1
|
Da Silva HC, De Almeida WB. On the use OF 1H-NMR chemical shifts and thermodynamic data for the prediction of the predominant conformation of organic molecules in solution: the example of the flavonoid rutin. RSC Adv 2024; 14:19619-19635. [PMID: 38895532 PMCID: PMC11184657 DOI: 10.1039/d4ra03430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Conformational analyses of organic compounds in solution still represent a challenge to be overcome. The traditional methodology uses the relative energies of the conformations to decide which one is most likely to exist in the experimental sample. The goal of this work was to deepen the approach of conformational analysis of flavonoid rutin (a well-known antioxidant agent) in DMSO solution. The methodology we used in this paper involves expanding the sample configuration space to a total of 44 possible geometries, using Molecular Dynamics (MD) simulations, which accesses structures that would hardly be considered with our chemical perception, followed by DFT geometry optimizations using the ωB97X-D/6-31G(d,p) - PCM level of theory. Spectroscopic and thermodynamic analyses were done, by calculating the relative energies and nuclear magnetic resonance (1H-NMR) chemical shifts, comparing the theoretical and experimental 1H-NMR spectra (DMSO-d 6) and evaluating Mean Absolute Error (MAE). The essence of this procedure lies in searching for patterns, like those found in traditional DNA tests common in healthcare. Here, the theoretical spectrum plays the role of the analyzed human sample, while the experimental spectrum acts as the reference standard. In solution, it is natural for the solute to dynamically alter its geometry, going through various conformations (simulated here by MD). However, our DFT/PCM results show that a structure named 32 with torsion angles ϕ 1 and ϕ 2 manually rotated by approx. 20° showed the best theoretical-experimental agreement of 1H-NMR spectra (in DMSO-d 6). Relative energies benchmarking involving 16 DFT functionals revealed that the ωB97X-D is very adequate for estimating energies of organic compounds with dispersion of charge (MAE < 1.0 kcal mol-1, using ab initio post-Hartree-Fock MP2 method as reference). To describe the stability of the conformations, calculations of Natural Bonding Orbitals (NBO) were made, aiming to reveal possible intramolecular hydrogen bonds that stabilize the structures. Since van der Waals (vdW) interactions are difficult to be identified by NBO donations, the Reduced Density Gradient (RDG) were calculated, which provides 2D plots and 3D surfaces that describe Non-Covalent Interactions (NCI). These data allowed us to analyze the effect of dispersion interactions on the relative stability of the rutin conformations. Our results strongly indicate that a combination of DFT (ωB97X-D)-PCM relative energies and NMR spectroscopic criterion is a more efficient strategy in conformational analysis of organic compounds in solution.
Collapse
Affiliation(s)
- Haroldo C Da Silva
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF) Outeiro de São João Batista s/n, Campus do Valonguinho, Centro 24020-141 Niterói RJ Brazil
- Departamento de Físico-Química, Instituto de Química, Pavilhão Haroldo Lisboa da Cunha, Universidade do Estado do Rio de Janeiro (UERJ) Rua São Francisco Xavier, 524, Maracanã 20550-013 Rio de Janeiro RJ Brazil
| | - Wagner B De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF) Outeiro de São João Batista s/n, Campus do Valonguinho, Centro 24020-141 Niterói RJ Brazil
| |
Collapse
|
2
|
Golonko A, Olichwier AJ, Paszko A, Świsłocka R, Szczerbiński Ł, Lewandowski W. Biomaterials in Cancer Therapy: Investigating the Interaction between Kaempferol and Zinc Ions through Computational, Spectroscopic and Biological Analyses. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2526. [PMID: 38893790 PMCID: PMC11172956 DOI: 10.3390/ma17112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
A complex of the natural flavonoid kaempferol with zinc (Kam-Zn) was synthesized, and its physicochemical properties were investigated using spectroscopic methods such as Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy and theoretical chemistry. Biological studies were conducted to evaluate the cytotoxic and antiproliferative effects of these complexes on MCF-7 breast cancer cells. Treatment with Kam 100 µM (84.86 ± 7.79%; 64.37 ± 8.24%) and Kam-Zn 100 µM (91.87 ± 3.80%; 87.04 ± 13.0%) showed no significant difference in proliferation between 16 h and 32 h, with the gap width remaining stable. Both Kam-Zn 100 μM and 200 μM demonstrated effective antiproliferative and cytotoxic activity, significantly decreasing cell