1
|
Gusmão LA, Köster RW, Tedesco AC. Protective effect of nanoemulsions containing CdTe quantum dots with potential application as a diagnostic agent. Mikrochim Acta 2024; 191:610. [PMID: 39302532 DOI: 10.1007/s00604-024-06690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
A nanoemulsion containing CdTe quantum dots (NE-CdTe-QD) was developed to shield cells from cadmium toxicity and shown to be a promising candidate for brain tumor diagnosis. CdTe-QD was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. CdTe-QD exhibited high luminescence emission at 700 nm, and their stability was maintained when encapsulated in lipidic/polymeric nanoemulsions (198 ± 2.0 nm; PDI = 0.174; - 49.0 mV). The biological effects of free and nanoemulsified CdTe-QD were tested in normal cells (NHF) and glioblastoma cell lines (U87-MG and T98G). Membrane colocalization of NE-CdTe-QD by T98G cells was observed. Instead, intracellular endoplasmic reticulum localization of NE-CdTe-QD was verified in U87-MG cells. Cell viability was reduced only when NE-CdTe-QD permeated the membrane of GBM cells, as observed in U87-MG cells, whereas no cytotoxic effects were observed in normal fibroblasts. Incorporating quantum dots directly into the brain cells is difficult. However, the nanoemulsions reduced the toxicity of CdTe-QD in zebrafish larvae and increased their circulation time, and direct injection into the zebrafish brain did not affect neural cell viability. This validates the potential application of these nanomaterials as diagnostic agents and satisfies the necessary criteria for their use as photosensitizers in photodynamic therapy.
Collapse
Affiliation(s)
- Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Reinhard Wolfgang Köster
- Zoological Institute, Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Brunswick, Germany
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Kaur I, Tieu T, Deepagan VG, Ali MA, Alsunaydih F, Rudd D, Moghaddam MA, Bourgeois L, Adams TE, Thurecht KJ, Yuce M, Cifuentes-Rius A, Voelcker NH. Combination of Chemotherapy and Mild Hyperthermia Using Targeted Nanoparticles: A Potential Treatment Modality for Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15051389. [PMID: 37242631 DOI: 10.3390/pharmaceutics15051389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.
Collapse
Affiliation(s)
- Ishdeep Kaur
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Terence Tieu
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Veerasikku G Deepagan
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Muhammad A Ali
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - Fahad Alsunaydih
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - David Rudd
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Maliheh A Moghaddam
- Centre of Polymer Systems, Tomas Bata University, 5678, 760 01 Zlin, Czech Republic
| | - Laure Bourgeois
- Monash Centre for Electron Microscopy, Clayton Campus, Monash University, Clayton, VIC 3168, Australia
| | - Timothy E Adams
- Commonwealth Scientific and Industrial Research Organization (CSIRO), 343, Royal Parade, Parkville, VIC 3052, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehmet Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton Campus, Clayton, VIC 3168, Australia
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmacy and Pharmaceutical Sciences, Monash University, 381, Royal Parade, Parkville, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030751. [PMID: 36986612 PMCID: PMC10058222 DOI: 10.3390/pharmaceutics15030751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.
Collapse
|
5
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
6
|
Nanoemulsion applications in photodynamic therapy. J Control Release 2022; 351:164-173. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Nanoemulsion, or nanoscaled-size emulsions, is a thermodynamically stable system formed by blending two immiscible liquids, blended with an emulsifying agent to produce a single phase. Nanoemulsion science has advanced rapidly in recent years, and it has opened up new opportunities in a variety of fields, including pharmaceuticals, biotechnology, food, and cosmetics. Nanoemulsion has been recognized as a potential drug delivery technology for various drugs, such as photosensitizing agents (PS). In photodynamic therapy (PDT), PSs produce cytotoxic reactive oxygen species under specific light irradiation, which oxidize the surrounding tissues. Over the past decades, the idea of PS-loaded nanoemulsions has received researchers' attention due to their ability to overcome several limitations of common PSs, such as limited permeability, non-specific phototoxicity, hydrophobicity, low bioavailability, and self-aggregation tendency. This review aims to provide fundamental knowledge of nanoemulsion formulations and the principles of PDT. It also discusses nanoemulsion-based PDT strategies and examines nanoemulsion advantages for PDT, highlighting future possibilities for nanoemulsion use.
