prepared scaffolds decreased. With increase in nano ceramic phase content from 5 wt% to 10 wt% of total polymer, the compressive strength of the scaffold increased. Scaffold containing 10 wt% DCPA showed the highest average compressive strength of 2.2 MPa. Higher cellular activities were observed in DCPA containing scaffolds as compared to pure gelatin chitosan scaffold suggesting the fact that nano DCPA addition into the scaffold promoted better osteoblast adhesion and proliferation as evident from MTT assay and scanning electron microscopic (SEM) investigation of osteoblast cultured scaffolds. A higher degree of lamellopodia and filopodia extensions and better spreading behavior of osteoblasts were observed in FESEM micrographs of MG 63 cultured DCPA containing scaffold. The results demonstrated that both mechanical strength and osteogenic properties of gelatin-chitosan scaffold could be improved by addition of anhydrous dihydrogen calcium phosphate nanoparticles into it.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology , Rourkela , India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology , Rourkela , India
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela , India
| |
Collapse
|
28
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Miguel Oliveira J. Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomater 2019; 93:74-85. [PMID: 30708066 DOI: 10.1016/j.actbio.2019.01.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/07/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
In this study, methacrylated gellan-gum (GG-MA) heteropolysaccharide is proposed as a hydrogel for drug delivery and bone tissue engineering applications. Calcium-enriched beads obtained from the crosslinking of 1% (w/v) GG-MA solutions with 0.1 MCaCl2 were investigated, considering their intrinsic capacity to promote self-mineralization by ion binding and deposition. Indeed, when immersed in a physiological environment, the Ca-enriched beads promoted the development of a bone-like apatite layer, as confirmed by EDS and XRD chemical analysis. Additionally, the mild production process is compatible with drugs incorporation and release. After encapsulation, Dextran with different molecular weights as well as Dexamethasone 21-phosphate were efficiently released to the surrounding environment. The engineered system was also evaluated considering its biocompatibility, by means of qualitative determination of total complement activation, macrophage proliferation, cytokine release and in vitro cell culture. These experiments showed that the developed hydrogels may not stimulate a disproportionate pro-inflammatory reaction once transplanted. At last, when implanted subcutaneously in CD1 male mice up to 8 weeks, the beads were completely calcified, and no inflammatory reaction was observed. Summing up, these results show that calcium-enriched GG-MA hydrogel beads hold great potential as news tools for bone tissue regeneration and local drug delivery applications. STATEMENT OF SIGNIFICANCE: This work describes a low-cost and straightforward strategy to prepare bioactive methacrylated gellan gum (GG-MA) hydrogels, which can be used as drug delivery systems. GG-MA is a highly anionic polymer, that can be crosslinked with divalent ions, as calcium. Taking advantage of this feature, it was possible to prepare Ca-enriched GG-MA hydrogel beads. These beads display a bioactive behavior, since they promote apatite deposition when placed in physiological conditions. Studies on the immune response suggest that the developed beads do not trigger severe immune responses. Importantly, the mild processing method render these beads compliant with drug delivery strategies, paving the way for the application of dual-functional materials on bone tissue engineering.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elina Garet
- Immunology, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia 2016-2019) & Galicia-Sur Health Research Institute (IIS-GS), University Campus, Vigo, Pontevedra 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - África González-Fernández
- Immunology, Centro de Investigaciones Biomédicas (CINBIO) (Centro Singular de Investigación de Galicia 2016-2019) & Galicia-Sur Health Research Institute (IIS-GS), University Campus, Vigo, Pontevedra 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
29
|
Gupta D, Singh AK, Dravid A, Bellare J. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20437-20452. [PMID: 31081613 DOI: 10.1021/acsami.9b05460] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three-dimensional (3D) printing technology has seen several refinements when introduced in the field of medical devices and regenerative medicines. However, it is still a challenge to 3D print gels for building complex constructs as per the desired shape and size. Here, we present a novel method to 3D print gelatin/carboxymethylchitin/hydroxyapatite composite gel constructs of a complex shape. The objective of this study is to fabricate a bioactive gel scaffold with a controlled hierarchical structure. The hierarchy ranges from 3D outer shape to macroporosity to microporosity and rough surface. The fabrication process developed here uses 3D printing in a local cryogenic atmosphere, followed by lyophilization and cross-linking. The gel instantly freezes after extrusion on the cold plate. The cooling action is not limited to the build plate, but the entire gel scaffold is cooled during the 3D printing process. This enables the construction of a stable self-sustaining large-sized 3D complex geometry. Further, lyophilization introduces bulk microporosity into the scaffolds. The outer shape and macroporosity were controlled with the 3D printer, whereas the microporous structure and desirable rough surface morphology were obtained through lyophilization. With cryogenic 3D printing, up to 90% microporosity could be incorporated into the scaffolds. The microporosity and pore size distribution were controlled by changing the cross-linker and total polymer concentration, which resulted in six times increase in surface open pores of size <20 μm on increasing the cross-linker concentration from 25 to 100 mg/mL. The introduction of bulk microporosity was shown to increase swelling by 1.8 times along with a significant increase in human umbilical cord mesenchymal stem cells and Saos-2 cell attachment (2×), proliferation (2.4×), Saos-2 cell alkaline phosphatase level (2×), and mineralization (3×). The scaffolds are spongy in nature in a wet state, thus making them potential implants for bone cavities with a small opening. The application of these cryogenically 3D printed compressible gel scaffolds with multiscale porosity extends to a small- as well as a large-sized open/partially open patient-specific bone defect.
Collapse
Affiliation(s)
| | - Atul Kumar Singh
- Central Research Facility (CRF) , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Ashwin Dravid
- Chemical and Biomolecular Engineering , Johns Hopkins University , 323 E 33rd Street , Baltimore , Maryland 21218 , United States
| | | |
Collapse
|
30
|
Esmaeilkhanian A, Sharifianjazi F, Abouchenari A, Rouhani A, Parvin N, Irani M. Synthesis and Characterization of Natural Nano-hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl Biochem Biotechnol 2019; 189:919-932. [PMID: 31144255 DOI: 10.1007/s12010-019-03046-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
Hydroxyapatite (HAp) is a bioactive and vital material which has found many applications in the biomedical and clinical fields. This bio-ceramic powder can be synthesized via different bio-waste materials. In this study, the production of natural nanohydroxyapatite was produced through calcination of untreated turkey femur-bone waste powder at 850 °C followed by ball milling the powder. The obtained powder was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. The morphology, size, and elemental composition of obtained turkey hydroxyapatite (THA) particles were investigated by scanning electron microcopy (SEM), transmission electron microcopy (TEM), and energy dispersive spectroscopy (EDS) analysis, in which the average particle size of ball milled THA was found to be about 85 nm with a Ca/P ratio of 1.63. The powder was then cold pressed and later sintered at 850, 950, 1050, and 1150 °C to evaluate its mechanical properties in terms of compressive strength and hardness. The results revealed that the strength and hardness of the samples increased by increasing the sintering temperature up to 1150 °C. Finally, the maximum values of hardness and compressive strength of the sintered THA were obtained at 1150 °C (37.44 MPa and 3.2 GPa, respectively).
Collapse
Affiliation(s)
| | - Fariborz Sharifianjazi
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Aliasghar Abouchenari
- Department of Material Science and Engineering, Shahid Bahonar University of Kerman, Kerman, 7618868366, Iran
| | - Amirreza Rouhani
- Department of Mechanical, Industrial & Aerospace Engineering, Concordia University, Montreal, Canada
| | - Nader Parvin
- Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Irani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|