viability and causing cell death and morphology changes. Antioxidant assays revealed that Kam (IC50 = 5.63 ± 0.06) exhibited higher antioxidant potential compared to Kam-Zn (IC50 = 6.80 ± 0.075), suggesting that zinc coordination impacts the flavonoid's radical scavenging activity by the coordination of metal ion to hydroxyl groups. Computational studies revealed significant modifications in the electronic structure and properties of Kam upon forming 1:1 complexes with Zn2+ ions. Spectroscopy analyses confirmed structural changes, highlighting shifts in absorption peaks and alterations in functional group vibrations indicative of metal-ligand interactions. FT-IR and UV-Vis spectra analysis suggested that Zn coordinates with the 3-OH and 4C=O groups of ligand. These findings suggest that the Kam-Zn complex exhibits interesting antiproliferative, cytotoxic and modified antioxidant effects on MCF-7 cells, providing valuable insights into their structural and anticancer properties.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
| | - Adam Jan Olichwier
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Paszko
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Renata Świsłocka
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Łukasz Szczerbiński
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland;
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, 15-351 Bialystok, Poland
| |
Collapse
|
3
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
4
|
Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1046-1060. [PMID: 37867263 DOI: 10.2174/0113895575273658231012040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities. OBJECTIVE Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs. METHODS The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs. RESULTS In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades. CONCLUSION It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.
Collapse
Affiliation(s)
- Sainath B Zangade
- Department of Chemistry, Madhavrao Patil, ACS College, Palam Dist. Parbhani, 431720, (M.S.), India
| | - Bashweshawar S Dhulshette
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pravinkumar B Patil
- Department of Chemistry, Mudhoji College, Phaltan, Dist. Satara, 415523, (M.S.), India
| |
Collapse
|
5
|
Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr 2022; 63:9580-9604. [PMID: 35468008 DOI: 10.1080/10408398.2022.2067121] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government of Home Science College, Chandigarh, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
6
|
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RRJ, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr 2021; 63:2773-2789. [PMID: 34554029 DOI: 10.1080/10408398.2021.1980762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Collapse
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University Seoul, Seoul, Republic of Korea
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Rubio AR, González R, Busto N, Vaquero M, Iglesias AL, Jalón FA, Espino G, Rodríguez AM, García B, Manzano BR. Anticancer Activity of Half-Sandwich Ru, Rh and Ir Complexes with Chrysin Derived Ligands: Strong Effect of the Side Chain in the Ligand and Influence of the Metal. Pharmaceutics 2021; 13:1540. [PMID: 34683834 PMCID: PMC8537477 DOI: 10.3390/pharmaceutics13101540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
An important challenge in the field of anticancer chemotherapy is the search for new species to overcome the resistance of standard drugs. An interesting approach is to link bioactive ligands to metal fragments. In this work, we have synthesized a set of p-cymene-Ru or cyclopentadienyl-M (M = Rh, Ir) complexes with four chrysin-derived pro-ligands with different -OR substituents at position 7 of ring A. The introduction of a piperidine ring on chrysin led to the highly cytotoxic pro-ligand HL4 and its metal complexes L4-M (SW480 and A549 cell lines, cytotoxic order: L4-Ir > L4-Ru ≈ L4-Rh). HL4 and its complexes induce apoptosis and can overcome cis-platinum resistance. However, HL4 turns out to be more cytotoxic in healthy than in tumor cells in contrast to its metal complexes which displayed higher selectivity than cisplatin towards cancer cells. All L4-M complexes interact with double stranded DNA. Nonetheless, the influence of the metal is clear because only complex L4-Ir causes DNA cleavage, through the generation of highly reactive oxygen species (1O2). This result supports the hypothesis of a potential dual mechanism consisting of two different chemical pathways: DNA binding and ROS generation. This behavior provides this complex with a great effectivity in terms of cytotoxicity.
