1
|
Li Y, Li Y, Gao H, Liu J, Liang H. Edible thermosensitive chitosan/hydroxypropyl β-cyclodextrin hydrogel with natural licoricidin for enhancing oral health: Biofilm disruption and demineralization prevention. Int J Biol Macromol 2024; 282:136647. [PMID: 39423986 DOI: 10.1016/j.ijbiomac.2024.136647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries, a widespread and significantly detrimental health condition, is characterized by demineralization, pain, compromised tooth functionality, and various other adverse effects. Licoricidin (LC), a natural isoflavonoid, demonstrates potent antimicrobial properties for maintaining oral health. However, its practical application is significantly hindered by its limited water solubility and susceptibility to removal within the oral environment. To tackle this issue, we developed a delivery oral system by an edible thermosensitive chitosan- disodium beta-glycerol phosphate pentahydrate (CS/β-GP) hydrogel to load LC/Hydroxypropyl beta-cyclodextrin (HP-β-CD) inclusion complexes. These hydrogels (LC/HP-β-CD/CS/β-GP) could solidify rapidly at oral temperature and sustainably release LC, thereby preventing its rapid clearance from the oral cavity. We confirmed the significant antibacterial activity of this hydrogel against Streptococcus mutans and Staphylococcus aureus. Additionally, the HP-β-CD combination enhanced LC to penetrate bacterial biofilms and inhibit biofilm growth, leading to leakage of cellular proteins and DNA. Additionally, we studied the effect of LC/HP-β-CD/CS/β-GP on intracellular ROS levels and MMP, comprehensively exploring its antimicrobial mechanism. Furthermore, LC/HP-β-CD/CS/β-GP exhibited the ability to inhibit demineralization and demonstrated excellent biocompatibility. In summary, this study presented a safer approach to oral delivering bioactive substances, offering a promising strategy for enhanced oral health and safety.
Collapse
Affiliation(s)
- Yishan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaqian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Huiling Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Zhu J, Zhang M, Qiu R, Li M, Zhen L, Li J, Luo J, Li J, Wu H, Yang J. Hagfish-inspired hydrogel for root caries: A multifunctional approach including immediate protection, antimicrobial phototherapy, and remineralization. Acta Biomater 2024; 188:117-137. [PMID: 39299624 DOI: 10.1016/j.actbio.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Root caries is the main cause of oral pain and tooth loss in the elderly. Protecting root lesions from environmental disturbances, resisting pathogens, and facilitating remineralization over time are essential for addressing root caries, but are challenging due to the irregular root surface and the complex oral environment. Hagfish secretes slime when facing danger, which converts into gels upon contact with seawater, suffocating the predators. Inspired by hagfish's defense mechanism, a fluid-hydrogel conversion strategy is proposed to establish a mechanical self-regulating multifunctional platform for root caries treatment. The fluid system (silk fibroin-tannic acid-black phosphorene-urea, ST-BP-U), in which urea disrupts the hydrogen bonds between silk fibroin and tannic acid, can easily spread on the irregular root surface and permeate into dentinal tubules. Upon contact with the surrounding water, urea diffuses, prompting the hydrogel re-formation and creating intimate attachments with micromechanical inlay locks. Meanwhile, BP increases the crosslinking of the re-formed hydrogel network, resulting in reinforced cohesion for robust wet adhesion to the tooth root. This process establishes a structured platform for effective antimicrobial phototherapy and dentin remineralization promotion. This water-responsive fluid-hydrogel conversion system adapts to the irregular root surface in the dynamic wet environment, holding promise for addressing root caries. STATEMENT OF SIGNIFICANCE: Root caries bring a heavy burden to the aging society, but the irregular root surface and dynamic moist oral environment always hinder non-surgical therapeutic effects. Here, we propose a water-responsive fluid-hydrogel conversion strategy aimed at mechanical self-regulation on the irregular and wet root interface to construct a functional structural platform. The liquid system (ST-BP-U) that prebreak intermolecular hydrogen bonds can easily spread on irregular surfaces and dentin tubules. When encountering water, hydrogen bonds re-form, and BP increases the crosslinking of the hydrogel formed in situ. Based on this firm wet-adhesion platform, it provides powerful phototherapy effects and promotes dentin remineralization. This fluid-hydrogel conversion system turns the disadvantages of wet environment into advantages, offering a promising strategy for root caries.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rongmin Qiu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| | - Moyan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Chen H, Xu M, Zhang B, Yu S, Weir MD, Melo MAS, Masri RM, Tang Y, Xu HHK, Yang D. Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats. Dent Mater 2024; 40:e41-e51. [PMID: 38942710 DOI: 10.1016/j.dental.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Mengmeng Xu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang Yu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi M Masri
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Deqin Yang
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China.
| |
Collapse
|
4
|
Bian C, Lyu M, Zhu M, Liu M, Xie X, Weir MD, Hack GD, Masri R, Zhang K, Bai Y, Xu HHK, Zhang N. Novel antibacterial orthodontic elastomeric ligature with oral biofilm-regulatory ability to prevent enamel demineralization. Dent Mater 2024; 40:1534-1545. [PMID: 39060129 DOI: 10.1016/j.dental.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To synthesize a novel antibacterial orthodontic elastomeric ligature incorporating dimethylaminohexadecyl methacrylate (DMAHDM) for the first time to prevent enamel demineralization during orthodontic therapy. METHODS Various mass fractions of DMAHDM (ranging from 0 % to 20 %) were grafted onto commercial elastomeric ligatures using an ultraviolet photochemical grafting method and were characterized. The optimal DMAHDM concentration was determined based on biocompatibility and mechanical properties, and the antibacterial efficacy was evaluated in a whole-plaque biofilm model. TaqMan real-time polymerase chain reaction and fluorescence in situ hybridization were used to assess the microbial regulatory ability of the multispecies biofilms. Furthermore, an in vitro tooth demineralization model was established to explore its preventive effects on enamel demineralization. Statistical analysis involved a one-way analysis of variance and LSD post hoc tests at a significance level of 0.05. RESULTS The elastomeric ligature containing 2 % mass fraction of DMAHDM exhibited excellent mechanical properties, favorable biocompatibility, and the most effective antibacterial ability against microorganisms, which decreased by almost two logarithms (P < 0.05). It significantly reduced the proportion of Streptococcus mutans in the multispecies plaque biofilm by 25 % at 72 h, leading to an enhanced biofilm microenvironment. Moreover, the novel elastomeric ligature demonstrated an obvious preventive effect on enamel demineralization, with an elastic modulus 30 % higher and hardness 62 % higher than those of the control group within 3 months (P < 0.05). SIGNIFICANCE The integration of DMAHDM with an elastomeric ligature holds significant promise for regulating biofilms and preventing enamel demineralization in orthodontic applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Menghao Lyu
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Yu S, Xu M, Wang Z, Deng Y, Xu HHK, Weir MD, Homayounfar N, Fay GG, Chen H, Yang D. S. mutans Antisense vicK RNA Over-Expression Plus Antibacterial Dimethylaminohexadecyl Methacrylate Suppresses Oral Biofilms and Protects Enamel Hardness in Extracted Human Teeth. Pathogens 2024; 13:707. [PMID: 39204307 PMCID: PMC11356802 DOI: 10.3390/pathogens13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Streptococcus mutans (S. mutans) antisense vicK RNA (ASvicK) is a non-coding RNA that regulates cariogenic virulence and metabolic activity. Dimethylaminohexadecyl methacrylate (DMAHDM), a quaternary ammonium methacrylate used in dental materials, has strong antibacterial activity. This study examined the effects of S. mutans ASvicK on DMAHDM susceptibility and their combined impact on inhibiting S. mutans biofilm formation and protecting enamel hardness. The parent S. mutans UA159 and ASvicK overexpressing S. mutans (ASvicK) were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentrations for planktonic bacteria (MBC-P) and biofilms (MBC-B) were measured. As the ASvicK MBC-B was 175 μg/mL, live/dead staining, metabolic activity (MTT), colony-forming units (CFUs), biofilm biomass, polysaccharide, and lactic acid production were investigated at 175 μg/mL and 87.5 μg/mL. The MIC, MBC-P, and MBC-B values for DMAHDM for the ASvicK strain were half those of the UA159 strain. In addition, combining S. mutans ASvicK with DMAHDM resulted in a significant 4-log CFU reduction (p < 0.05), with notable decreases in polysaccharide levels and lactic acid production. In the in vitro cariogenic model, the combination achieved the highest enamel hardness at 67.1% of sound enamel, while UA159 without DMAHDM had the lowest at 16.4% (p < 0.05). Thus, S. mutans ASvicK enhanced DMAHDM susceptibility, and their combination effectively inhibited biofilm formation and minimized enamel demineralization. The S. mutans ASvicK + DMAHDM combination shows great potential for anti-caries dental applications.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Zheng Wang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Yang Deng
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, China
| |
Collapse
|
6
|
Bian C, Lyu M, Zhu M, Yu C, Guo Y, Weir MD, Masri R, Bai Y, Xu HHK, Zhang N. New Generation of Orthodontic Elastomeric Ligature to Prevent Enamel Demineralization In Vivo. Int J Mol Sci 2024; 25:8409. [PMID: 39125977 PMCID: PMC11313520 DOI: 10.3390/ijms25158409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to synthesize a novel elastomeric ligature with dimethylaminohexadecyl methacrylate (DMAHDM) grafted, providing a new strategy for improving the issue of enamel demineralization during fixed orthodontics. DMAHDM was incorporated into elastomeric ligatures at different mass fractions using ultraviolet photochemical grafting. The antibacterial properties were evaluated and the optimal DMAHDM amount was determined based on cytotoxicity assays. Moreover, tests were conducted to evaluate the in vivo changes in the mechanical properties of the elastomeric ligatures. To assess the actual in vivo effectiveness in preventing enamel demineralization, a rat demineralization model was established, with analyses focusing on changes in surface microstructure, elemental composition, and nanomechanical properties. Elastomeric ligatures with 2% DMAHDM showed excellent biocompatibility and the best antibacterial properties, reducing lactic acid production by 65.3% and biofilm bacteria by 50.0% within 24 h, without significant mechanical property differences from the control group (p > 0.05). Most importantly, they effectively prevented enamel demineralization in vivo, enhancing elastic modulus by 73.2% and hardness by 204.8%. Elastomeric ligatures incorporating DMAHDM have shown great potential for application in preventing enamel demineralization, providing a new strategy to solve this issue during fixed orthodontics.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Menghao Lyu
- Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Chaoran Yu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yiman Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Michael D. Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Hockin H. K. Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
7
|
Fei X, Li Y, Zhang Q, Tian C, Li Y, Dong Q, Weir MD, Homayounfar N, Oates TW, Imazato S, Dai Q, Xu HHK, Ruan J. Novel pit and fissure sealant with nano-CaF 2 and antibacterial monomer: Fluoride recharge, microleakage, sealing ability and cytotoxicity. Dent Mater J 2024; 43:346-358. [PMID: 38583998 DOI: 10.4012/dmj.2023-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Conventional resin-based sealants release minimal fluoride ions (F) and lack antibacterial activity. The objectives of this study were to: (1) develop a novel bioactive sealant containing calcium fluoride nanoparticles (nCaF2) and antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate mechanical performance, F recharge and re-release, microleakage, sealing ability and cytotoxicity. Helioseal F served as commercial control. The initial F release from sealant containing 20% nCaF2 was 25-fold that of Helioseal F. After ion exhaustion and recharge, the F re-release from bioactive sealant did not decrease with increasing number of recharge and re-release cycles. Elastic modulus of new bioactive sealant was 44% higher than Helioseal F. The new sealant had excellent sealing, minimal microleakage, and good cytocompatibility. Hence, the nanostructured sealant had substantial and sustained F release and antibacterial activity, good sealing ability and biocompatibility. The novel bioactive nCaF2 sealant is promising to provide long-term F ions for caries prevention.
