1
|
Fois MG, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller RK, Tahmasebi Birgani ZN. Mini-bones: miniaturized bone in vitro models. Trends Biotechnol 2024; 42:910-928. [PMID: 38493050 DOI: 10.1016/j.tibtech.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
In bone tissue engineering (TE) and regeneration, miniaturized, (sub)millimeter-sized bone models have become a popular trend since they bring about physiological biomimicry, precise orchestration of concurrent stimuli, and compatibility with high-throughput setups and high-content imaging. They also allow efficient use of cells, reagents, materials, and energy. In this review, we describe the state of the art of miniaturized in vitro bone models, or 'mini-bones', describing these models based on their characteristics of (multi)cellularity and engineered extracellular matrix (ECM), and elaborating on miniaturization approaches and fabrication techniques. We analyze the performance of 'mini-bone' models according to their applications for studying basic bone biology or as regeneration models, disease models, and screening platforms, and provide an outlook on future trends, challenges, and opportunities.
Collapse
Affiliation(s)
- Maria Gabriella Fois
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Martijn van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Roman K Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Zeinab Niloofar Tahmasebi Birgani
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
AlAttar A, Gkouti E, Czekanski A. Multistep deformation of helical fiber electrospun scaffold toward cardiac patches development. J Mech Behav Biomed Mater 2023; 147:106157. [PMID: 37788542 DOI: 10.1016/j.jmbbm.2023.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The scaffolds used for cardiac patches must mimic the viscoelastic behavior of the native tissue, which expands up to high deformation levels of its sedentary size during the systole segment of pumping blood. In our study, we exposed fabricated electrospun samples to repeated multistep tension by applying and removing deformation to mimic the mechanical behavior of helical fibered cardiac scaffolds. Since the fiber-based specimens exhibit viscoelastic behavior, the transient responses to constant deformation caused stress relaxation and stress recovery. However, these transient viscoelastic operations performed at high strain enable unpredictable phenomena, usually hidden behind stress softening and folding (plasticity) phenomena; the material significantly reduces the required stress, and remaining deformation occurs. Thus, by regulating the fabrication (electrospinning parameters) process and preconditioning before setting, the actual viscoelastic behavior of the electrospun scaffolds will be evident, as well as their limitations towards their application to cardiac patches development.
Collapse
Affiliation(s)
- Ahmed AlAttar
- Department of Mechanical Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Elli Gkouti
- Department of Mechanical Engineering, York University, Toronto, ON, M3J1P3, Canada
| | - Aleksander Czekanski
- Department of Mechanical Engineering, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
4
|
Microfabrication methods for 3D spheroids formation and their application in biomedical engineering. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Bowles-Welch AC, Jimenez AC, Stevens HY, Frey Rubio DA, Kippner LE, Yeago C, Roy K. Mesenchymal stromal cells for bone trauma, defects, and disease: Considerations for manufacturing, clinical translation, and effective treatments. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
6
|
Ruhela A, Bhatt A, Rath SN, Sharma CS. Biomimicking tendon by electrospinning
tissue‐derived
decellularized extracellular matrix for tendon tissue engineering. J Appl Polym Sci 2022. [DOI: 10.1002/app.53368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aakanksha Ruhela
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Akshay Bhatt
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering Indian Institute of Technology Hyderabad Kandi Telangana India
| |
Collapse
|
7
|
Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids. Acta Biomater 2022:S1742-7061(22)00693-6. [DOI: 10.1016/j.actbio.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
8
|
A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022; 11:cells11081313. [PMID: 35455993 PMCID: PMC9029885 DOI: 10.3390/cells11081313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been developed to create an environment considered more physiological. Since knowledge about the effects of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and 3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors. Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally arranged tissues.