Collapse
Affiliation(s)
- Ana R. Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Rocío González
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Mónica Vaquero
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana L. Iglesias
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Blvd. Universitario # 1000, Unidad Valle de las Palmas, Baja California, Tijuana 21500, Mexico
| | - Félix A. Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela 2, 13071 Ciudad Real, Spain;
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.R.R.); (M.V.); (G.E.); (B.G.)
| | - Blanca R. Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA, Universidad de Castilla-La Mancha, Avda. C. J. Cela 10, 13071 Ciudad Real, Spain; (R.G.); (A.L.I.); (F.A.J.)
| |
Collapse
|
8
|
Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules 2021; 26:molecules26154544. [PMID: 34361697 PMCID: PMC8347471 DOI: 10.3390/molecules26154544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are a class of natural polyphenolic compounds sharing a common 2-phenyl-3,4-dihydro-2H-1-benzopyran (flavan) backbone. Typically known for their antioxidant activity, flavonoids are also being investigated regarding antitumour and antimicrobial properties. In this review, we report on the complexation of both natural and synthetic flavonoids with ruthenium as a strategy to modulate the biological activity. The ruthenoflavonoid complexes are divided into three subclasses, according to their most prominent bioactivity: antitumour, antimicrobial, and protection of the cardiovascular system. Whenever possible the activity of the ruthenoflavonoids is compared with that of commercial drugs for a critical assessment of the feasibility of using them in future clinical applications.
Collapse
|
9
|
Małecka M, Skoczyńska A, Goodman DM, Hartinger CG, Budzisz E. Biological properties of ruthenium(II)/(III) complexes with flavonoids as ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Lakshmi BA, Reddy AS, Sangubotla R, Hong JW, Kim S. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids Surf B Biointerfaces 2021; 204:111773. [PMID: 33933878 DOI: 10.1016/j.colsurfb.2021.111773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
Ruthenium complexes have increased the scope for improvement in current cancer treatment by replacing platinum-based drugs. However, to reduce metal-associated toxicity, a biocompatible flavonoid, such as curcumin, is indispensable, as it offers uncompensated therapeutic benefits through formation of complexes. In this study, we synthesized metal-based flavonoid complexes using ruthenium(II) and curcumin by adopting a convenient reflux reaction, represented as Ru-Cur complexes. These complexes were thoroughly characterized using 1H, 13C NMR, XPS, FT-IR, and UV-vis spectroscopy. As curcumin is sparingly soluble in water and has poor chemical stability, we loaded Ru-Cur complexes into liposomes and further formed nanoparticles (NPs) using the thin layer evaporation method. These were named Ru-Cur loaded liposome nanoparticles (RCLNPs). The effects of RCLNPs on cell proliferation was investigated using human cervical cancer cell lines (HeLa). These RCLNPs exhibited significant cytotoxicity in HeLa cells. The anticancer properties of RCLNPs were studied using reactive oxygen species (ROS), LDH, and MTT assays as well as live-dead staining. Nuclear damage studies of RCLNPs were performed in HeLa cells using the Hoechst staining assay.