Collapse
Affiliation(s)
- Xiuzhi Fei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Yuncong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | - Qian Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Chunli Tian
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry
| | - Quan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Center of Oral Public Health, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
8
|
Zhang JS, Huang S, Chen Z, Chu CH, Takahashi N, Yu OY. Application of omics technologies in cariology research: A critical review with bibliometric analysis. J Dent 2024; 141:104801. [PMID: 38097035 DOI: 10.1016/j.jdent.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES To review the application of omics technologies in the field of cariology research and provide critical insights into the emerging opportunities and challenges. DATA & SOURCES Publications on the application of omics technologies in cariology research up to December 2022 were sourced from online databases, including PubMed, Web of Science and Scopus. Two independent reviewers assessed the relevance of the publications to the objective of this review. STUDY SELECTION Studies that employed omics technologies to investigate dental caries were selected from the initial pool of identified publications. A total of 922 publications with one or more omics technologies adopted were included for comprehensive bibliographic analysis. (Meta)genomics (676/922, 73 %) is the predominant omics technology applied for cariology research in the included studies. Other applied omics technologies are metabolomics (108/922, 12 %), proteomics (105/922, 11 %), and transcriptomics (76/922, 8 %). CONCLUSION This study identified an emerging trend in the application of multiple omics technologies in cariology research. Omics technologies possess significant potential in developing strategies for the detection, staging evaluation, risk assessment, prevention, and management of dental caries. Despite the numerous challenges that lie ahead, the integration of multi-omics data obtained from individual biological samples, in conjunction with artificial intelligence technology, may offer potential avenues for further exploration in caries research. CLINICAL SIGNIFICANCE This review presented a comprehensive overview of the application of omics technologies in cariology research and discussed the advantages and challenges of using these methods to detect, assess, predict, prevent, and treat dental caries. It contributes to steering research for improved understanding of dental caries and advancing clinical translation of cariology research outcomes.
Collapse
Affiliation(s)
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zigui Chen
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China; Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
9
|
Garcia IM, Assad-Loss TF, Schneider LFJ, Collares FM, Cavalcante LMA, Tostes MA. Cytotoxicity evaluation, antibacterial effect, and degree of conversion of QAM-containing adhesives. Braz Oral Res 2024; 38:e001. [PMID: 38198301 PMCID: PMC11376641 DOI: 10.1590/1807-3107bor-2024.vol38.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to evaluate the influence of adding quaternary ammonium methacrylates (QAMs) to experimental adhesives by assessing the degree of conversion (DC), cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. Two QAMs were added to an experimental adhesive: dimethylaminododecyl methacrylate bromododecane (DMADDM) or dimethylaminododecyl methacrylate bromohexadecane (DMAHDM) at three concentrations each: 1, 2.5, and 5 wt.%. Experimental adhesive without QAMs (control group) and commercially available Transbond XT Primer (3M Unitek, Monrovia, California, USA) were used for comparisons. The adhesives were tested for DC, cytotoxicity against keratinocytes and fibroblasts, and antibacterial activity against biofilm formation. DC, cytotoxicity against fibroblasts, and antibacterial activity were analyzed using one-way ANOVA and Tukey's multiple comparisons. Cytotoxicity against keratinocytes was evaluated using the Kruskal Wallis and Dunn's post-hoc (α = 5%) tests. Transbond showed lower DC as compared to 5% DMAHDM, 1% DMADDM, and 5% DMADDM (p < 0.05). However, all groups presented proper DC when compared to commercial adhesives in the literature. In the evaluation of cytotoxicity against keratinocytes, Transbond induced higher viability than 2.5 wt.% groups (p < 0.05). Against fibroblasts, Transbond induced higher viability as compared to 5 wt.% groups (p < 0.05). DMAHDM at 5 wt.% reduced biofilm formation when compared to all the other groups (p < 0.05). Despite their cytotoxic effect against keratinocytes, gingival fibroblasts showed higher viability. DMAHDM at 5 wt.% decreased Streptococcus mutans viability. The incorporation of DMAHDM at 5 wt.% may be a strategy for reducing the development of white spot lesions.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- University of Maryland School of Dentistry, Department of General Dentistry, Baltimore, MD, USA
| | - Tatiana Féres Assad-Loss
- Universidade Federal Fluminense - UFF, School of Dentistry, Graduate Program in Dentistry, Federal Fluminense University, Niterói, RJ, Brazil
| | - Luis Felipe Jochinms Schneider
- Universidade Federal Fluminense - UFF, School of Dentistry, Graduate Program in Dentistry, Federal Fluminense University, Niterói, RJ, Brazil
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Laboratory of Dental Materials, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Maria Assad Cavalcante
- Universidade Federal Fluminense - UFF, School of Dentistry, Graduate Program in Dentistry, Federal Fluminense University, Niterói, RJ, Brazil
| | - Mônica Almeida Tostes
- Universidade Federal Fluminense - UFF, School of Dentistry, Graduate Program in Dentistry, Federal Fluminense University, Niterói, RJ, Brazil
| |
Collapse
|
10
|
Bhadila GY, Baras BH, Balhaddad AA, Williams MA, Oates TW, Weir MD, Xu HHK. Recurrent caries models to assess dental restorations: A scoping review. J Dent 2023; 136:104604. [PMID: 37419382 DOI: 10.1016/j.jdent.2023.104604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVES To review the literature on recurrent caries models used to evaluate restorative materials, compare reported methodology and parameters, and devise specific recommendations to be considered in future investigations. DATA The following were extracted: study design, sample characteristics, source of teeth, name of restorations compared including controls, recurrent caries model type, type of demineralizing and remineralizing solutions, type of biofilm used, methods to detect recurrent caries. SOURCES Literature searches were performed in OVID Medline, EMBASE, SCOPUS, and Cochrane Library. STUDY SELECTION For a study to be included, it had to examine dental materials for tooth restoration purposes only with a valid control group and evaluate restorative dental materials regardless of the form of the teeth caries model used or nature of the tooth structure used. A total of 91 studies were included. Most of the studies presented were in vitro. Human teeth were the main source of specimens utilized. Around 88% of the studies used specimens without an artificial gap, and 44% used a chemical model. S. mutans was the main bacterial species used in microbial caries models. CONCLUSION The findings of this review provided an insight into the performance of available dental materials assessed using different recurrent caries models, yet this review cannot be used as a guideline for material selection. Selecting the appropriate restorative material relies on several patient-related factors such as microbiota, occlusion, and diet that are not comprehensively taken into consideration in recurrent caries models and thus hinder reliable comparison. CLINICAL SIGNIFICANCE Due to the heterogenicity of variables among studies on the performance of dental restorative materials, this scoping review aimed to provide insights for dental researchers concerning the available recurrent caries models, testing methods used, and aspects of comparison between these materials including their characteristics and limitations.
Collapse
Affiliation(s)
- Ghalia Y Bhadila
- Department of Pediatric Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Bashayer H Baras
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mary Ann Williams
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD 21201, United States
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| |
Collapse
|
11
|
Alhussein A, Alsahafi R, Wang X, Mitwalli H, Filemban H, Hack GD, Oates TW, Sun J, Weir MD, Xu HHK. Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer. J Funct Biomater 2023; 14:335. [PMID: 37504831 PMCID: PMC10381573 DOI: 10.3390/jfb14070335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVES Current dental resins exhibit polymerization shrinkage causing microleakage, which has the potential to cause recurrent caries. Our objectives were to create and characterize low-shrinkage-stress (LSS) composites with dimethylaminododecyl methacrylate (DMADDM) as an antibacterial agent to combat recurrent caries. METHODS Triethylene glycol divinylbenzyl ether and urethane dimethacrylate were used to reduce shrinkage stress. DMADDM was incorporated at different mass fractions (0%, 1.5%, 3%, and 5%). Flexural strength, elastic modulus, degree of conversion, polymerization stress, and antimicrobial activity were assessed. RESULTS The composite with 5% DMADDM demonstrated higher flexural strength than the commercial group (p < 0.05). The addition of DMADDM in BisGMA-TEGDMA resin and LSS resin achieved clinically acceptable degrees of conversion. However, LSS composites exhibited much lower polymerization shrinkage stress than BisGMA-TEGDMA composite groups (p < 0.05). The addition of 3% and 5% DMADDM showed a 6-log reduction in Streptococcus mutans (S. mutans) biofilm CFUs compared to commercial control (p < 0.001). Biofilm biomass and lactic acid were also substantially decreased via DMADDM (p < 0.05). CONCLUSIONS The novel LSS dental composite containing 3% DMADDM demonstrated potent antibacterial action against S. mutans biofilms and much lower polymerization shrinkage-stress, while maintaining excellent mechanical characteristics. The new composite is promising for dental applications to prevent secondary caries and increase restoration longevity.
