1
|
Yektamanesh M, Ayyami Y, Ghorbani M, Dastgir M, Malekzadeh R, Mortezazadeh T. Characterization of multifunctional β-cyclodextrin-coated Bi 2O 3 nanoparticles conjugated with curcumin for CT imaging-guided synergetic chemo-radiotherapy in breast cancer. Int J Pharm 2024; 659:124264. [PMID: 38788969 DOI: 10.1016/j.ijpharm.2024.124264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Nanotechnology-based diagnostic, and therapeutic approaches revolutionized the field of cancer detection, and treatment, offering tremendous potential for cost-effective interventions in the early stages of disease. This research synthesized bismuth oxide (Bi2O3) nanoparticles (NPs) that were modified with polycyclodextrin (PCD), and functionalized with glucose (Glu) to load curcumin (CUR) for CT imaging and chemo-radiotherapy applications in Breast Cancer. The prepared Bi2O3@PCD-CUR-Glu NPs underwent comprehensive characterization, encompassing various aspects, including cell migration, cytotoxicity, cellular uptake, blood compatibility, reactive oxygen species (ROS) generation ability, real-time PCR analysis, in-vivo safety assessment, in-vivo anti-tumor efficacy, as well as in-vitro CT contrast and X-ray RT enhancement evaluation. CT scan was conducted before and after (1 and 3 h) intravenous injection of Bi2O3@PCD-CUR-Glu NPs. Through the use of coupled plasma optical emission spectrometry (ICP-OES) analysis, the final prepared nanoparticle distribution in the Bab/c mice was assessed. The spherical NPs that were ultimately synthesized and had a diameter of around 80 nm demonstrated exceptional toxicity towards the SKBr-3 breast cancer cell line. The cell viability was at its lowest level after 48 h of exposure to a radiation dose of 2 Gy at a concentration of 100 µg/mL. The combined treatment involving using Bi2O3@PCD-CUR-Glu NPs along with X-ray radiation showed a substantial increase in the generation of ROS, specifically a remarkable 420 % growth. Gene expression analysis indicated that the expression levels of P53, and BAX pro-apoptotic genes were significantly increased. The in-vitro CT imaging analysis conducted unequivocally demonstrated the notable superiority of NPs over Omnipaque in terms of X-ray absorption capacity, a staggering 1.52-fold increase at 80 kVp. The resultsdemonstrated that the targeted Bi2O3@PCD-CUR-Glu NPs could enhance the visibility of a small mice tumor that is detectable by computed tomography and made visible through X-ray attenuation. Results suggested that Bi2O3@PCD-CUR-Glu NPs, integrated with CT imaging and chemo-radiotherapy, have great potential as a versatile theranostic system for clinical application.
Collapse
Affiliation(s)
- Maedeh Yektamanesh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Ayyami
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, P.O. Box:14965/115, Tehran, Iran
| | - Masoumeh Dastgir
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Mortezazadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Hao S, Cong M, Xu H, Ding X, Gao Y. Bismuth-Based Electrocatalysts for Identical Value-Added Formic Acid Through Coupling CO 2 Reduction and Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307741. [PMID: 38095485 DOI: 10.1002/smll.202307741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
It is an effective way to reduce atmospheric CO2 via electrochemical CO2 reduction reaction (CO2RR), while the slow oxygen evolution reaction (OER) occurs at the anode with huge energy consumption. Herein, methanol oxidation reaction (MOR) is used to replace OER, coupling CO2RR to achieve co-production of formate. Through enhancing OCHO* adsorption by oxygen vacancies engineering and synergistic effect by heteroatom doping, Bi/Bi2O3 and Ni─Bi(OH)3 are synthesized for efficient production of formate via simultaneous CO2RR and methanol oxidation reaction (MOR), achieving that the coupling of CO2RR//MOR only required 7.26 kWh gformate -1 power input, much lower than that of CO2RR//OER (13.67 kWh gformate -1). Bi/Bi2O3 exhibits excellent electrocatalytic CO2RR performance, achieving FEformate >80% in a wide potential range from -0.7 to -1.2 V (vs RHE). For MOR, Ni─Bi(OH)3 exhibits efficient MOR catalytic performance with the FEformate >98% in the potential range of 1.35-1.6 V (vs RHE). Not only demonstrates the two-electrode systems exceptional stability, working continuously for over 250 h under a cell voltage of 3.0 V, but the cathode and anode can maintain a FE of over 80%. DFT calculation results reveal that the oxygen vacancies of Bi/Bi2O3 enhance the adsorption of OCHO* intermediate, and Ni─Bi(OH)3 reduce the energy barrier for the rate determining step, leading to high catalytic activity.