Collapse
Affiliation(s)
| | - Ankireddy Seshadri Reddy
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Jong Wook Hong
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Republic of Korea; Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea.
| | - Sanghyo Kim
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
11
|
Wang X, He S, Yuan L, Deng H, Zhang Z. Synthesis, Structure Characterization, and Antioxidant and Antibacterial Activity Study of Iso-orientin-Zinc Complex. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3952-3964. [PMID: 33764779 DOI: 10.1021/acs.jafc.0c06337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flavonoid-metal complexes possess more effective functional properties than flavonoids. However, the research of iso-orientin (Iso)-metal complex has rarely been reported. In this study, Iso-zinc complex (Iso-Zn, [Zn3(C21H14O11)2]·4H2O) had been synthesized and characterized. From the UV-vis spectra and IR spectra, the 4-carbonyl group in the C-ring of Iso was involved in the metal chelation besides A-ring and B-ring hydroxyl group. Thermal gravimetric analysis and the water contact angle test showed that Iso-Zn had higher thermal stability and better hydrophilicity than Iso, respectively. The radical scavenger and antibacterial potencies of Iso-Zn were significantly stronger than those of Iso. Furthermore, Iso-Zn showed lower erythrocytes hemolysis ratio and cytotoxicity. The present study demonstrated that Iso-Zn exhibited better water solubility, antioxidative and antibacterial activities, and lower cytotoxicity and provided a theoretical basis for expanding the utilization scope of Iso through enhancing its hydrophilicity.
Collapse
Affiliation(s)
- Xiao Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shenyuan He
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hong Deng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
12
|
Garcia-Oliveira P, Otero P, Pereira AG, Chamorro F, Carpena M, Echave J, Fraga-Corral M, Simal-Gandara J, Prieto MA. Status and Challenges of Plant-Anticancer Compounds in Cancer Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020157. [PMID: 33673021 PMCID: PMC7918405 DOI: 10.3390/ph14020157] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Antia Gonzalez Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-O.); (P.O.); (A.G.P.); (F.C.); (M.C.); (J.E.); (M.F.-C.)
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
13
|
Yao Y, Zhang M, He L, Wang Y, Chen S. Evaluation of General Synthesis Procedures for Bioflavonoid-Metal Complexes in Air-Saturated Alkaline Solutions. Front Chem 2020; 8:589. [PMID: 32850628 PMCID: PMC7419984 DOI: 10.3389/fchem.2020.00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 01/18/2023] Open
Abstract
The general synthesis methods of bioflavonoid-metal complexes are considered to be unreliable due to the instability of flavonoids in air-saturated alkaline solutions. In this study, dihydromyricetin (DHM), as a representative bioflavonoid, was selected for complexation with various transition metal ions in an air-saturated alkaline solution to form DHM-metal(II) complexes, following the general synthetic procedure. After characterization, the metal complexes were hydrolyzed to observe the stability of DHM under acidic conditions via HPLC. The effects of synthetic conditions (metal ion, alkalinity, and reflux time) on DHM stability were then investigated by UV-vis spectroscopy and HPLC. Finally, using electron paramagnetic resonance, DHM and its analogs were observed with DMPO (5,5-dimethyl-1-pyrroline-N-oxide) to form a relatively stable free radical adduct. Multiple peaks corresponding to unknown compounds appeared in the LC spectra of the DHM-metal(II) complexes after hydrolysis, indicating that some DHM reacted during synthesis. Subsequently, the transition metal ion and solution alkalinity were found to have notable effects on the stability of free DHM. Furthermore, DHM and several of its analogs generated the superoxide-anion radical in air-saturated alkaline solutions. Their capacities for generating the superoxide anion seemed to correspond to the number and/or location of hydroxyl groups or their configurations. Interestingly, DHM can react with the superoxide anion to transform into myricetin, which involves the abstraction of a C3-H atom from DHM by O2 -. Therefore, the general synthetic procedure for bioflavonoid-metal complexes in air-saturated alkaline solutions should be improved.