Collapse
Affiliation(s)
- Abdullah Alhussein
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, Umm Al-Qura University, College of Dentistry, Makkah 24211, Saudi Arabia
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, LLC., Gaithersburg, MD 20899, USA
| | - Heba Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hanan Filemban
- Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gary D Hack
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Tanaka CJ, Rodrigues JA, Pingueiro JMS, Macedo TT, Feres M, Shibli JA, Bueno-Silva B. Antibacterial Activity of a Bioactive Tooth-Coating Material Containing Surface Pre-Reacted Glass in a Complex Multispecies Subgingival Biofilm. Pharmaceutics 2023; 15:1727. [PMID: 37376175 DOI: 10.3390/pharmaceutics15061727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bioactive materials were developed with the ability to release fluoride and provide some antimicrobial potential, to be widely used in dentistry today. However, few scientific studies have evaluated the antimicrobial activity of bioactive surface pre-reacted glass (S-PRG) coatings (PRG Barrier Coat, Shofu, Kyoto, Japan) on periodontopathogenic biofilms. This study evaluated the antibacterial activity of S-PRG fillers on the microbial profile of multispecies subgingival biofilms. A Calgary Biofilm Device (CBD) was used to grow a 33-species biofilm related to periodontitis for 7 days. The S-PRG coating was applied on CBD pins from the test group and photo-activated (PRG Barrier Coat, Shofu), while the control group received no coating. Seven days after treatment, the total bacterial counts, metabolic activity, and microbial profile of the biofilms were observed using a colorimetric assay and DNA-DNA hybridization. Statistical analyses were applied; namely, the Mann-Whitney, Kruskal-Wallis, and Dunn's post hoc tests. The bacterial activity of the test group was reduced by 25.7% compared with that of the control group. A statistically significant reduction was observed for the counts of 15 species: A. naeslundii, A. odontolyticus, V. parvula, C. ochracea, C. sputigena, E. corrodens, C. gracilis, F. nucleatum polymorphum, F. nucleatum vincentii, F. periodonticum, P. intermedia, P. gingivalis, G. morbillorum, S. anginosus, and S. noxia (p ≤ 0.05). The bioactive coating containing S-PRG modified the composition of the subgingival biofilm in vitro, thereby decreasing colonization by pathogens.
Collapse
Affiliation(s)
- Caio Junji Tanaka
- School of Dentistry, Mogi das Cruzes University, Mogi das Cruzes 08780-911, Sao Paulo, Brazil
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- School of Dentistry, Sao Judas Tadeu University, Sao Paulo 05503-001, Sao Paulo, Brazil
| | - José Augusto Rodrigues
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- School of Dentistry, Sao Judas Tadeu University, Sao Paulo 05503-001, Sao Paulo, Brazil
| | - João Marcos Spessoto Pingueiro
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Tatiane Tiemi Macedo
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Magda Feres
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Department of Periodontology and Restorative Dentistry, Guarulhos University UNIVERITAS/UNG, Guarulhos 07011-010, Sao Paulo, Brazil
- Department of Biosciences, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba 13414-903, Sao Paulo, Brazil
| |
Collapse
|
13
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
14
|
Lang Y, Wang B, Chang MW, Sun R, Zhang L. Sandwich-structured electrospun pH-responsive dental pastes for anti-caries. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Cao L, Yan J, Luo T, Yan H, Hua F, He H. Antibacterial and fluorescent clear aligner attachment resin modified with chlorhexidine loaded mesoporous silica nanoparticles and zinc oxide quantum dots. J Mech Behav Biomed Mater 2023; 141:105817. [PMID: 37015147 DOI: 10.1016/j.jmbbm.2023.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVES To develop an antibacterial and fluorescent clear aligner attachment resin via the incorporation of chlorhexidine loaded pore-expanded mesoporous silica nanoparticles (CHX@pMSN) and amino-silane functionalized zinc oxide quantum dots (aZnOQDs), and to evaluate its antibacterial activity, fluorescence capability, esthetic properties, mechanical performance and biocompatibility. METHODS CHX@pMSN and aZnOQDs were incorporated into the commercial resin composites (Filtek Z350 XT, 3M) at different mass fractions, control group: Filtek; fluorescent attachment resin (FAR): Filtek + 3 wt% aZnOQDs; antibacterial and fluorescent attachment resin (AFAR)-1: Filtek + 3 wt% aZnOQDs + 1 wt% CHX@pMSN; AFAR-2: Filtek + 3 wt% aZnOQDs + 3 wt% CHX@pMSN; AFAR-3: Filtek + 3 wt% aZnOQDs + 5 wt% CHX@pMSN. CHX release, antibacterial activity, fluorescence capability, color change, stain resistance, degree of conversion, depth of cure, polymerization shrinkage, water sorption and solubility, softening in solvent, flexural strength, flexural modulus, shear bond strength, and cytotoxicity were evaluated comprehensively. RESULTS CHX could be continuously released from the AFAR groups for up to 30 days. CFU, MTT, lactic acid production, SEM and CLSM evaluation showed AFAR-2 and AFAR-3 could effectively inhibit S. mutans biofilms even after 1-month aging. Only AFAR-3 showed clinically perceptible color change and all the experimental groups were not more susceptible to staining. AFAR-1 and AFAR-2 could suppress polymerization shrinkage and enhance the resistance to degradation without compromising other properties, including degree of conversion, water sorption and solubility, flexural strength, flexural modulus, and shear bond strength. Depth of cure of all the four experimental groups was significantly decreased (p < 0.05) but still within the ISO standard. CCK-8 assay and live/dead cell staining denied the cytotoxicity of experimental resins. Fluorescence intensity tests showed that FAR and AFAR-2 could emit strong yellowish fluorescence under the excitation of ultraviolet for up to six months. CONCLUSIONS AFRA-2 possessed long-term antibiofilm activity, strong fluorescence capability and satisfying biocompatibility without compromising esthetic and mechanical properties. This study proposed a new strategy for reducing bacteria accumulation around the attachment, which is also promising in helping orthodontists to remove the attachment thoroughly and precisely.
Collapse
|
16
|
Li X, Ren S, Song L, Gu D, Peng H, Zhao Y, Liu C, Yang J, Miao L. Combined Black Phosphorus Nanosheets with ICG/aPDT is an Effective Anti-Inflammatory Treatment for Periodontal Disorders. Int J Nanomedicine 2023; 18:813-827. [PMID: 36814856 PMCID: PMC9939799 DOI: 10.2147/ijn.s394861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Antibacterial photodynamic treatment (aPDT) has indispensable significance as a means of treating periodontal disorders because of its extraordinary potential for killing pathogenic bacteria by generating an overpowering amount of reactive oxygen species (ROS). The elevated ROS that may result from the antibacterial treatment procedure, however, could exert oxidative pressure inside periodontal pockets, causing irreparable damage to surrounding tissue, an issue that has severely restricted its medicinal applications. Accordingly, herein, we report the use of black phosphorus nanosheets (BPNSs) that can eliminate the side effects of ROS-based aPDT as well as scavenge ROS to produce an antibacterial effect. Methods The antibacterial effect of ICG/aPDT was observed by direct microscopic colony counting. A microplate reader and confocal microscope enabled measurements of cell viability and the quantification of ROS fluorescence. BPNS administration regulated the oxidative environment. IL-1β, IL-6, TNF-α, IL-10, TGF-β, and Arg-1 mRNA expression levels were used to assess the inflammatory response after BPNS treatment. In vivo, the efficacy of the combination of BPNSs and ICG/aPDT was evaluated in rats with periodontal disease by histomorphometric and immunohistochemical analyses. Results The CFU assay results verified the antibacterial effect of ICG/aPDT treatment, and ROS fluorescence quantification by CLSM indicated the antioxidative ability of the BPNSs. IL-1β, IL-6, TNF-α, IL-10, TGF-β, and Arg-1 mRNA expression levels were significantly decreased after BPNS treatment, confirming the in vitro anti-inflammatory effect of this nanomaterial. The histomorphometric and immunohistochemical analyses showed that the levels of proinflammatory factors decreased, suggesting that the BPNSs had anti-inflammatory effects in vivo. Conclusion Treatment with antioxidative BPNSs gives new insights into future anti-inflammatory therapies for periodontal disease and other infection-related inflammatory illnesses and provides an approach to combat the flaws of aPDT.
Collapse
Affiliation(s)
- Xincong Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Lutong Song
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, People’s Republic of China,Correspondence: Leiying Miao; Jie Yang, Email ;
| |
Collapse
|
17
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
18
|
YU W, REN C, ZHANG N, CAO L, WEIR MD, YANG K, XU HHK, BAI Y. Dual function of anti-biofilm and modulating biofilm equilibrium of orthodontic cement containing quaternary ammonium salt. Dent Mater J 2023; 42:149-157. [PMID: 36464290 DOI: 10.4012/dmj.2022-142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The objectives of this study were to incorporate dimethylaminohexadecyl methacrylate (DMAHDM) into resin-modified glass ionomer cement (RMGI) to develop a novel orthodontic cement which endowed RMGI with strong antibacterial ability and investigated its modulation biofilm equilibrium from cariogenic state to non-cariogenic state for the first time. Cariogenic Streptococcus mutans (S. mutans), and non-cariogenic Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) were selected to form a tri-species biofilm model. RMGI incorporated with different mass fraction of DMAHDM was examined: biofilm colony-forming units, metabolic activity, live/dead staining, lactic acid and exopolysaccharides productions. TaqMan real-time polymerase chain reaction was used to determine changes of biofilm species compositions. The results showed RMGI containing 3% DMAHDM achieved strong antibacterial ability and suppressed the cariogenic species in biofilm, modulating biofilm equilibrium from cariogenic state to non-cariogenic state tendency. The novel bioactive cement containing DMAHDM is promising in fixed orthodontic treatments and protecting tooth enamel.