Collapse
|
9
|
Zha K, Tian Y, Panayi AC, Mi B, Liu G. Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Front Cell Dev Biol 2022; 10:824812. [PMID: 35281084 PMCID: PMC8904963 DOI: 10.3389/fcell.2022.824812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Although bone is an organ that displays potential for self-healing after damage, bone regeneration does not occur properly in some cases, and it is still a challenge to treat large bone defects. The development of bone tissue engineering provides a new approach to the treatment of bone defects. Among various cell types, mesenchymal stem cells (MSCs) represent one of the most promising seed cells in bone tissue engineering due to their functions of osteogenic differentiation, immunomodulation, and secretion of cytokines. Regulation of osteogenic differentiation of MSCs has become an area of extensive research over the past few years. This review provides an overview of recent research progress on enhancement strategies for MSC osteogenesis, including improvement in methods of cell origin selection, culture conditions, biophysical stimulation, crosstalk with macrophages and endothelial cells, and scaffolds. This is favorable for further understanding MSC osteogenesis and the development of MSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yue Tian
- Department of Military Patient Management, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
10
|
PLA/Hydroxyapatite scaffolds exhibit in vitro immunological inertness and promote robust osteogenic differentiation of human mesenchymal stem cells without osteogenic stimuli. Sci Rep 2022; 12:2333. [PMID: 35149687 PMCID: PMC8837663 DOI: 10.1038/s41598-022-05207-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bone defects stand out as one of the greatest challenges of reconstructive surgery. Fused deposition modelling (FDM) allows for the printing of 3D scaffolds tailored to the morphology and size of bone damage in a patient-specific and high-precision manner. However, FDM still suffers from the lack of materials capable of efficiently supporting osteogenesis. In this study, we developed 3D-printed porous scaffolds composed of polylactic acid/hydroxyapatite (PLA/HA) composites with high ceramic contents (above 20%, w/w) by FDM. The mechanical properties of the PLA/HA scaffolds were compatible with those of trabecular bone. In vitro degradation tests revealed that HA can neutralize the acidification effect caused by PLA degradation, while simultaneously releasing calcium and phosphate ions. Importantly, 3D-printed PLA/HA did not induce the upregulation of activation markers nor the expression of inflammatory cytokines in dendritic cells thus exhibiting no immune-stimulatory properties in vitro. Evaluations using human mesenchymal stem cells (MSC) showed that pure PLA scaffolds exerted an osteoconductive effect, whereas PLA/HA scaffolds efficiently induced osteogenic differentiation of MSC even in the absence of any classical osteogenic stimuli. Our findings indicate that 3D-printed PLA scaffolds loaded with high concentrations of HA are most suitable for future applications in bone tissue engineering.
Collapse
|
11
|
Hu X, Xia Z, Cai K. Recent advances of 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B 2022; 10:1486-1507. [DOI: 10.1039/d1tb02537f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have been increasingly recognized as resources for disease treatments and regenerative medicine. Meanwhile, the unique chemical and physical properties of hydrogels provide innate advantages to achieve...
Collapse
|
12
|
Sankar S, Mehta V, Ravi S, Sharma CS, Rath SN. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Biomed Microdevices 2021; 23:50. [PMID: 34596764 DOI: 10.1007/s10544-021-00593-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 01/08/2023]
Abstract
For treating cancer at various stages, chemotherapy drugs administered in combination provide better treatment results with lower side effects compared to single-drug therapy. However, finding the potential drug combinations has been challenging due to the large numbers of possible combinations from approved drugs and the failure of in vitro 2D well plate-based cancer models. 3D spheroid-based high-throughput microfluidic platforms recapitulate some of the important features of native tumor tissue and offer a promising alternative to evaluate the combinatory effects of the drugs. This study develops a novel polydimethylsiloxane (PDMS) based microfluidic design with a dynamic environment and strategically placed U-shaped wells for testing all seven possible combinations (three single-drug treatments, three pairwise combinations, treatment with all three drugs) of three chemotherapy drugs (Paclitaxel, Vinorelbine, and Etoposide) on lung tumor spheroids. The design of U-shaped wells has been validated with computational results. Firstly, we test all combinations of drugs on the conventional well plate in static conditions with 3D tumor spheroids. Based on static drug testing results, we show a proof-of-concept by testing the most effective drug combination on the microfluidic device in a dynamic environment. The concentration of the drugs used in combination falls below the maximum tolerated dose (MTD) of the individual drugs, towards low dose metronomic (LDM) chemotherapy. LDM combinatorial chemotherapy identified in this study can potentially lower toxicity and provide better treatment results in cancer patients. The device can be further used to culture patient-specific tumor spheroids and identify synergistic drug combinations for personalized medicine.