Collapse
Affiliation(s)
- Yuanyong Yao
- Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, School of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Meng Zhang
- Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, School of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Laibing He
- Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, School of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Yunyang Wang
- Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, School of Material and Chemical Engineering, Tongren University, Tongren, China
| | - Shixue Chen
- Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, School of Material and Chemical Engineering, Tongren University, Tongren, China
| |
Collapse
|
14
|
Alves de Souza CE, Pires ADRA, Cardoso CR, Carlos RM, Cadena SMSC, Acco A. Antineoplastic activity of a novel ruthenium complex against human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells. Heliyon 2020; 6:e03862. [PMID: 32405548 PMCID: PMC7210510 DOI: 10.1016/j.heliyon.2020.e03862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Novel metal complexes have received much attention recently because of their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternatives to the currently used platinum-based drugs for cancer therapy, with less toxicity and fewer side effects. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidative states, low toxicity, and high selectivity for cancer cells. The present study evaluated the cytotoxic effects of a ruthenium complex, namely cis-[Ru(1,10-phenanthroline)2(imidazole)2]2+ (RuC), on human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells and analyzed metabolic parameters. RuC reduced HepG2 and HeLa cell viability at all tested concentrations (10, 50, and 100 nmol/L) at 48 h of incubation, based on the MTT, Crystal violet, and neutral red assays. The proliferation capacity of HepG2 cells did not recover, whereas HeLa cell proliferation partially recovered after RuC treatment. RuC also inhibited all states of cell respiration and increased the levels of the metabolites pyruvate and lactate in both cell lines. The cytotoxicity of RuC was higher than cisplatin (positive control) in both lineages. These results indicate that RuC affects metabolic functions that are related to the energy provision and viability of HepG2 and HeLa cells and is a promising candidate for further investigations that utilize models of human cervical adenocarcinoma and mainly hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | - Rose Maria Carlos
- Department of Chemistry, Federal São Carlos University, São Carlos, Brazil
| | | | - Alexandra Acco
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
15
|
Kinetic Studies on Radical Scavenging Activity of Kaempferol Decreased by Sn(II) Binding. Molecules 2020; 25:molecules25081975. [PMID: 32340303 PMCID: PMC7221808 DOI: 10.3390/molecules25081975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Sn(II) binds to kaempferol (HKaem, 3,4′,5,7-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) at the 3,4-site forming [Sn(II)(Kaem)2] complex in ethanol. DPPH• scavenging efficiency of HKaem is dramatically decreased by SnCl2 coordination due to formation of acid inhibiting deprotonation of HKaem as ligands and thus reduces the radical scavenging activity of the complex via a sequential proton-loss electron transfer (SPLET) mechanism. Moderate decreases in the radical scavenging of HKaem are observed by Sn(CH3COO)2 coordination and by contact between Sn and HKaem, in agreement with the increase in the oxidation potential of the complex compared to HKaem, leading to a decrease in antioxidant efficiency for fruits and vegetables with Sn as package materials.
Collapse
|
16
|
Facile design and spectroscopic characterization of novel bio-inspired Quercetin-conjugated tetrakis (dimethylsulfoxide)dichlororuthenium(II) complex for enhanced anticancer properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Haghdoost MM, Golbaghi G, Guard J, Sielanczyk S, Patten SA, Castonguay A. Synthesis, characterization and biological evaluation of cationic organoruthenium(ii) fluorene complexes: influence of the nature of the counteranion. Dalton Trans 2019; 48:13396-13405. [PMID: 31432885 DOI: 10.1039/c9dt00143c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, five ruthenium arene complexes with fluorene-bearing N,N-(1) and N,O-(2) donor Schiff base ligands were synthesized and fully characterized. Cationic ruthenium complexes 3[X], ([Ru(η6-C6H6)(Cl)(fluorene-N[double bond, length as m-dash]CH-pyridine)][X] (where X = BF4, PF6, BPh4), were obtained by reacting ligand 1 with [Ru(η6-C6H6)Cl2]2 in the presence of NH4X salts, whereas neutral complex 4, Ru(η6-C6H6)(Cl)(fluorene-N[double bond, length as m-dash]CH-naphtholate), was isolated by reacting ligand 2 with the same precursor. It was possible to obtain a cationic version of the latter, 5[BF4], by reacting 4 with AgBF4 in the presence of pyridine. All compounds were fully characterized by NMR and HR-ESI-MS whereas some of them