Collapse
Affiliation(s)
- Shengjie Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Meiyu Cong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hanwen Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shan Dong, 266071, P. R. China
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
3
|
Chaki Borrás ML, Colbran G, Mitchell DRG, Barker PJ, Sluyter R, Konstantinov K. Multifunctional bismuth oxide (Bi 2 O 3 ) particles: Evidence for selective melanoma therapy. J Biomed Mater Res A 2023; 111:1253-1263. [PMID: 36866394 DOI: 10.1002/jbm.a.37524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The current study investigates the therapeutic and optical properties of bismuth oxide (Bi2 O3 ) particles for selective melanoma therapy and prevention. The Bi2 O3 particles were prepared using a standard precipitation method. The Bi2 O3 particles induced apoptosis in human A375 melanoma cells but not human HaCaT keratinocytes or CCD-1090Sk fibroblast cells. This selective apoptosis appears to be associated with a combination of factors: increased particle internalization (2.29 ± 0.41, 1.16 ± 0.08 and 1.66 ± 0.22-fold of control) and enhanced production of reactive oxygen species (ROS) (3.4 ± 0.1, 1.1 ± 0.1 and 2.05 ± 0.17-fold of control) in A375 cells compared to HaCaT and CCD-1090SK cells, respectively. As a high-Z element, bismuth is also an excellent contrast agent for computer tomography, which renders Bi2 O3 a theranostic material. Moreover, Bi2 O3 displays high UV absorption and low photocatalytic activity compared to other semiconducting metal oxides, which opens further potential fields of application as a pigment or as an active ingredient in sunscreens. Overall, this study demonstrates the multifunctional properties of Bi2 O3 particles surrounding the treatment and prevention of melanoma.
Collapse
Affiliation(s)
- Marcela Laura Chaki Borrás
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Georgia Colbran
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, New South Wales, Australia
- School of Physics, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - David R G Mitchell
- Electron Microscopy Centre, Australian Institute for Innovative Materials, University of Wollongong, New South Wales, Australia
| | - Philip J Barker
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
5
|
Souza IDC, Morozesk M, Siqueira P, Zini E, Galter IN, Moraes DAD, Matsumoto ST, Wunderlin DA, Elliott M, Fernandes MN. Metallic nanoparticle contamination from environmental atmospheric particulate matter in the last slab of the trophic chain: Nanocrystallography, subcellular localization and toxicity effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152685. [PMID: 34974021 DOI: 10.1016/j.scitotenv.2021.152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric particulate material (PM) from mining and steel industries comprises several metallic contaminants. PM10 samples collected in a Brazilian region with a recognized influence of the steel and iron pelletizing industries were used to investigate metallic nanoparticle incorporation into human fibroblast cells (MRC-5). MRC-5 cells were exposed to 0 (control, ultrapure water), 2.5, 5, 10, 20 and 40 μg PM10 mL-1, for 24 h. Cytotoxic and genotoxic dose-response effects were observed on lysosome and DNA structure, and concentrations high as 20 and 40 μg PM10 mL-1 induced elevated cell death. Ultrastructure analyses showed aluminosilicate, iron, and the emerging metallic contaminants titanium, bismuth, and cerium nanoparticles were incorporated into lung cells, in which the nanocrystallography analysis indicated the bismuth as Bi2O3. All internalized metallic nanoparticles were free and unbound in the cytoplasm and nucleus thereby indicating bioavailability and potential interaction to biological processes and cellular structures. Pearson's correlation analysis showed Fe, Ni, Al, Cr, Pb and Hg as the main cytotoxic elements which are associated with the stainless steel production. The presence of internalized nanoparticles in human lung cells exposed to environmental atmospheric matter highlights the need for a greater effort by regulatory agencies to understand their potential damage and hence the need for future regulation, especially of emerging metallic contaminants.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Priscila Siqueira
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Enzo Zini
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Iasmini N Galter
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A de Moraes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