Collapse
Affiliation(s)
- Wenqi YU
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Chaochao REN
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Ning ZHANG
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Li CAO
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Michael D. WEIR
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Science and Therapeutics
| | - Kai YANG
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H. K. XU
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Science and Therapeutics
| | - Yuxing BAI
- Department of Orthodontics, School of Stomatology, Capital Medical University
| |
Collapse
|
19
|
AlSahafi R, Wang X, Mitwalli H, Alhussein A, Balhaddad AA, Melo MAS, Oates TW, Sun J, Xu HK, Weir MD. Novel antibacterial low-shrinkage-stress resin-based cement. Dent Mater 2022; 38:1689-1702. [PMID: 36115699 DOI: 10.1016/j.dental.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A low-shrinkage-stress resin-based cement with antibacterial properties could be beneficial to create a cement with lower stress at the tooth-restoration interface, which could help to enhance the longevity of the fixed dental restoration by reducing microleakage and recurrent caries. To date, there has been no report on the development of a low-shrinkage-stress and bio-interactive cement. Therefore, the objectives of this study were to develop a novel low-shrinkage-stress resin-based cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and investigate the mechanical and antibacterial properties for the first time. METHODS The monomers urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) were combined and denoted as UV resin. Three cements were fabricated: (1) UV+ 0%DMAHDM (experimental control); (2) UV+ 3%DMAHDM, (3) UV+ %5DMAHDM. RelyX Ultimate cement was used as commercial control. Mechanical properties and Streptococcus mutans (S. mutans) biofilms growth on cement were evaluated. RESULTS The novel bio-interactive cement demonstrated excellent antibacterial and mechanical properties. Compared to commercial and experimental controls, adding DMAHDM into the UV cement significantly reduced colony forming unit (CFU) counts by approximately 7 orders of magnitude, metabolic activities from 0.29 ± 0.03 A540/cm2 to 0.01 ± 0.01 A540/cm2, and lactic acid production from 22.3 ± 0.74 mmol/L to 1.2 ± 0.27 mmol/L (n = 6) (p < 0.05). The low-shrinkage-stress cement demonstrated a high degree of conversion of around 70 %, while reducing the shrinkage stress by approximately 60%, compared to a commercial control (p < 0.05). CONCLUSIONS The new antibacterial low-shrinkage-stress resin-based cement provides strong antibacterial action and maintains excellent mechanical properties with reduced polymerization shrinkage stress. CLINICAL SIGNIFICANCE A low-shrinkage-stress resin-based cement containing DMAHDM was developed with potent antibacterial effects and promising mechanical properties. This cement may potentially enhance the longevity of fixed dental restoration such as a dental crown, inlay, onlay, and veneers through its excellent mechanical properties, low shrinkage stress, and strong antibacterial properties.
Collapse
Affiliation(s)
- Rashed AlSahafi
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, Umm Al-Qura University, College of Dentistry, Makkah 24211, Saudi Arabia
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, LLC., Gaithersburg, MD 20899, USA
| | - Heba Mitwalli
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alhussein
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, Dammam 31441, Saudi Arabia
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, MA 02142, USA.
| | - H K Xu
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University Maryland School of Dentistry, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
21
|
Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl methacrylate promoted enamel remineralization in a biofilm-challenged environment. Dent Mater 2022; 38:1518-1531. [PMID: 35907751 DOI: 10.1016/j.dental.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The cariogenic biofilm on enamel, restoration, and bonding interface is closely related to dental caries and composite restoration failure. Enamel remineralization at adhesive interface is conducive to protecting bonding interface and inhibiting secondary caries. This study intended to assess the remineralization efficiency of adhesive with dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on initial caries lesion of biofilm-coated enamel. METHODS Artificial initial carious lesion was created via 72-hour immersion in demineralization solution and cariogenic biofilm was formed after 24-hour culture of Streptococcus mutans (S. mutans). Specimens were then divided into 4 groups: enamel control, enamel treated with NACP, DMAHDM and NACP+DMAHDM respectively. Samples next underwent 7-day cycling, 4 h in BHIS (brain heart infusion broth containing 1 % sucrose) and 20 h in AS (artificial saliva) per day. The pH of BHIS was tested daily. So did the concentration of calcium and phosphate in BHIS and AS. Live/dead staining, colony-forming unit (CFU) count, and lactic acid production of biofilms were measured 7 days later. The enamel remineralization efficiency was evaluated by microhardness testing and transverse microradiography (TMR) quantitatively. RESULTS Enamel of NACP+DMAHDM group demonstrated excellent remineralization effectiveness. And the NACP+DMAHDM adhesive released a great number of Ca2+ and PO43- ions, increased pH to 5.81 via acid neutralization, decreased production of lactic acid, and reduced CFU count of S. mutans (P < 0.05). SIGNIFICANCE The NACP+DMAHDM adhesive would be applicable to preventing secondary caries, strengthening enamel-adhesive interface, and extending the lifespan of composite restoration.
Collapse
|
22
|
Chen Y, Yang B, Cheng L, Xu HHK, Li H, Huang Y, Zhang Q, Zhou X, Liang J, Zou J. Novel Giomers Incorporated with Antibacterial Quaternary Ammonium Monomers to Inhibit Secondary Caries. Pathogens 2022; 11:pathogens11050578. [PMID: 35631099 PMCID: PMC9147272 DOI: 10.3390/pathogens11050578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to develop novel modified giomers by incorporating the antibacterial quaternary ammonium monomers (QAMs), dimethylaminododecyl methacrylate (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) into a commercial giomer. The material performances including mechanical properties, surface characteristics, color data, cytotoxicity and fluoride release of the novel giomers were evaluated. Antibacterial activity against severe early childhood caries (S-ECC) saliva-derived biofilms was assessed by lactic acid production measurement, MTT assay, biofilm staining and 16S rRNA sequencing. A rat model was developed and the anti-caries effect was investigated by micro-CT scanning and modified Keyes’ scoring. The results showed that the material properties of the QAMs groups were comparable to those of the control group. The novel giomers significantly inhibited lactic acid production and biofilm viability of S-ECC saliva-derived biofilms. Furthermore, caries-related genera such as Streptococcus and Lactobacillus reduced in QAMs groups, which showed their potential to change the microbial compositions. In the rat model, lesion depth, mineral loss and scoring of the QAMs groups were significantly reduced, without side effects on oral tissues. In conclusion, the novel giomers incorporated with antibacterial QAMs could inhibit the cariogenic biofilms and help prevent secondary caries, with great potential for future application in restorative treatment.
Collapse
Affiliation(s)
- Yandi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Y.C.); (B.Y.); (L.C.); (H.L.); (Y.H.); (Q.Z.); (X.Z.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (J.Z.)
| |
Collapse
|
23
|
Evaluation of the ability of adhesives with antibacterial and remineralization functions to prevent secondary caries in vivo. Clin Oral Investig 2022; 26:3637-3650. [DOI: 10.1007/s00784-021-04334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
|
24
|
Komalsingsakul A, Srisatjaluk RL, Senawongse P. Effect of brushing on surface roughness, fluoride release, and biofilm formation with different tooth-colored materials. J Dent Sci 2022; 17:389-398. [PMID: 35028062 PMCID: PMC8739752 DOI: 10.1016/j.jds.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background/purpose Tooth brushing, material mechanical ageing procedure, is the most effective way in removing biofilm. The purpose of this study was to investigate the surface roughness, fluoride-release, and S. mutans biofilm formation on various tooth-colored restorative materials before and after brushing. Materials and methods Discs of materials, a nanocomposite (Filtek Z350XT; CO), a giomer (Beautifil II; GIOMER), a resin-modified glass-ionomer material (Fuji II LC; RMGI), and a conventional glass-ionomer material (Fuji IX GP Extra; GI), were prepared, polished with abrasive discs (SofLex), and divided into brushed and not brushed groups. The surface roughness of specimens was observed using a contact profilometer, fluoride-release was measured using a fluoride-specific ion electrode, and S. mutans biofilm formation, biovolume and live/dead cells, was observed under a confocal laser scanning microscope. Results Higher roughness was observed on GI and RMGI than on CO and GIOMER. Brushing had no effect on the roughness. The fluoride-release of GI and RMGI was higher than that of GIOMER. The fluoride-release decreased after brushing in all materials. The biovolume of S. mutans was not significantly different between GIOMER, RMGI and GI, while CO showed the highest. Brushing resulted in a higher biovolume for all materials, except CO, which showed no change. After brushing, all the tested materials demonstrated identical biovolumes. There were no significant differences in live/dead cells among all groups. Conclusion Brushing demonstrated a negative effect on the fluoride-release and biovolume of S. mutans biofilms for all tested materials except nanocomposites.
Collapse
Affiliation(s)
- Anisha Komalsingsakul
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Pisol Senawongse
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Albeshir EG, Balhaddad AA, Mitwalli H, Wang X, Sun J, Melo MAS, Weir MD, Xu HHK. Minimally-invasive dentistry via dual-function novel bioactive low-shrinkage-stress flowable nanocomposites. Dent Mater 2021; 38:409-420. [PMID: 34973816 DOI: 10.1016/j.dental.2021.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
The objectives of this in vitro study were to develop a novel low-shrinkage-stress flowable nanocomposite with antibacterial properties through the incorporation of dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and investigate the mechanical and oral biofilm properties, to be used in minimally-invasive techniques. METHODS The light-cured low-shrinkage-stress flowable resin was formulated by mixing urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) at a 1:1 mass ratio. Different mass fractions of glass, and either 5% DMAHDM or 20%NACP or both were incorporated. Paste flowability, ultimate micro tensile strength and surface roughness were evaluated. The antibacterial response of DMAHDM resin was assessed by using biofilms of human saliva-derived microcosm model. Virtuoso flowable composite was used as a control. RESULTS (45% resin+5% DMAHDM+20% NACP+30% glass) formula yielded the needed outcomes. It had flow rate within the range of ISO requirement. The micro tensile strength was (39.1 ± 4.3) MPa, similar to (40.1 ± 4.0) MPa for commercial control (p > 0.05). The surface roughness values of the novel composite (0.079 ± 0.01) µm similar to commercial composite (0.09 ± 0.02) µm (p > 0.05). Salivary microcosm biofilm colony forming unit values were reduced by 5-6 logs (p < 0.05). Biofilm metabolic activity was also substantially reduced, compared to control composite (p < 0.05). SIGNIFICANCE The novel bioactive flowable nanocomposite achieved strong antibacterial activities without compromising the mechanical properties. It is promising to be used as pit and fissure sealants, and as fillings in conservative cavities to inhibit recurrent caries and increase restoration longevity.