were also analyzed by single crystal X-ray analysis. Their in vitro antiproliferative activity was also assessed in human breast cancer cell lines, notably MCF-7 and T47D. Complex 4 and its cationic counterpart 5[BF4] were found to be the most cytotoxic compounds of the series (IC50 = 6.2-16.2 μM) and displayed higher antiproliferative activities than cisplatin in both cell lines. It was found that 5[BF4] undergoes a ligand exchange reaction and readily converts to 4 in the presence of 0.1 M NaCl, explaining the similarity in their observed cytotoxicities. Whereas 3[BF4] and 3[PF6] were found inactive at the tested concentrations, 3[BPh4] displayed a considerable cytotoxicity (IC50 = 16.7-27.8 μM). Notably, 3[BPh4], 4 (and 5[BF4]) were active against T47D, a cisplatin resistant cell line. Interestingly, 4 (16.4 μM) was found to be less cytotoxic than 3[BPh4] and cisplatin (6.6 and 7.9 μM, respectively) in breast healthy cells (MCF-12A). However, in comparison to 4 and cisplatin (at 10 μM), a lower in vivo toxicity was observed for complex 3[BPh4] on the development of zebrafish (Danio rerio) embryos.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghdoost
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - Golara Golbaghi
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - Juliette Guard
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - Sarah Sielanczyk
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - Shunmoogum A Patten
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| | - Annie Castonguay
- INRS - Centre Armand-Frappier Santé Biotechnology, Université du Québec, 531 boul. des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|
18
|
Lakshmi BA, Bae JY, An JH, Kim S. Nanoclusters prepared from ruthenium(II) and quercetin for fluorometric detection of cobalt(II), and a method for screening their anticancer drug activity. Mikrochim Acta 2019; 186:539. [DOI: 10.1007/s00604-019-3657-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
19
|
Govindaraju S, Roshini A, Lee MH, Yun K. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int J Nanomedicine 2019; 14:5147-5157. [PMID: 31371953 PMCID: PMC6636439 DOI: 10.2147/ijn.s209773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Kaempferol (K) is a recognized anticancer drug that can conjugate with small-size gold nanoclusters (AuNCs). Materials and methods: K-AuNCs were synthesized and their use as an anticancer drug was explored using A549 lung cancer cells. Colony formation and cell migration assays were carried out. The morphology of the K-AuNCs treated A549 cells was explored using bio-atomic force microscopy. Results: The K-AuNCs were 1-3 nm in diameter and emitted strong fluorescent at 650 nm following excitation at 550 nm. The stretching and bending nature of the K-AuNCs were analyzed by the Fourier transform infrared spectroscopy. The presence of kaempferol in the AuNCs were confirmed by the PL spectroscopy. Conclusion: The synthesized K-AuNCs mainly targeted and damaged the nuclei of the cancer cells. This composite nanocluster was less toxicity to the normal human cell and higher toxicity to the A549 lunch cancer cell and these material is potential for anticancer drug delivery and bio imaging applications.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Arivazhagan Roshini
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
20
|
Lakshmi BA, Kim S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf B Biointerfaces 2019; 178:230-237. [DOI: 10.1016/j.colsurfb.2019.02.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
|
21
|
Potential anticancer applications of the novel naringin-based ruthenium (II) complex. 3 Biotech 2019; 9:181. [PMID: 31065481 DOI: 10.1007/s13205-019-1718-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ruthenium seems to be a promising alternative to platinum because of the wide range of oxidation states it has and its ability to form complexes with bioactive ligands. In this study, naringin, a naturally occurring flavonoid, was used to synthesize a novel ruthenium complex with potential anticancer activity. The characterization of the synthesized complex was done by UV-Vis spectroscopy, FTIR and NMR studies. In addition, the complex was tested against Human A549 cell lines to determine the anticancer effect, and against human dermal fibroblasts (HDFa) to find any underlying toxicity. Further, the morphological changes of the cancer cells can be determined by using bio-atomic force microscopy. Results showed that the synthesized complex was able to induce anticancer effects against A549 with minimal impact to HDFa. In this study, we investigated the anticancer properties of naringin-ruthenium (II) complex using live- and dead-cell staining assay, MTT, Trypan blue, and lactate dehydrogenase assay. Further, morphological changes were observed in the A549 cells using Bio-AFM. The Bio-AFM results have proven the better cytotoxic behavior of naringin-ruthenium (II) complex. The cell viability results also provided the anticancer efficacy of the complex.