The effects of bismuth oxide nanoparticles and cisplatin on MCF-7 breast cancer cells irradiated with Ir-192 High Dose Rate brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Xu J, Meng Z, Hao Z, Sun X, Nan H, Liu H, Wang Y, Shi W, Tian H, Hu X. Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. J Colloid Interface Sci 2021; 609:878-889. [PMID: 34836655 DOI: 10.1016/j.jcis.2021.11.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Bi2O3 is an outstanding electrode material due to its high theoretical specific capacity. Hence, the synthesis of δ-Bi2O3 materials with high oxygen-vacancy contents could improve their electrochemical performances but causes easy conversion to α-Bi2O3 with low oxygen-vacancy contents, leading to poor cycling stability and limited practical applications. To overcome these problems, an effective strategy for constructing high oxygen vacancies α-Bi2O3 on activated carbon fiber paper (ACFP) is developed in this study. To this end, ACFP/Bi(OH)3 is first synthesized by the solvothermal method and then converted to ACFP/α-Bi2O3 by in situ electrochemical activation. The proposed innovative electrochemical method quickly and easily introduces oxygen vacancies while preserving the three-dimensional structure, thereby promoting the charge transfer and ions diffusion in ACFP/α-Bi2O3. Consequently, the specific capacity of ACFP/α-Bi2O3 reaches 906C g-1 at 1 A g-1, and the capacity retention remains above 70% after 3000 cycles, a value higher than that of δ-Bi2O3 (45%). Furthermore, the hybrid supercapacitor device assembled by ACFP/α-Bi2O3 delivers a maximum energy density of 114.9 Wh kg-1 at 900 W kg-1 and outstanding cycle stability with 73.56 % retention after 5500 cycles. In sum, the proposed ACFP/α-Bi2O3 with high performance and good stability looks promising for use as bismuth-based anode materials in supercapacitors and aqueous batteries.
Collapse
Affiliation(s)
- Jian Xu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zeshuo Meng
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Zeyu Hao
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Xucong Sun
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Haoshan Nan
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongxu Liu
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yanan Wang
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Wei Shi
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongwei Tian
- Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun 130012, China.
| | - Xiaoying Hu
- College of Science and Laboratory of Materials Design and Quantum Simulation, Changchun University, Changchun 130022, China.
| |
Collapse
|
8
|
Ahamed M, Akhtar MJ, Khan MAM, Alaizeri ZM, Alhadlaq H. Facile Synthesis of Zn-Doped Bi 2O 3 Nanoparticles and Their Selective Cytotoxicity toward Cancer Cells. ACS OMEGA 2021; 6:17353-17361. [PMID: 34278121 PMCID: PMC8280700 DOI: 10.1021/acsomega.1c01467] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 05/18/2023]
Abstract
Bismuth (III) oxide nanoparticles (Bi2O3 NPs) have shown great potential for biomedical applications because of their tunable physicochemical properties. In this work, pure and Zn-doped (1 and 3 mol %) Bi2O3 NPs were synthesized by a facile chemical route and their cytotoxicity was examined in cancer cells and normal cells. The X-ray diffraction results show that the tetragonal phase of β-Bi2O3 remains unchanged after Zn-doping. Transmission electron microscopy and scanning electron microscopy images depicted that prepared particles were spherical with smooth surfaces and the homogeneous distribution of Zn in Bi2O3 with high-quality lattice fringes without distortion. Photoluminescence spectra revealed that intensity of Bi2O3 NPs decreases with increasing level of Zn-doping. Biological data showed that Zn-doped Bi2O3 NPs induce higher cytotoxicity to human lung (A549) and liver (HepG2) cancer cells as compared to pure Bi2O3 NPs, and cytotoxic intensity increases with increasing concentration of Zn-doping. Mechanistic data indicated that Zn-doped Bi2O3 NPs induce cytotoxicity in both types of cancer cells through the generation of reactive oxygen species and caspase-3 activation. On the other hand, biocompatibility of Zn-doped Bi2O3 NPs in normal cells (primary rat hepatocytes) was greater than that of pure Bi2O3 NPs and biocompatibility improves with increasing level of Zn-doping. Altogether, this is the first report highlighting the role of Zn-doping in the anticancer activity of Bi2O3 NPs. This study warrants further research on the antitumor activity of Zn-doped Bi2O3 NPs in suitable in vivo models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - M. A. Majeed Khan
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
| | - ZabnAllah M. Alaizeri
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham Alhadlaq
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Khochaiche A, Westlake M, O'Keefe A, Engels E, Vogel S, Valceski M, Li N, Rule KC, Horvat J, Konstantinov K, Rosenfeld A, Lerch M, Corde S, Tehei M. First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111970. [PMID: 33812598 DOI: 10.1016/j.msec.2021.111970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Nanoparticles have a great potential to increase the therapeutic efficiency of several cancer therapies. This research examines the potential for silver-doped lanthanum manganite nanoparticles to enhance radiation therapy to target radioresistant brain cancer cells, and their potential in combinational therapy with magnetic hyperthermia. Magnetic and structural characterisation found all dopings of nanoparticles (NPs) to be pure and single phase with an average crystallite size of approximately 15 nm for undoped NPs and 20 nm for silver doped NPs. Additionally, neutron diffraction reveals that La0.9Ag0.1MnO3 (10%-LAGMO) NPs exhibit residual ferromagnetism at 300 K that is not present in lower doped NPs studied in