Collapse
Affiliation(s)
- Sharanya Sankar
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Viraj Mehta
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subhashini Ravi
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
13
|
Fracture Healing Research-Shift towards In Vitro Modeling? Biomedicines 2021; 9:biomedicines9070748. [PMID: 34203470 PMCID: PMC8301383 DOI: 10.3390/biomedicines9070748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
Fractures are one of the most frequently occurring traumatic events worldwide. Approximately 10% of fractures lead to bone healing disorders, resulting in strain for affected patients and enormous costs for society. In order to shed light into underlying mechanisms of bone regeneration (habitual or disturbed), and to develop new therapeutic strategies, various in vivo, ex vivo and in vitro models can be applied. Undeniably, in vivo models include the systemic and biological situation. However, transferability towards the human patient along with ethical concerns regarding in vivo models have to be considered. Fostered by enormous technical improvements, such as bioreactors, on-a-chip-technologies and bone tissue engineering, sophisticated in vitro models are of rising interest. These models offer the possibility to use human cells from individual donors, complex cell systems and 3D models, therefore bridging the transferability gap, providing a platform for the introduction of personalized precision medicine and finally sparing animals. Facing diverse processes during fracture healing and thus various scientific opportunities, the reliability of results oftentimes depends on the choice of an appropriate model. Hence, we here focus on categorizing available models with respect to the requirements of the scientific approach.
Collapse
|
14
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
15
|
Chae S, Hong J, Hwangbo H, Kim G. The utility of biomedical scaffolds laden with spheroids in various tissue engineering applications. Am J Cancer Res 2021; 11:6818-6832. [PMID: 34093855 PMCID: PMC8171099 DOI: 10.7150/thno.58421] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
A spheroid is a complex, spherical cellular aggregate supporting cell-cell and cell-matrix interactions in an environment that mimics the real-world situation. In terms of tissue engineering, spheroids are important building blocks that replace two-dimensional cell cultures. Spheroids replicate tissue physiological activities. The use of spheroids with/without scaffolds yields structures that engage in desired activities and replicate the complicated geometry of three-dimensional tissues. In this mini-review, we describe conventional and novel methods by which scaffold-free and scaffolded spheroids may be fabricated and discuss their applications in tissue regeneration and future perspectives.
Collapse
|
16
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
17
|
Yeo M, Chae S, Kim G. An in vitro model using spheroids-laden nanofibrous structures for attaining high degree of myoblast alignment and differentiation. Am J Cancer Res 2021; 11:3331-3347. [PMID: 33537090 PMCID: PMC7847672 DOI: 10.7150/thno.53928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical in vitro three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D in vivo-like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e., stimuli from mechanical or topographical cues). Here, we propose a spheroid-laden electrospinning process to obtain in vitro model achieved using the synergistic effect of the unique bioactive components provided by the spheroids and stimulating effects provided by the aligned nanofibers. Methods: To show the functional activity of the spheroid-laden structures, we used myoblast-spheroids to obtain skeletal muscle, comprising highly aligned myotubes, utilizing an uniaxially arranged topographical cue. The spheroid-electrospinning was used to align spheroids directly by embedding them in aligned alginate nanofibers, which were controlled with various materials and processing parameters. Results: The spheroids laden in the alginate nanofibers showed high cell viability (>90%) and was compared with that of a cell-laden alginate nanofiber that was electrospun with single cells. Consequently, the spheroids laden in the aligned nanofibers showed a significantly higher degree of myotube formation and maturation. Conclusion: Results suggested that the in vitro model using electrospun spheroids could potentially be employed to understand myogenic responses for various in vitro drug tests.