Collapse
Affiliation(s)
- Ebtehal G Albeshir
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dentistry, King Abdul-Aziz Medical City, Riyadh 11426, Saudi Arabia.
| | - Abdulrahman A Balhaddad
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Heba Mitwalli
- Ph.D. Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Jirun Sun
- The Forsyth Institute, A Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, USA.
| | - Mary Ann S Melo
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
Hydrogen peroxide potentiates antimicrobial photodynamic therapy in eliminating Candida albicans and Streptococcus mutans dual-species biofilm from denture base. Photodiagnosis Photodyn Ther 2021; 37:102691. [PMID: 34921987 DOI: 10.1016/j.pdpdt.2021.102691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Candida albicans (C.albicans) is the primary pathogen of denture biofilm. Moreover, it could establish a cross-kingdom relationship with bacteria to enhance its virulence and resistance to antifungal drugs. This study aimed to investigate the efficacy of antimicrobial photodynamic therapy (aPDT) in combination with hydrogen peroxide (H2O2) against C.albicans and Streptococcus mutans (S.mutans) dual-species biofilm formed on polymethyl methacrylate (PMMA) disk, and explore its involved mechanisms. METHODS C.albicans and S.mutans were grown on PMMA disk for 48 h to form biofilm and received different treatments. The treatments included:1) phosphate-buffered saline (PBS) group,2) 100 mM H2O2 group,3) aPDT group,4) aPDT+ H2O2 and 5) H2O2+aPDT group. Colony forming units (CFU), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and scanning electron microscope (SEM) were used to evaluate the antimicrobial effects. Extracellular polysaccharide substance (EPS) production and observation, cell permeability of biofilm, and uptake of toluidine blue O (TBO) by biofilm were assessed to investigate the involved mechanism. RESULTS There was no significant difference between PBS group and H2O2 group in viable microorganisms and metabolic activity of biofilm. The treatment protocols containing aPDT group reduced microorganism numbers and metabolic activity when compared to PBS group or H2O2 group (P<0.05). H2O2+aPDT treatment showed the highest antimicrobial efficacy in comparison with other treatments (P<0.05). Pretreatment with H2O2 could decrease EPS production and enhance cell permeability, leading to increased TBO uptake in biofilm. CONCLUSION Pretreatment with H2O2 improved aPDT efficiency in eliminating dual-species biofilm from PMMA disk by reducing EPS amount, enhancing cell permeability, and increasing TBO uptake.
Collapse
|
27
|
Duarte de Oliveira FJ, Ferreira da Silva Filho PS, Fernandes Costa MJ, Rabelo Caldas MRG, Dutra Borges BC, Gadelha de Araújo DF. A comprehensive review of the antibacterial activity of dimethylaminohexadecyl methacrylate (DMAHDM) and its influence on mechanical properties of resin-based dental materials. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:60-70. [PMID: 33995712 PMCID: PMC8102164 DOI: 10.1016/j.jdsr.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 02/08/2023] Open
Abstract
The repetitive restorative cycle should be avoided, aiming at the smallest number of restorations' replacements to ensure greater tooth longevity. Antibacterial materials associated with the control of caries etiological factors can help improve restoration's durability. This review aimed to analyze the results of in vitro studies that added Dimethylaminohexadecyl methacrylate (DMAHDM), an antibacterial monomer, to restorative materials. The PubMed, SCOPUS, Web of Science, and Biblioteca Virtual em Saúde databases were screened for studies published between 2015 and 2020. After full-text reading, 24 articles were included in the final sample. DMAHDM has demonstrated antibacterial efficacy against several bacteria related to dental caries and periodontal diseases, causing a transition in the biofilm balance without inducing resistance. When DMAHDM was included in acrylic resin, the material cytotoxicity increased, and changes in mechanical properties were observed. In contrast, resin composites had their mechanical properties maintained in most studies; however, toxicity was not examined. The association between DMAHDM and 2-methacryloyloxyethyl phosphorylcholine or silver nanoparticles improved the antibacterial effect. Besides, the association with nanoparticles of amorphous calcium phosphate or nanoparticles of calcium fluoride can provide remineralization capacity. There is a lack of information on the cytotoxicity and bacteria resistance induction, and further studies are needed to address this.
Collapse
|
28
|
Filemban H, Bhadila G, Wang X, Melo MAS, Oates TW, Weir MD, Sun J, Xu HH. Novel low-shrinkage-stress bioactive nanocomposite with anti-biofilm and remineralization capabilities to inhibit caries. J Dent Sci 2021; 17:811-821. [PMID: 35756812 PMCID: PMC9201927 DOI: 10.1016/j.jds.2021.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Background/purpose A common reason for dental composite restoration failure is recurrent caries at the margins. Our objectives were to: (1) develop a novel low-shrinkage-stress, antibacterial and remineralizing resin composite; (2) evaluate the effects of dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical properties, biofilm inhibition, calcium (Ca) and phosphate (P) ion release, degree of conversion, and shrinkage stress on the new low-shrinkage-stress resin composite for the first time. Material and methods The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) with high resistance to salivary hydrolytic degradation. Composites were made with 0%–8% of DMAHDM for antibacterial activity, and 20% of nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Mechanical properties and Streptococcus mutans biofilm growth on composites were assessed. Ca and P ion releases, degree of conversion and shrinkage stress were evaluated. Results Adding 2–5% DMAHDM and 20% NACP into the low-shrinkage-stress composite did not compromise the mechanical properties (p > 0.05). The incorporation of DMAHDM greatly reduced S. mutans biofilm colony-forming units by 2–5 log and lactic acid production by 7 folds, compared to a commercial composite (p < 0.05). Adding 5% DMAHDM did not compromise the Ca and P ion release. The low-shrinkage-stress composite maintained a high degree of conversion of approximately 70%, while reducing the shrinkage stress by 37%, compared to a commercial control (p < 0.05). Conclusion The bioactive low-shrinkage-stress composite reduced the polymerization shrinkage stress, without compromising other properties. Increasing the DMAHDM content increased the antibacterial effect in a dose-dependent manner.
Collapse
Affiliation(s)
- Hanan Filemban
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, USA
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Department of Operative Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ghalia Bhadila
- Department of Pediatric Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
- Corresponding author.
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, LLC., Gaithersburg, USA
| | - Mary Ann S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, USA
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Corresponding author. Biomaterials & Tissue Engineering Division. Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, 21201, MD, USA.
| | - Jirun Sun
- The Forsyth Institute, Harvard School of Dental Medicine Affiliate, Cambridge, USA
- Corresponding author. The Forsyth Institute, Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, 02142, MA, USA.
| | - Hockin H.K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
29
|
Anti-bacterial and anti-microbial aging effects of resin-based sealant modified by quaternary ammonium monomers. J Dent 2021; 112:103767. [PMID: 34363889 DOI: 10.1016/j.jdent.2021.103767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Pit and fissure sealant is used in the prevention of dental caries. However, commercial pit and fissure sealant lacks persistent antibacterial properties. Dimethylaminododecyl methacrylate (DMADDM) was added to pit and fissure sealants to give it sustainable antibacterial properties and anti-microbial aging properties. METHODS Resin-based sealant was used as a control. Novel sealants were made with DMADDM. Atomic force microscope observation, curing depth, cytotoxicity, lactic acid measurement, hardness and microleakage were measured. Saliva-derived biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production and biomass accumulation were measured. RESULTS Incorporating DMADDM did not increase the cytotoxicity or change the physical properties when the mass fraction of the DMADDM was 2.5-10%. The modification decreased the amount of bacterial biofilm, metabolic activity, lactic acid production and exopolysaccharide (EPS) in the saliva biofilms. It also provided anti-microbial aging properties. CONCLUSION The incorporation of DMADDM improved the antibacterial and anti-microbial aging effects of the material. It demonstrated a sustained antibacterial effect. The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to inhibit dental caries, especially for children at high caries risk. CLINICAL SIGNIFICANCE The antibacterial and anti-microbial aging modification might be a potential choice for future clinical applications to prevent dental caries, especially for individuals at high caries risk.
Collapse
|
30
|
Ultrashort Peptide Hydrogels Display Antimicrobial Activity and Enhance Angiogenic Growth Factor Release by Dental Pulp Stem/Stromal Cells. MATERIALS 2021; 14:ma14092237. [PMID: 33925337 PMCID: PMC8123614 DOI: 10.3390/ma14092237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Recent studies on peptide hydrogels have shown that ultrashort peptides (<8 amino acids) can self-assemble into hydrogels. Ultrashort peptides can be designed to incorporate antimicrobial motifs, such as positively charged lysine residues, so that the peptides have inherent antimicrobial characteristics. Antimicrobial hydrogels represent a step change in tissue engineering and merit further investigation, particularly in applications where microbial infection could compromise healing. Herein, we studied the biocompatibility of dental pulp stem/stromal cells (DPSCs) with an ultrashort peptide hydrogel, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFεKεK-OH), where the epsilon (ε) amino group forms part of the peptide bond rather than the standard amino grouping. We tested the antimicrobial properties of NapFFεKεK-OH in both solution and hydrogel form against Staphylococcus aureus, Enterococcus faecalis and Fusobacterium nucleatum and investigated the DPSC secretome in hydrogel culture. Our results showed NapFFεKεK-OH hydrogels were biocompatible with DPSCs. Peptides in solution form were efficacious against biofilms of S. aureus and E. faecalis, whereas hydrogels demonstrated antimicrobial activity against E. faecalis and F. nucleatum. Using an angiogenic array we showed that DPSCs encapsulated within NapFFεKεK-OH hydrogels produced an angiogenic secretome. These results suggest that NapFFεKεK-OH hydrogels have potential to serve as novel hydrogels in tissue engineering for cell-based pulp regeneration.
Collapse
|
31
|
Abstract
A previous longitudinal study about using microbiome as a caries indicator has successfully predicted early childhood caries (ECC) in healthy individuals, but there is no evidence to verify the composition of core microbiota and its pathogenicity in vitro and in vivo. Biofilm acidogenicity, S. mutans count, and biofilm composition were estimated by pH evaluation, colony-forming unit, and quantitative PCR, respectively. Extracellular polysaccharide production and enamel demineralization were observed by confocal laser scanning microscopy (CLSM) and transverse microradiography (TMR), respectively. A rat caries model was established for dental caries formation in vivo, and caries lesions were quantified by Keyes Scoring. We put forward that microbiota including Veillonella parvula, Fusobacterium nucleatum, Prevotella denticola, and Leptotrichia wadei served as the predictors for ECC may be the core microbiota in ECC. This study found that the core microbiota of ECC produced limited acid, but promoted growth and acidogenic ability of S. mutans. Besides, core microbiota could help to promote the development of biofilms. Moreover, the core microbiota enhanced the enamel demineralization in vitro and increased cariogenic potential in vivo. These results proved that core microbiota could promote the development of dental caries and plays an important role in the development of ECC.
Collapse
|
32
|
Huang Y, Song B, Zhou X, Chen H, Wang H, Cheng L. Dental Restorative Materials for Elderly Populations. Polymers (Basel) 2021; 13:polym13050828. [PMID: 33800358 PMCID: PMC7962827 DOI: 10.3390/polym13050828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice.