this work, indicating that the Curie temperature may be manipulated according to silver doping. This radiobiological study reveals a completely cancer-cell selective treatment for LaMnO3, La0.975Ag0.025MnO3 and La0.95Ag0.05MnO3 (0, 2.5 and 5%-LAGMO) and also uncovers a potent combination of undoped lanthanum manganite with orthovoltage radiation. Cell viability assays and real time imaging results indicated that a concentration of 50 μg/mL of the aforementioned nanoparticles do not affect the growth of Madin-Darby Canine Kidney (MDCK) non-cancerous cells over time, but stimulate its metabolism for overgrowth, while being highly toxic to 9L gliosarcoma (9LGS). This is not the case for 10%-LAGMO nanoparticles, which were toxic to both non-cancerous and cancer cell lines. The nanoparticles also exhibited a level of toxicity that was regulated by the overproduction of free radicals, such as reactive oxygen species, amplified when silver ions are involved. With the aid of fluorescent imaging, the drastic effects of these reactive oxygen species were visualised, where nucleus cleavage (an apoptotic indicator) was identified as a major consequence. The genotoxic response of this effect for 9LGS and MDCK due to 10%-LAGMO NPs indicates that it is also causing DNA double strand breaks within the cell nucleus. Using 125 kVp orthovoltage radiation, in combination with an appropriate amount of NP-induced cell death, identified undoped lanthanum manganite as the most ideal treatment. Real-time imaging following the combination treatment of undoped lanthanum manganite nanoparticles and radiation, highlighted a hinderance of growth for 9LGS, while MDCK growth was boosted. The clonogenic assay following incubation with undoped lanthanum manganite nanoparticles combined with a relatively low dose of radiation (2 Gy) decreased the surviving fraction to an exceptionally low (0.6 ± 6.7)%. To our knowledge, these results present the first biological in-depth analysis on silver-doped lanthanum manganite as a brain cancer selective chemotherapeutic and radiation dose enhancer and as a result will propel its first in vivo investigation.
Collapse
Affiliation(s)
- Abass Khochaiche
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Matt Westlake
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Alice O'Keefe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Michael Valceski
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Nan Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Kirrily C Rule
- Australian Nuclear Science and Technology Organisation, ANSTO, Sydney, Australia
| | - Josip Horvat
- School of Physics, University of Wollongong, Wollongong, Australia
| | - Konstantin Konstantinov
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Department of Radiation Oncology, Prince of Wales Hospital, Randwick, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia; School of Physics, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; Molecular Horizons, School of Chemistry and Molecular, Bioscience University of Wollongong, Wollongong, Australia.
| |
Collapse
|
10
|
Hsu NS, Tehei M, Hossain MS, Rosenfeld A, Shiddiky MJA, Sluyter R, Dou SX, Yamauchi Y, Konstantinov K. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2204-2217. [PMID: 33399455 DOI: 10.1021/acsami.0c17326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we demonstrate that specifically engineered oxide nanoparticles (NPs) have the potential to act as theranostic materials that are able to generate or prevent oxidative stress through their oxi-redox activity in various types of malignant and nonmalignant cells. The oxi-redox activity is related to the type and presence of surface defects, which is modified with appropriate synthesis conditions. In the present work, we used MDA-MB-231 and MCF-7 human breast cancer cells and nonmalignant MCF-10A human breast cells to demonstrate how controlled oxidative stress mediated by specifically nanoengineered indium tin oxide (ITO) NPs can selectively induce cell death in the cancer cells while reducing the oxidative stress in the normal cells and supporting their proliferation. The ITO NPs are also promising nanotheranostic materials for cancer therapy and contrast agents because of their multimodal imaging capabilities. We demonstrate that the synthesized ITO NPs can selectively increase the generation of reactive oxygen species (ROS) in both breast tumor cell lines, resulting in activation of apoptosis, and can also greatly suppress the cellular proliferation in both types of tumor cells. In contrast, the ITO NPs exhibit ROS scavenging-like behavior, significantly decreasing the ROS levels in MCF-10A cells exposed to the additional ROS, hydrogen peroxide (H2O2), so that they protect the proliferation of nonmalignant MCF-10A cells from ROS damage. In addition, fluorescent microscopy images revealed that the ITO NPs emit strong fluorescence that could be used to reveal their location. Moreover, computed tomography imaging demonstrated that the ITO NPs exhibited a comparable capability toward anatomical contrast enhancement. These results suggest that the synthesized ITO NPs have the potential to be a novel selective therapeutic agent with a multimodal imaging property for anticancer treatment.