Collapse
|
22
|
Gera M, Kim N, Ghosh M, Sharma N, Huynh DL, Chandimali N, Koh H, Zhang JJ, Kang TY, Park YH, Kwon T, Jeong DK. Synthesis and evaluation of the antiproliferative efficacy of BRM270 phytocomposite nanoparticles against human hepatoma cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:166-176. [PMID: 30678901 DOI: 10.1016/j.msec.2018.11.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/17/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
BRM270 is the most leading phytochemical extract that possesses potent anticancer properties. A major challenge associated with this drug is its low bioavailability and thus requires high dosages for cancer treatment. Here, we report the novel nano-synthesis of phyto-composite, BRM270 for the first time by mechanical milling method with specific modifications for enhanced cytotoxicity against HepG2 human hepatoma cancer cells. Unlike free BRM270 and other phytomedicines, BRM270 nanoparticles (BRM270 NPs) are well-dispersed and small sized (23 to 70 nm) which is believed to greatly enhanced cellular uptake. Furthermore, the acidic tumor microenvironment attracts BRM270 NPs enhancing targeted therapy while leaving normal cells less affected. The comparative cytotoxicity analysis using MTT assay among the three treatment groups, such as free BRM270, BRM270 NPs, and doxorubicin demonstrated that BRM270 NPs induced greater cytotoxicity against HepG2 cells with an effective drug concentration of 12 μg/ml. From FACS analysis, we observed an apoptotic cell death of 44.4% at BRM270 NPs treated cells while only 12.5% found in the free BRM270 treated cells. Further, the comparative relative expression profiling of the candidate genes were showed significant (p < 0.05) down-regulation of IL6, BCL2, p53, and MMP9 in the BRM270 NPs treated cells, compared to the free BRM270 and doxorubicin. Indeed, the genes, CASPASE 9 and BAX have shown significant (p < 0.05) upregulation in cells treated with BRM270 NPs as compared to counter treatment groups. The investigation of the signal pathways and protein-protein network associations were also carried out to elucidate the functional insights underlying anti-cancer potential of BRM270 NPs in HepG2 cells. Taken together, our findings demonstrated that these uniquely engineered BRM270 NPs effectively enter into the cancer cells due to its acidic microenvironment thereby inducing apoptosis and regulate the cell-proliferation in-vitro at extremely low dosages.
Collapse
Affiliation(s)
- Meeta Gera
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Punjab 144411, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Do Luong Huynh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Hyebin Koh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Tae Yoon Kang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | | | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Jeju National University, Jeju, Jeju-Do 690-756, Republic of Korea.
| |
Collapse
|
23
|
De Souza LA, Da Silva HC, De Almeida WB. Structural Determination of Antioxidant and Anticancer Flavonoid Rutin in Solution through DFT Calculations of 1H NMR Chemical Shifts. ChemistryOpen 2018; 7:902-913. [PMID: 30460171 PMCID: PMC6234759 DOI: 10.1002/open.201800209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 11/28/2022] Open
Abstract
As the knowledge of the predominant molecular structure of antioxidant and anticancer flavonoid rutin in solution is very important for understanding the mechanism of action, a quantum chemical investigation of plausible rutin structures including solvent effects is of relevance. In this work, DFT calculations were performed to find possible minimum energy structures for the rutin molecule. 1H NMR chemical shift DFT calculations were carried out in DMSO solution using the polarizable continuum model (PCM) to simulate the solvent effect. Analysis of the experimental and theoretical 1H NMR chemical shift profiles offers a powerful fingerprint criterion to determine the predominant molecular structure in solution. Therefore, our aim is to find the best match between experimental (in DMSO‐d) and theoretical (PCM–DMSO) 1H NMR spectrum profiles. Among 34 optimized structures located on the potential energy surface, we found that structure 32, with a B‐ring deviated 30° from a planar configuration (geometry usually assumed for polyphenols), showed an almost perfect agreement with experimental the 1H NMR pattern when compared to the corresponding fully optimized planar geometry. This structure is also predicted as the global minimum based on room‐temperature Gibbs free energy calculations in solution and, therefore, should be experimentally observed. This is new and valuable structural information regarding structure–activity relationship studies, and such information is hard to obtain by experimentalists without the aid of the X‐ray diffraction technique.