Collapse
Affiliation(s)
- Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bingqing Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hui Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| |
Collapse
|
33
|
Bhadila G, Menon D, Wang X, Vila T, Melo MAS, Montaner S, Arola DD, Weir MD, Sun J, Hockin H K, Xu. Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:886-905. [PMID: 33482702 DOI: 10.1080/09205063.2021.1878805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A low-shrinkage-stress (LSS), antibacterial and remineralizing nanocomposite was recently developed; however, validation of its long-term antibacterial potency in modulating human salivary-derived biofilm is an unmet need. This study aimed to evaluate the antibacterial effect of the bioactive LSS composite before and after aging in acidic solution for 90 days using a multi-species biofilm model, and to evaluate its cytotoxicity. The LSS composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% nanoparticles of amorphous calcium phosphate (NACP). Biofilm colony-forming units (CFU), lactic acid production, and confocal laser scanning microscopy (3D biofilm) were evaluated before and after three months of aging. Cytotoxicity was assessed against human gingival fibroblasts (HGF). The new LSS composite presented the lowest biofilm CFU, lactic acid and biofilm biomass, compared to controls (n = 6, p < 0.05). Importantly, the new composite exhibited no significant difference in antibacterial performance before and after 90-day-aging, demonstrating long-term antibacterial activity (p > 0.1). The LSS antibacterial and remineralizing composite presented a low cell viability at original extract that has increased with further dilutions. In conclusion, this study spotlighted that the new bioactive composite not only had a low shrinkage stress, but also down-regulated the growth of oral biofilms, reduced acid production, maintained antibacterial activity after the 90-day-aging, and did not compromise the cytocompatibility.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | - Taissa Vila
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | | | - Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Tong H, Yu X, Shi Z, Liu F, Yu Y, Deng F, He J. Physicochemical properties, bond strength and dual-species biofilm inhibition effect of dental resin composites with branched silicone methacrylate. J Mech Behav Biomed Mater 2021; 116:104368. [PMID: 33545416 DOI: 10.1016/j.jmbbm.2021.104368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Dental resin composites (DRCs) with 15 wt% (EC-15%) and 20 wt% (EC-20%) synthesized branched silicone methacrylate (BSM) in resin matrix have showed anti-adhesion effect against Streptococcus mutans. With the aim to evaluate the BSM containing DRCs further, water sorption (WS), solubility (SL), mechanical properties before and after water immersion, anti-adhesion effect against dual-species, bonding strength to adhesive treated dentin, and cytotoxicity of BSM containing DRCs were investigated. DRC without BSM was used as control. The WS and SL were obtained until the mass variation of composite in distilled water kept stable. Three-point bending test was used to evaluate flexural strength (FS) and modulus (FM) of composite before and after water immersion. Mixture of Streptococcus mutans and Lactobacillus acidophilus was used to study the anti-adhesion effect against dual-species. Bonding strength of composite to adhesive treated dentin was measured through macro-shear test. Extract of composite was used to evaluate its cytotoxicity effect on L-929 mouse fibroblasts, and cell viability was obtained by MTT assay. The results showed that EC-15% and EC-20% had similar WS and SL as control (p < 0.05); After water immersion, FS and FM of all composites decreased (p < 0.05), but there was no significant difference in value of FS and FM between different groups (p > 0.05); More bacteria were recovered from the surface of control than those from the surface of EC-15% and EC-20% (p < 0.05); Extract of EC-15% was less cytotoxic (higher cell viability) than those EC-20% and control (p < 0.05). All of results revealed that incorporation of 15 wt% or 20 wt% BSM in resin matrix could endow DRC with inhibition effect on dual-species biofilm formation without impairing physiochemical properties, bonding strength to adhesive treated dentin, and cytotoxicity of DRC.
Collapse
Affiliation(s)
- Hui Tong
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhifeng Shi
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, PR China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Yi Yu
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
35
|
Starvation Survival and Biofilm Formation under Subminimum Inhibitory Concentration of QAMs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8461245. [PMID: 33511211 PMCID: PMC7822668 DOI: 10.1155/2021/8461245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
Quaternary ammonium methacrylates (QAMs) are useful antimicrobial compounds against oral bacteria. Here, we investigated the effects of two QAMs, dimethylaminododecyl methacrylate (DMADDM) and dimethylaminohexadecyl methacrylate (DMAHDM), on biofilm formation, survival and development of tolerance by biofilm, and survival and development of tolerance against QAMs after prolonged starvation. Enterococcus faecalis (E. faecalis), Streptococcus gordonii (S. gordonii), Lactobacillus acidophilus (L. acidophilus), and Actinomyces naeslundii (A. naeslundii) were used. Minimum inhibitory concentration (MIC) of QAMs against multispecies biofilm was determined. Biofilm formed under sub-MIC was observed by crystal violet staining and confocal laser scanning microscopy (CLSM). Metabolic activity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactic acid production measurement. Development of tolerance was determined by MIC values before and after exposure to QAMs or after prolonged starvation. It was found that E. faecalis and S. gordonii could survive and form biofilm under sub-MIC of QAMs. Lactic acid production from biofilms formed under sub-MIC was significantly higher than control specimens (p < 0.05). The exposure to sub-MIC of QAMs promoted biofilm formation, and prolonged starvation or prolonged contact with sub-MIC helped bacteria develop tolerance against killing by QAMs.
Collapse
|
36
|
Sun Y, Sun X, Li X, Li W, Li C, Zhou Y, Wang L, Dong B. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials 2020; 268:120614. [PMID: 33360771 DOI: 10.1016/j.biomaterials.2020.120614] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Antibacterial photodynamic therapy (aPDT) is of vital importance for the treatment of periodontal diseases due to its great potential on effective elimination of pathogenic bacteria via overwhelming reactive oxygen species (ROS) generation. However, the excessive ROS after the therapeutic process may impose an oxidative stress within periodontal pockets, consequently leading to an irreversible destroy in surrounding tissue and severely limit its biomedical applications. In this study, considering the contradiction between ROS in bacteriostasis and inflammation, the role of ROS in different temporal and spatial states has been fully studied. Accordingly, we have designed composite nanomaterials that can play ROS based aPDT and anti-inflammatory effect by eliminating ROS, taking account of different ratio of photosensitizer/ROS scavenger to realize a time-sequential manner. Herein, a simple multifunctional nanocomposite was fabricated by coating red light-excited photosensitizer chlorin e6 (Ce6) onto nanoceria, achieving simultaneous sterilization and inflammation elimination via a dual directional regulation effect. This nano-based platform could utilize the aPDT for antibacterial purpose in the first stage with red-light irradiation, and subsequently scavenge the residual ROS via nanoceria to modulate host immunity by down-regulating the M1 polarization (pro-inflammatory) of macrophages and up-regulating the M2 polarization (anti-inflammatory and regenerative) of macrophages. Moreover, the local ROS level induced by activated inflammation pathway can be adjusted in a very long time because of the charge conversion effect of CeO2. The regenerative potential of inflammatory surrounding tissues was improved in the animal model. Our strategy will open a new inspiration to fight against the defects of aPDT in the treatment of periodontal disease, even in the anti-infection therapy for the future clinical application.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wen Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
37
|
Behl S, Farahani AD, Raju, Rajan G, Ellakwa A, Farrar P, Thordarson P, Prusty BG. Evaluation of rheological behaviour of flowable dental composites reinforced with low aspect ratio micro-sized glass fibres. Dent Mater 2020; 37:131-142. [PMID: 33309321 DOI: 10.1016/j.dental.2020.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Experimental investigation is carried out to determine the flowability and stickiness of the developed composite material for dental restoration containing low aspect ratio (AR ≤ 100) surface treated micro-sized glass fibres. METHODS Specimens are manufactured by mixing low AR (50/70/100) micro-sized glass fibres with two different weight fractions (5%/10%) into UDMA/TEGDMA based resin. Particulate filler composite (PFC) containing 55% glass fillers is used as the control group. Dynamic oscillatory strain sweep tests are conducted to analyse the linear viscoelastic behaviour. Solid-to fluidic transition behaviour of dental composites is also calculated in terms of flow and yield stresses. Furthermore, the oscillatory frequency sweep tests are conducted at three different strains (0.5%, 5% and 50%) resembling the positioning of unset paste onto restorations for different real-life clinical situations. Additionally, stickiness of dental composites with handling instrument (steel) and dentine covered with bonding agent is also evaluated. RESULTS The results suggested the all the FRC groups exhibited non-Newtonian, shear-thinning behaviour. It is further established that inclusion of 5% of 50/70AR fibres into dental composites does not affect the flowability. Simultaneously, stickiness with dentine covered with bonding agent is more for these two compositions as compared to that of handling instrument (steel). SIGNIFICANCE This study suggest that visco-elastic properties of dental composites are greatly affected by the type of filler (spherical shaped particulate fillers or rod-shaped fibres) as well as fibre weight fraction/fibre AR. This phenomenon can be attributed to the varying interactions between micro-sized fibres of different AR/weight fraction, particulate fillers and monomers.
Collapse
Affiliation(s)
- Sonam Behl
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | | | - Raju
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Ginu Rajan
- School of Electrical, Computer & Telecommunications Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Ayman Ellakwa
- Prosthodontics and Oral Rehabilitation, School of Dentistry, University of Sydney, Sydney, NSW, 2010, Australia.
| | - Paul Farrar
- SDI Limited, Bayswater, VIC, 3153, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - B Gangadhara Prusty
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; ARC Centre for Automated Manufacture of Advanced Composites, School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
38
|
Liu J, Dai Q, Weir MD, Schneider A, Zhang C, Hack GD, Oates TW, Zhang K, Li A, Xu HHK. Biocompatible Nanocomposite Enhanced Osteogenic and Cementogenic Differentiation of Periodontal Ligament Stem Cells In Vitro for Periodontal Regeneration. MATERIALS 2020; 13:ma13214951. [PMID: 33158111 PMCID: PMC7663634 DOI: 10.3390/ma13214951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Abstract
Decays in the roots of teeth is prevalent in seniors as people live longer and retain more of their teeth to an old age, especially in patients with periodontal disease and gingival recession. The objectives of this study were to develop a biocompatible nanocomposite with nano-sized calcium fluoride particles (Nano-CaF2), and to investigate for the first time the effects on osteogenic and cementogenic induction of periodontal ligament stem cells (hPDLSCs) from human donors.Nano-CaF2 particles with a mean particle size of 53 nm were produced via a spray-drying machine.Nano-CaF2 was mingled into the composite at 0%, 10%, 15% and 20% by mass. Flexural strength (160 ± 10) MPa, elastic modulus (11.0 ± 0.5) GPa, and hardness (0.58 ± 0.03) GPa for Nano-CaF2 composite exceeded those of a commercial dental composite (p < 0.05). Calcium (Ca) and fluoride (F) ions were released steadily from the composite. Osteogenic genes were elevated for hPDLSCs growing on 20% Nano-CaF2. Alkaline phosphatase (ALP) peaked at 14 days. Collagen type 1 (COL1), runt-related transcription factor 2 (RUNX2) and osteopontin (OPN) peaked at 21 days. Cementogenic genes were also enhanced on 20% Nano-CaF2 composite, promoting cementum adherence protein (CAP), cementum protein 1 (CEMP1) and bone sialoprotein (BSP) expressions (p < 0.05). At 7, 14 and 21 days, the ALP activity of hPDLSCs on 20% Nano-CaF2 composite was 57-fold, 78-fold, and 55-fold greater than those of control, respectively (p < 0.05). Bone mineral secretion by hPDLSCs on 20% Nano-CaF2 composite was 2-fold that of control (p < 0.05). In conclusion, the novel Nano-CaF2 composite was biocompatible and supported hPDLSCs. Nano-CaF2 composite is promising to fill tooth root cavities and release Ca and F ions to enhance osteogenic and cementogenic induction of hPDLSCs and promote periodontium regeneration.