Collapse
|
7
|
Gupta U, Saren BN, Khaparkhuntikar K, Madan J, Singh PK. Applications of lipid-engineered nanoplatforms in the delivery of various cancer therapeutics to surmount breast cancer. J Control Release 2022; 348:1089-1115. [PMID: 35640765 DOI: 10.1016/j.jconrel.2022.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is the most extensively accounted malignancy among the women across the globe and is treatable in 70-80% of patients with early-stage, non-metastatic cancer. The current available therapies have been found to be less effective to treat distant organ metastases and advanced breast cancers. The clinical efficacy hugely suffers from chemoresistance, non-specific toxicity, relapse and other associated adverse effects. Furthermore, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Nanotechnology based approaches have been widely used over the period as they are nanometric, offer controlled and site-specific drug release along with reduced toxicity, improved half-life, and stability. Lipid-based nanoplatforms have grabbed a tremendous attention for delivering cancer therapeutics as they are cost-effective, scalable and provide better entrapment efficiency. In this review, all the promising applications of lipid-engineered nanotechnological tools for breast cancer will be summarized and discussed. Subsequently, BC therapy achieved with the aid of chemotherapeutics, phytomedicine, genes, peptides, photosensitizers, diagnostic and immunogenic agents etc. will be reviewed and discussed. This review gives tabular information on all the results obtained pertaining to the physicochemical properties of the lipidic nanocarrier, in vitro studies conferring to mechanistic drug release profile, cell viability, cellular apoptosis and in vivo studies referring to cellular internalisation, reduction of tumor volume, PK-PD profile, bioavailability achieved and anti-tumor activity in detail. It also gives complete information on the most relevant clinical trials done on lipidic nanoplatforms over two decades in tabular form. The review highlights the current status and future prospects of lipidic nanoplatforms with streamlined focus on cancer nanotherapeutics.
Collapse
Affiliation(s)
- Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
8
|
Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, Kong N, Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev 2022; 51:4996-5041. [PMID: 35616098 DOI: 10.1039/d1cs01148k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional treatments such as chemotherapy and surgery usually cause severe side effects and excruciating pain. The emergence of nanomedicines and minimally invasive therapies (MITs) has brought hope to patients with malignant diseases. Especially, minimally invasive nanomedicines (MINs), which combine the advantages of nanomedicines and MITs, can effectively target pathological cells/tissues/organs to improve the bioavailability of drugs, minimize side effects and achieve painless treatment with a small incision or no incision, thereby acquiring good therapeutic effects. In this review, we provide a comprehensive review of the research status and challenges of MINs, which generally refers to the medical applications of nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Additionally, we also discuss their combined application in various fields including cancers, cardiovascular diseases, tissue engineering, neuro-functional diseases, and infectious diseases. The prospects, and potential bench-to-bedside translation of MINs are also presented in this review. We expect that this review can inspire the broad interest for a wide range of readers working in the fields of interdisciplinary subjects including (but not limited to) chemistry, nanomedicine, bioengineering, nanotechnology, materials science, pharmacology, and biomedicine.
Collapse
Affiliation(s)
- Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haijun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Yang YL, Lin K, Yang L. Progress in Nanocarriers Codelivery System to Enhance the Anticancer Effect of Photodynamic Therapy. Pharmaceutics 2021; 13:1951. [PMID: 34834367 PMCID: PMC8617654 DOI: 10.3390/pharmaceutics13111951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising anticancer noninvasive method and has great potential for clinical applications. Unfortunately, PDT still has many limitations, such as metastatic tumor at unknown sites, inadequate light delivery and a lack of sufficient oxygen. Recent studies have demonstrated that photodynamic therapy in combination with other therapies can enhance anticancer effects. The development of new nanomaterials provides a platform for the codelivery of two or more therapeutic drugs, which is a promising cancer treatment method. The use of multifunctional nanocarriers for the codelivery of two or more drugs can improve physical and chemical properties, increase tumor site aggregation, and enhance the antitumor effect through synergistic actions, which is worthy of further study. This review focuses on the latest research progress on the synergistic enhancement of PDT by simultaneous multidrug administration using codelivery nanocarriers. We introduce the design of codelivery nanocarriers and discuss the mechanism of PDT combined with other antitumor methods. The combination of PDT and chemotherapy, gene therapy, immunotherapy, photothermal therapy, hyperthermia, radiotherapy, sonodynamic therapy and even multidrug therapy are discussed to provide a comprehensive understanding.
Collapse
Affiliation(s)
| | | | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.-L.Y.); (K.L.)
| |
Collapse
|
10
|
Alkhatib MH, Bawadud RS, Gashlan HM. Incorporation of docetaxel and thymoquinone in borage nanoemulsion potentiates their antineoplastic activity in breast cancer cells. Sci Rep 2020; 10:18124. [PMID: 33093596 PMCID: PMC7582846 DOI: 10.1038/s41598-020-75017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Combining more than one anticancer agent in a nanocarrier is beneficial in producing a formula with a low dose and limited adverse side effects. The current study aimed to formulate docetaxel (DTX) and thymoquinone (TQ) in borage oil-based nanoemulsion (B-NE) and evaluate its potential in impeding the growth of breast cancer cells. The formulated B-NE and the combination (DTX + TQ) B-NE were prepared by the ultra-sonication method and physically characterized by the dynamic light scattering techniques. The cytotoxicity analyses of (DTX + TQ) B-NE in MCF-7 and MDA-MB-231 cells were evaluated in vitro by using the SRB assay. Cell death mechanisms were investigated in terms of apoptosis and autophagy pathways by flow cytometry. The optimum mean droplet sizes formulated for blank B-NE and the (DTX + TQ) B-NE were 56.04 ± 4.00 nm and 235.00 ± 10.00 nm, respectively. The determined values of the half-maximal inhibitory concentration (IC50) of mixing one-half amounts of DTX and TQ in B-NE were 1.15 ± 0.097 µM and 0.47 ± 0.091 µM in MCF-7 and MDA-MB-231 cells, respectively, which were similar to the IC50 values of the full amount of free DTX in both tested cell lines. The treatment with (DTX + TQ) B-NE resulted in a synergistic effect on both tested cells. (DTX + TQ) B-NE induced apoptosis that was integrated with the stimulation of autophagy. The produced formulation enhances the DTX efficacy against human breast cancer cells by reducing its effective dose, and thus it could have the potential to minimize the associated toxicity.