Collapse
Affiliation(s)
- Leonardo A. De Souza
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| | - Haroldo C. Da Silva
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| | - Wagner B. De Almeida
- Departamento de Química InorgânicaInstituto de Química, Universidade Federal Fluminense (UFF), Outeiro de São João Batista s/n, Campus do Valonguinho24020-141, CentroNiteróiRJBrazil
| |
Collapse
|
24
|
Xu Y, Qian LL, Yang J, Han RM, Zhang JP, Skibsted LH. Kaempferol Binding to Zinc(II), Efficient Radical Scavenging through Increased Phenol Acidity. J Phys Chem B 2018; 122:10108-10117. [PMID: 30295482 DOI: 10.1021/acs.jpcb.8b08284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc(II) enhances radical scavenging of the flavonoid kaempferol (Kaem) most significantly for the 1:1 Zn(II)-Kaem complex in equilibrium with the 1:2 Zn(II)-Kaem complex both with high affinity at 3-hydroxyl and 4-carboxyl coordination. In methanol/chloroform (7/3, v/v), 1:1 Zn(II)-Kaem complex reduces β-carotene radical cation, β-Car•+, with a second-order rate constant, 1.88 × 108 L·mol-1·s-1, while both Kaem and 1:2 Zn(II)-Kaem complex are nonreactive, as determined by laser flash photolysis. In ethanol, 1:1 Zn(II)-Kaem complex reduces the 2,2-diphenyl-1-picrylhydrazyl radical, DPPH•, with a second-order rate constant, 2.48 × 104 L·mol-1·s-1, 16 times and 2 times as efficient as Kaem and 1:2 Zn(II)-Kaem complex, respectively, as determined by stopped-flow spectroscopy. Density functional theory calculation results indicate significantly increased acidity of Kaem as ligand in 1:1 Zn(II)-Kaem complex other than in 1:2 Zn(II)-Kaem complex. Kaem in 1:1 Zn(II)-Kaem complex loses two protons (one from 3-hydroxyl and one from phenolic hydroxyl) forming 1:1 Zn(II)-(Kaem-2H) during binding with Zn(II), while Kaem in 1:2 Zn(II)-Kaem complex loses one proton in each ligand forming Zn(II)-(Kaem-H)2, as confirmed by UV-vis absorption spectroscopy. Zn(II)-(Kaem-2H) is a far stronger reductant than Kaem and Zn(II)-(Kaem-H)2 as determined by cyclic voltammetry. Significant rate increases for the 1:1 complex in both β-Car•+ scavenging by electron transfer and DPPH• scavenging by hydrogen atom transfer were ascribed to decreases of ionization potential and of bond dissociation energy of 4'-OH for deprotonated Zn(II)-(Kaem-2H), respectively. Increased phenol acidity of plant polyphenols by 1:1 coordination with Zn(II) may explain the unique function of Zn(II) as a biological antioxidant and may help to design nontoxic metal-based drugs derived from natural bioactive molecules.
Collapse
Affiliation(s)
- Yi Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Ling-Ling Qian
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jing Yang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui-Min Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jian-Ping Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Leif H Skibsted
- Department of Food Science , University of Copenhagen , Rolighedsvej 30 , Frederiksberg C DK-1058 , Denmark
| |
Collapse
|