Collapse
Affiliation(s)
- Jin Liu
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.L.); (Q.D.)
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Quan Dai
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.L.); (Q.D.)
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Charles Zhang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Gary D. Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
- Correspondence: (K.Z.); (A.L.); (H.H.K.X.); Tel.: +86-010-5709-9222 (K.Z.); +86-029-8721-6572 (A.L.); +86-44-3562-1295 (H.H.K.X.)
| | - Ang Li
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.L.); (Q.D.)
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: (K.Z.); (A.L.); (H.H.K.X.); Tel.: +86-010-5709-9222 (K.Z.); +86-029-8721-6572 (A.L.); +86-44-3562-1295 (H.H.K.X.)
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (C.Z.); (G.D.H.); (T.W.O.)
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (K.Z.); (A.L.); (H.H.K.X.); Tel.: +86-010-5709-9222 (K.Z.); +86-029-8721-6572 (A.L.); +86-44-3562-1295 (H.H.K.X.)
| |
Collapse
|
39
|
Chen H, Yang H, Weir MD, Schneider A, Ren K, Homayounfar N, Oates TW, Zhang K, Liu J, Hu T, Xu HHK. An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Adv 2020; 10:40157-40170. [PMID: 35520873 PMCID: PMC9057516 DOI: 10.1039/d0ra06873j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Osteomyelitis and post-operative infections are major problems in orthopedic, dental and craniofacial surgeries. It is highly desirable for a tissue engineering construct to kill bacteria, while simultaneously delivering stem cells and enhancing cell function and tissue regeneration. The objectives of this study were to: (1) develop a novel injectable calcium phosphate cement (CPC) scaffold containing antibiotic ornidazole (ORZ) while encapsulating human periodontal ligament stem cells (hPDLSCs), and (2) investigate the inhibition efficacy against Staphylococcus aureus (S. aureus) and the promotion of hPDLSC function for osteogenesis for the first time. ORZ was incorporated into a CPC-chitosan scaffold. hPDLSCs were encapsulated in alginate microbeads (denoted hPDLSCbeads). The ORZ-loaded CPCC+hPDLSCbeads scaffold was fully injectable, and had a flexural strength of 3.50 ± 0.92 MPa and an elastic modulus of 1.30 ± 0.45 GPa, matching those of natural cancellous bone. With 6 days of sustained ORZ release, the CPCC+10ORZ (10% ORZ) scaffold had strong antibacterial effects on S. aureus, with an inhibition zone of 12.47 ± 1.01 mm. No colonies were observed in the CPCC+10ORZ group from 3 to 7 days. ORZ-containing scaffolds were biocompatible with hPDLSCs. CPCC+10ORZ+hPDLSCbeads scaffold with osteogenic medium had 2.4-fold increase in alkaline phosphatase (ALP) activity and bone mineral synthesis by hPDLSCs, as compared to the control group (p < 0.05). In conclusion, the novel antibacterial construct with stem cell delivery had injectability, good strength, strong antibacterial effects and biocompatibility, supporting osteogenic differentiation and bone mineral synthesis of hPDLSCs. The injectable and mechanically-strong CPCC+10ORZ+hPDLSCbeads construct has great potential for treating bone infections and promoting bone regeneration.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, College of Stomatological, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Hui Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry Baltimore USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland Baltimore MD 21201 USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University Beijing China
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an Shannxi China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine Baltimore MD 21201 USA
| |
Collapse
|
40
|
Bhadila G, Filemban H, Wang X, Melo MAS, Arola DD, Tay FR, Oates TW, Weir MD, Sun J, Xu HH. Bioactive low-shrinkage-stress nanocomposite suppresses S. mutans biofilm and preserves tooth dentin hardness. Acta Biomater 2020; 114:146-157. [PMID: 32771591 DOI: 10.1016/j.actbio.2020.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Recurrent dental caries is one of the main reasons for resin composite restoration failures. This study aimed to: (1) develop a bioactive, low-shrinkage-stress, antibacterial and remineralizing composite and evaluate the sustainability of its antibacterial effect against Streptococcus mutans (S. mutans) biofilms; and (2) evaluate the remineralization and cariostatic potential of the composite containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM), using dentin hardness measurement and a biofilm-induced recurrent caries model. The antibacterial and remineralizing low-shrinkage-stress composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% DMAHDM and 20% NACP. S. mutans biofilm was used to evaluate antibiofilm activity, before and after 3 months of composite aging in acidic solution. Human dentin was used to develop a recurrent caries biofilm-model. Adding DMAHDM and NACP into low shrinkage-stress composite did not compromise the flexural strength. The low-shrinkage-stress composite with DMAHDM achieved substantial reductions in biofilm colony-forming units (CFU), lactic acid production, and biofilm biomass (p < 0.05). The low-shrinkage-stress DMAHDM+NACP composite exhibited no significant difference in antibacterial performance before and after 3 months of aging, demonstrating long-term antibacterial activity. Under S. mutans biofilm acidic attack, dentin hardness (GPa) was 0.24 ± 0.04 for commercial control, and 0.23 ± 0.03 for experimental control, but significantly higher at 0.34 ± 0.03 for DMAHDM+NACP group (p < 0.05). At an instrumental compliance of 0.33 μm/N, the polymerization shrinkage stress of the new composite was 36% lower than that of a traditional composite (p < 0.05). The triple strategy of antibacterial, remineralization and lower shrinkage-stress has great potential to inhibit recurrent caries and increase restoration longevity. Statement of Significance Polymerization shrinkage stress, masticatory load over time as well as biochemical degradation can lead to marginal failure and secondary caries. The present study developed a new low-shrinkage-stress, antibacterial and remineralizing dental nanocomposite. Polymerization shrinkage stress was greatly reduced, biofilm acid production was inhibited, and tooth dentin mineral and hardness were preserved. The antibacterial composite possessed a long-lasting antibiofilm effect against cariogenic bacteria S. mutans. The new bioactive nanocomposite has the potential to suppress recurrent caries at the restoration margins, protects tooth structures, and increases restoration longevity.
Collapse
|
41
|
Regulating Oral Biofilm from Cariogenic State to Non-Cariogenic State via Novel Combination of Bioactive Therapeutic Composite and Gene-Knockout. Microorganisms 2020; 8:microorganisms8091410. [PMID: 32933157 PMCID: PMC7564907 DOI: 10.3390/microorganisms8091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
The objectives were to investigate a novel combination of gene-knockout with antimicrobial dimethylaminohexadecyl methacrylate (DMAHDM) composite in regulating oral biofilm from a cariogenic state toward a non-cariogenic state. A tri-species biofilm model included cariogenic Streptococcus mutans (S. mutans), and non-cariogenic Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii). Biofilm colony-forming-units (CFUs), lactic acid and polysaccharide production were measured. TaqMan real-time-polymerase-chain reaction was used to determine the percentage of each species in biofilm. The rnc gene-knockout for S. mutans with DMAHDM composite reduced biofilm CFU by five logs, compared to control (p < 0.05). Using parent S. mutans, an overwhelming S. mutans percentage of 68.99% and 69.00% existed in biofilms on commercial composite and 0% DMAHDM composite, respectively. In sharp contrast, with a combination of S. mutans rnc knockout and DMAHDM composite, the cariogenic S. mutans percentage in biofilm was reduced to only 6.33%. Meanwhile, the non-cariogenic S. sanguinis + S. gordonii percentage was increased to 93.67%. Therefore, combining rnc-knockout with bioactive and therapeutic dental composite achieved the greatest reduction in S. mutans, and the greatest increase in non-cariogenic species, thereby yielding the least lactic acid-production. This novel method is promising to obtain wide applications to regulate biofilms and inhibit dental caries.
Collapse
|
42
|
Balhaddad AA, Ibrahim MS, Weir MD, Xu HH, Melo MAS. Concentration dependence of quaternary ammonium monomer on the design of high-performance bioactive composite for root caries restorations. Dent Mater 2020; 36:e266-e278. [DOI: 10.1016/j.dental.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/18/2020] [Indexed: 01/30/2023]
|
43
|
Torres Jr L, Bienek DR. Use of Protein Repellents to Enhance the Antimicrobial Functionality of Quaternary Ammonium Containing Dental Materials. J Funct Biomater 2020; 11:E54. [PMID: 32752169 PMCID: PMC7565790 DOI: 10.3390/jfb11030054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
An advancement in preventing secondary caries has been the incorporation of quaternary ammonium containing (QAC) compounds into a composite resin mixture. The permanent positive charge on the monomers allows for electrostatic-based killing of bacteria. Spontaneous adsorption of salivary proteins onto restorations dampens the antimicrobial capabilities of QAC compounds. Protein-repellent monomers can work with QAC restorations to achieve the technology's full potential. We discuss the theory behind macromolecular adsorption, direct and indirect characterization methods, and advances of protein repellent dental materials. The translation of protein adsorption to microbial colonization is covered, and the concerns and fallbacks of the state-of-the-art protein-resistant monomers are addressed. Last, we present new and exciting avenues for protein repellent monomer design that have yet to be explored in dental materials.