Collapse
Affiliation(s)
- Nai-Sheng Hsu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Moeava Tehei
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- Centre for Medical and Radiation Physics, Faculty of Engineering and Information Science, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Md Shahriar Hossain
- Australian Institute for Bioengineering and Nanotechnology, School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Anatoly Rosenfeld
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- Centre for Medical and Radiation Physics, Faculty of Engineering and Information Science, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC) & Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, Queensland 4111, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- School of Chemistry and Medical Biology, Faculty of Science, Medicine and Health, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, 4702 Brisbane, Queensland, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044Japan
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| |
Collapse
|
11
|
Zahariev A, Tzaneva B, Kaloyanov N, Marcheva Y, Parvanova V, Girginov C. Electrochemical synthesis of a new Bi( iii) complex by anodic oxidation of Bi in an aqueous solution of 4-toluenesulfonic acid. NEW J CHEM 2021. [DOI: 10.1039/d1nj01804c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new complex with a composition [Bi6O4(OH)4](C7H7SO3)6 is formed on a bismuth plate via electrochemical synthesis at 1.0 V anodic polarization in 0.5 M p-toluenesulfonic acid.
Collapse
Affiliation(s)
- Alexander Zahariev
- Technical University of Sofia
- 8 St. Kliment Ohridski blvd
- Sofia 1000
- Bulgaria
| | - Boriana Tzaneva
- Technical University of Sofia
- 8 St. Kliment Ohridski blvd
- Sofia 1000
- Bulgaria
| | - Nikolay Kaloyanov
- University of Chemical Technology and Metallurgy
- 8 St. Kliment Ohridski blvd
- Sofia 1756
- Bulgaria
| | - Yordanka Marcheva
- Technical University of Sofia
- 8 St. Kliment Ohridski blvd
- Sofia 1000
- Bulgaria
| | - Veneta Parvanova
- University of Chemical Technology and Metallurgy
- 8 St. Kliment Ohridski blvd
- Sofia 1756
- Bulgaria
| | - Christian Girginov
- University of Chemical Technology and Metallurgy
- 8 St. Kliment Ohridski blvd
- Sofia 1756
- Bulgaria
| |
Collapse
|
12
|
Ahmadi S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. CHEMOSPHERE 2020; 242:125192. [PMID: 31677509 DOI: 10.1016/j.chemosphere.2019.125192] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Several types of metal oxide nanoparticles (MO-NPs) are often utilized as one of the novel class of materials in the pharmaceutical industry and human health. The wide use of MO-NPs forces an enhanced understanding of their potential impact on human health and the environment. The research aims to investigate and develop a nano-QFAR (nano-quantitative feature activity relationship) model applying the quasi-SMILES such as cell line, assay, time exposition, concentration, nanoparticles size and metal oxide type for prediction of cell viability (%) of MO-NPs. The total set of 83 quasi-SMILES of MO-NPs divided into training, validation and test sets randomly three times. The statistical model results based on the balance of correlation target function (TF1) and index of ideality correlation target function (TF2) and the Monte Carlo optimization were compared. The comparison of two target function results indicated that TF2 improves the predictability of models. The significance of various eclectic features of both increase and decrease of cell viability (%) is provided. Mechanistic interpretation of significant factors for the model are proposed as well. The sufficient statistical quality of three nano-QFAR models based on TF2 reveals that the developed models can be efficiency for predictions of the cell viability (%) of MO-NPs.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
| |
Collapse
|