Collapse
Affiliation(s)
- Mayson H Alkhatib
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Raghdah S Bawadud
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hana M Gashlan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Tafazoli H, Safaei M, Shishehbore MR. A New Sensitive Method for Quantitative Determination of Cisplatin in Biological Samples by Kinetic Spectrophotometry. ANAL SCI 2020; 36:1217-1222. [PMID: 32418934 DOI: 10.2116/analsci.20p118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study describes a kinetic spectrophotometric method for accurate, sensitive and rapid determination of cisplatin in biofluids. The developed method is based on the inhibitory effect of cisplatin on the oxidization of Janus Green by bromate in acidic media. The change in absorbance as the criteria of the oxidation reaction was followed spectrophotometrically. To obtain the highest rate of sensitivity, efficient reaction parameters were optimized. Under optimum experimental conditions, a calibration graph was obtained linearly over the range 10.0 - 5750.0 μg L-1 and the limit of detection (3sb/m) was 4.2 μg L-1 of cisplatin. The interfering effect of diverse species was investigated. The developed method was used for the quantification of cisplatin in bio fluids of patients treated with cisplatin, spiked bio fluids and pharmaceutical samples and yielded satisfactory results.
Collapse
|
12
|
Kim S, Moon MJ, Poilil Surendran S, Jeong YY. Biomedical Applications of Hyaluronic Acid-Based Nanomaterials in Hyperthermic Cancer Therapy. Pharmaceutics 2019; 11:E306. [PMID: 31266194 PMCID: PMC6680516 DOI: 10.3390/pharmaceutics11070306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a non-sulfated polysaccharide polymer with the properties of biodegradability, biocompatibility, and non-toxicity. Additionally, HA specifically binds to certain receptors that are over-expressed in cancer cells. To maximize the effect of drug delivery and cancer treatment, diverse types of nanomaterials have been developed. HA-based nanomaterials, including micelles, polymersomes, hydrogels, and nanoparticles, play a critical role in efficient drug delivery and cancer treatment. Hyperthermic cancer treatment using HA-based nanomaterials has attracted attention as an efficient cancer treatment approach. In this paper, the biomedical applications of HA-based nanomaterials in hyperthermic cancer treatment and combined therapies are summarized. HA-based nanomaterials may become a representative platform in hyperthermic cancer treatment.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, Korea.
| |
Collapse
|
13
|
Khan I, Bhardwaj M, Shukla S, Lee H, Oh MH, Bajpai VK, Huh YS, Kang SC. Carvacrol encapsulated nanocarrier/ nanoemulsion abrogates angiogenesis by downregulating COX-2, VEGF and CD31 in vitro and in vivo in a lung adenocarcinoma model. Colloids Surf B Biointerfaces 2019; 181:612-622. [PMID: 31202132 DOI: 10.1016/j.colsurfb.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022]
Abstract
Nanoemulsion-based synthesis has been introduced to enhance the bioavailability of natural compounds at target sites for their various biomedical applications. In this study, we synthesized carvacrol nanoemulsion (CN) an oil-in-water (O/W) as a nano-emulsion vehicle system by using ultrasonication emulsification for anti-angiogenesis therapy formulated by combining MCT, lecithin, and polysorbate 80 at the O/W interface called carvacrol encapsulated nanoemulsion (CEN). The diameter of CEN determined by TEM analysis was 105.32 nm. The hydrodynamic droplet size was 101.0 nm with a -39.38-mV zeta potential. The stability of the synthesized CEN was approved till 100 days without any change in diameter size distribution and encapsulation efficiency. We evaluated the role of CEN on angiogenesis in lung adenocarcinoma A549 cells both in vitro and in vivo and observed that it reduced the growth and MMP levels of A549 cells in a dose-dependent manner. Exposure to CEN decreased the activation of MAPK p38 as well as ERK. Moreover, we found that CEN reduced the expression of VEGF and CD31 in A549 cells both in vitro and in vivo. Our in-silico study also indicated the binding of carvacrol to COX-2 and VEGF at the active and allosteric sites of CD31 with low binding energy. Overall, CEN induced anti-angiogenic effects in A549 cells in vitro, in silico, and in vivo, thereby establishing its potential as targeted drug delivery vehicle against angiogenesis.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Monika Bhardwaj
- Laboratory of Biochemistry and cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Mi-Hwa Oh
- Animal Production Research and Development Division, National Institute of Animal Science, Jeonju, 54875, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
14
|
Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Res Int 2019; 120:264-274. [DOI: 10.1016/j.foodres.2019.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022]
|