Collapse
Affiliation(s)
| | - Diane R. Bienek
- ADA Science & Research Institute, LLC, Innovative & Technology Research, Frederick, MD 21704, USA;
| |
Collapse
|
44
|
Lygidakis NN, Allan E, Xia W, Ashley PF, Young AM. Early Polylysine Release from Dental Composites and Its Effects on Planktonic Streptococcus mutans Growth. J Funct Biomater 2020; 11:jfb11030053. [PMID: 32727106 PMCID: PMC7563564 DOI: 10.3390/jfb11030053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/21/2023] Open
Abstract
The study aim was to assess the effect of incorporating polylysine (PLS) filler at different mass fractions (0.5, 1 and 2 wt%) on PLS release and Streptococcus mutans planktonic growth. Composite containing PLS mass and volume change and PLS release upon water immersion were assessed gravimetrically and via high-performance liquid chromatography (HPLC), respectively. Disc effects on bacterial counts in broth initially containing 8 × 105 versus 8 × 106 CFU/mL Streptococcus mutans UA159 were determined after 24 h. Survival of sedimented bacteria after 72 h was determined following LIVE/DEAD staining of composite surfaces using confocal microscopy. Water sorption-induced mass change at two months increased from 0.7 to 1.7% with increasing PLS concentration. Average volume increases were 2.3% at two months whilst polylysine release levelled at 4% at 3 weeks irrespective of composite PLS level. Early percentage PLS release, however, was faster with higher composite content. With 0.5, 1 and 2% polylysine initially in the composite filler phase, 24-h PLS release into 1 mL of water yielded 8, 25 and 93 ppm respectively. With initial bacterial counts of 8 × 105 CFU/mL, this PLS release reduced 24-h bacterial counts from 109 down to 108, 107 and 102 CFU/mL respectively. With a high initial inoculum, 24-h bacterial counts were 109 with 0, 0.5 or 1% PLS and 107 with 2% PLS. As the PLS composite content was raised, the ratio of dead to live sedimented bacteria increased. The antibacterial action of the experimental composites could reduce residual bacteria remaining following minimally invasive tooth restorations.
Collapse
Affiliation(s)
- Nikos N. Lygidakis
- Unit of Paediatric Dentistry, Department of Craniofacial Growth and Development, UCL Eastman Dental Institute, London WC1X 8LD, UK; (N.N.L.); (P.F.A.)
| | - Elaine Allan
- Division of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK;
| | - Wendy Xia
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, UK;
| | - Paul F. Ashley
- Unit of Paediatric Dentistry, Department of Craniofacial Growth and Development, UCL Eastman Dental Institute, London WC1X 8LD, UK; (N.N.L.); (P.F.A.)
| | - Anne M. Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, UK;
- Correspondence:
| |
Collapse
|
45
|
Fei X, Li Y, Weir MD, Baras BH, Wang H, Wang S, Sun J, Melo MAS, Ruan J, Xu HHK. Novel pit and fissure sealant containing nano-CaF 2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dent Mater 2020; 36:1241-1253. [PMID: 32571624 DOI: 10.1016/j.dental.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pit and fissure sealants with antibacterial and remineralization properties have broad application prospects in caries prevention. The objectives of this study were to: (1) develop a novel pit and fissure sealant containing CaF2 nanoparticles (nCaF2) and dimethylaminohexadecyl methacrylate (DMAHDM); and (2) investigate the effects of nCaF2 and DMAHDM on biofilm response and fluoride (F) ion release for the first time. METHODS Helioseal F was used as a control. Bioactive sealants were formulated with DMAHDM and nCaF2. Flow properties, enamel shear bond strength, hardness and F ion releases were measured. Streptococcus mutans (S. mutans) biofilms were grown on sealants. Biofilm metabolic activity, lactic acid production, colony-forming units (CFU), and pH of biofilm culture medium were measured. RESULTS Adding 5% DMAHDM and 20% nCaF2 did not reduce the paste flow and enamel bond strength, compared to control (p < 0.05). Hardness of sealants with 20% nCaF2 and DMAHDM was higher than control (p < 0.05). The F ion release from 20% nCaF2 was much higher than that of commercial control (p < 0.05). The sealant with DMAHDM reduced the S. mutans biofilm CFU by 4 logs. The pH in biofilm medium of the new bioactive sealant was much higher (pH 6.8) than that of commercial sealant (pH 4.66) (p < 0.05). SIGNIFICANCE The new bioactive pit and fissure sealant with nCaF2 and DMAHDM achieved high fluoride release and strong antibacterial performance. This novel fluoride-releasing and antibacterial sealant is promising to inhibit caries and promote the remineralizaton of enamel and dentin.
Collapse
Affiliation(s)
- Xiuzhi Fei
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, and Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yuncong Li
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bashayer H Baras
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Haohao Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratary of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Suping Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratary of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Mary A S Melo
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, and Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Bhadila G, Wang X, Zhou W, Menon D, Melo MAS, Montaner S, Oates TW, Weir MD, Sun J, Xu HHK. Novel low-shrinkage-stress nanocomposite with remineralization and antibacterial abilities to protect marginal enamel under biofilm. J Dent 2020; 99:103406. [PMID: 32526346 DOI: 10.1016/j.jdent.2020.103406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Polymerization shrinkage stress may lead to marginal damage, microleakage and failure of composite restorations. The objectives of this study were to : (1) develop a novel nanocomposite with low-shrinkage-stress, antibacterial and remineralization properties to reduce marginal enamel demineralization under biofilms; (2) evaluate the mechanical properties of the composite and calcium (Ca) and phosphate (P) ion release; and (3) investigate the cytotoxicity of the new low-shrinkage-stress monomer in vitro. METHODS The low-shrinkage-stress resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), and 3 % dimethylaminohexadecyl methacrylate (DMAHDM) and 20 % calcium phosphate nanoparticles (NACP) were added. Mechanical properties, polymerization shrinkage stress, and degree of conversion were evaluated. The growth of Streptococcus mutans (S. mutans) on enamel slabs with different composites was assessed. Ca and P ion releases and monomer cytotoxicity were measured. RESULTS Composite with DMAHDM and NACP had flexural strength of 84.9 ± 10.3 MPa (n = 6), matching that of a commercial control composite. Adding 3 % DMAHDM did not negatively affect the composite ion release. Under S. mutans biofilm, the marginal enamel hardness was 1.2 ± 0.1 GPa for the remineralizing and antibacterial group, more than 2-fold the 0.5 ± 0.07 GPa for control (p < 0.05). The polymerization shrinkage stress of the new composite was 40 % lower than that of traditional composite control (p < 0.05). The new monomers had fibroblast viability similar to that of traditional monomer control (p > 0.1). CONCLUSION A novel low-shrinkage-stress nanocomposite was developed with remineralizing and antibacterial properties. This new composite is promising to inhibit recurrent caries at the restoration margins by reducing polymerization stress and protecting enamel hardness.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Wen Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Structural stability of DHMAI antibacterial dental composite following in vitro biological aging. Dent Mater 2020; 36:1161-1169. [PMID: 32513478 DOI: 10.1016/j.dental.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the impact of the quaternary ammonium antibacterial agent, Dimethyl-Hexadecyl-Methacryloxyethyl-Ammonium Iodide (DHMAI), on structural stability of an experimental resin composite after biological aging. METHODS Experimental resin composites containing 7.5% of DHMAI were incubated in a biological medium in the presence of a Streptococcus Mutans (SM) strain during 3 months. The physicochemical, mechanical, and thermal properties, before and after 3 months of aging, were evaluated using: Degree of Conversion (DC), Residual Functions (RF), Vitreous Transition (Tg), Thermal Expansion Coefficient (CTE) and thermal degradation using Fourier Transform Infrared Spectroscopy Analysis (FTIRATR), Differential Scanning Calorimetry (DSC), Thermo Mechanical analyses (TMA) and Thermo Gravimetric Analysis (TG). RESULTS Incorporation of DHAMI increased DC and decreased RF. After aging, DHMAI decreased and slowed RF release. Incorporation of 7.5% DHAMI provided significant modification of the thermal behavior (Tg and thermal degradation) but did not affect CTE. After aging, DHMAI enhanced the structural stability and improved resistance against biodegradation compared to the control composite. SIGNIFICANCE The development of an antibacterial dental composite based on DHMAI improved its physical, mechanical, and thermal behaviors, possibly enhancing dental composite longevity. Results suggest that DHMAI could be used in the composition of other bioactive dental materials.
Collapse
|
48
|
Zhou W, Zhou X, Huang X, Zhu C, Weir MD, Melo MA, Bonavente A, Lynch CD, Imazato S, Oates TW, Cheng L, Xu HH. Antibacterial and remineralizing nanocomposite inhibit root caries biofilms and protect root dentin hardness at the margins. J Dent 2020; 97:103344. [DOI: 10.1016/j.jdent.2020.103344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023] Open
|
49
|
Bhadila G, Baras BH, Weir MD, Wang H, Melo MAS, Hack GD, Bai Y, Xu HHK. Novel antibacterial calcium phosphate nanocomposite with long-term ion recharge and re-release to inhibit caries. Dent Mater J 2020; 39:678-689. [PMID: 32295987 DOI: 10.4012/dmj.2019-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Short-term studies on calcium-phosphate (CaP) ion-rechargeable composites were reported. The long-term rechargeability is important but unknown. The objectives of this study were to investigate nanocomposite with strong antibacterial and ion-recharge capabilities containing dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP), and evaluate long-term ion-recharge by testing for 12 cycles (taking 6 months to complete) for the first time. Three groups were tested: (1) Heliomolar control; (2) Resin+20%NACP+50%glass; (3) Resin+3%DMAHDM+20%NACP+50%glass. Biofilm acid and colony-forming units (CFU) were measured. Ion-recharge was tested for 12 cycles. NACP-DMAHDM composite reduced biofilm acid, and reduced CFU by 4 logs. High levels of ion releases were maintained throughout 12 cycles of recharge, maintaining steady-state releases without reduction in 6 months (p>0.1), representing long-term remineralization potential. Bioactive nanocomposite demonstrated long-term ion-rechargeability for the first time, showed remineralization and potent anti-biofilm functions, with promise for tooth restorations to combat caries.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University
| | - Bashayer H Baras
- Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Restorative Dental Science, College of Dentistry, King Saud University
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| |
Collapse
|
50
|
Chen H, Zhang B, Weir MD, Homayounfar N, Fay GG, Martinho F, Lei L, Bai Y, Hu T, Xu HH. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J Dent 2020; 93:103278. [DOI: 10.1016/j.jdent.2020.103278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
|