Collapse
|
18
|
Kronemberger GS, Carneiro FA, Rezende DF, Baptista LS. Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening. Artif Organs 2021; 45:548-558. [PMID: 33264436 PMCID: PMC7753831 DOI: 10.1111/aor.13880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The new coronavirus (2019‐nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS‐CoV‐2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high‐throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold‐free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS‐CoV‐2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold‐free engineered tissues can contribute to a better comprehension of viral infection by SARS‐CoV‐2 and to the development of in vitro high‐throughput models for drug screening.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil.,Postgraduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Brazil
| | - Fabiana A Carneiro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil
| | | | - Leandra S Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil.,Postgraduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Brazil
| |
Collapse
|
19
|
Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00112-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Im GB, Kim SW, Bhang SH. Fortifying the angiogenic efficacy of adipose derived stem cell spheroids using spheroid compaction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
22
|
Ruhela A, Kasinathan GN, Rath SN, Sasikala M, Sharma CS. Electrospun freestanding hydrophobic fabric as a potential polymer semi-permeable membrane for islet encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111409. [PMID: 33255012 DOI: 10.1016/j.msec.2020.111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
One of the significant problems associated with islet encapsulation for type 1 diabetes treatment is the loss of islet functionality or cell death after transplantation because of the unfavorable environment for the cells. In this work, we propose a simple strategy to fabricate electrospun membranes that will provide a favorable environment for proper islet function and also a desirable pore size to cease cellular infiltration, protecting the encapsulated islet from immune cells. By electrospinning the wettability of three different biocompatible polymers: cellulose acetate (CA), polyethersulfone (PES), and polytetrafluoroethylene (PTFE) was greatly modified. The contact angle of electrospun CA, PES, and PTFE increased to 136°, 126°, and 155° as compared to 55°, 71°, and 128° respectively as a thin film, making the electrospun membranes hydrophobic. Commercial porous membranes of PES and PTFE show a contact angle of 30° and 118°, respectively, confirming the hydrophobicity of electrospun membranes is due to the surface morphology induced by electrospinning. In- vivo results confirm that the induced hydrophobicity and surface morphology of electrospun membranes impede cell attachment, which would help in maintaining the 3D circular morphology of islet cell. More importantly, the pore size of 0.3-0.6 μm obtained due to the densely packed structure of nanofibers, will be able to restrict immune cells but would allow free movement of molecules like insulin and glucose. Therefore, electrospun polymer fibrous membranes as fabricated in this work, with hydrophobic and porous properties, make a strong case for successful islet encapsulation.
Collapse
Affiliation(s)
- Aakanksha Ruhela
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Gokula Nathan Kasinathan
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Subha N Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - M Sasikala
- Asian Healthcare Foundation, Gachibowli, Hyderabad 500032, Telangana, India
| | - Chandra S Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India.
| |
Collapse
|
23
|
Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020; 11:E40. [PMID: 32531950 PMCID: PMC7353490 DOI: 10.3390/jfb11020040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
One-dimensional (1D) materials allow for cutting-edge applications in biology, such as single-cell bioelectronics investigations, stimulation of the cellular membrane or the cytosol, cellular capture, tissue regeneration, antibacterial action, traction force investigation, and cellular lysis among others. The extraordinary development of this research field in the last ten years has been promoted by the possibility to engineer new classes of biointerfaces that integrate 1D materials as tools to trigger reconfigurable stimuli/probes at the sub-cellular resolution, mimicking the in vivo protein fibres organization of the extracellular matrix. After a brief overview of the theoretical models relevant for a quantitative description of the 1D material/cell interface, this work offers an unprecedented review of 1D nano- and microscale materials (inorganic, organic, biomolecular) explored so far in this vibrant research field, highlighting their emerging biological applications. The correlation between each 1D material chemistry and the resulting biological response is investigated, allowing to emphasize the advantages and the issues that each class presents. Finally, current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| | - Yana Aleeva
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Vittorio Ferrara
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Giuseppe Prestopino
- Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy;
| | - Clara Chiappara
- INSTM UdR Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy; (Y.A.); (C.C.)
| | - Bruno Pignataro
- Dipartimento di Fisica e Chimica—Emilio Segrè, University of Palermo, Viale delle Scienze, Ed.17, 90128 Palermo, Italy;
| |
Collapse
|
24
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
25
|
Yang J, Zhan XZ, Malola J, Li ZY, Pawar JS, Zhang HT, Zha ZG. The multiple roles of Thy-1 in cell differentiation and regeneration. Differentiation 2020; 113:38-48. [PMID: 32403041 DOI: 10.1016/j.diff.2020.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022]
Abstract
Thy-1 is a 25-37 kDa glycophosphatidylinositol (GPI)-anchored cell surface protein that was discovered more than 50 years ago. Recent findings have suggested that Thy-1 is expressed on thymocytes, mesenchymal stem cells (MSCs), cancer stem cells, hematopoietic stem cells, fibroblasts, myofibroblasts, endothelial cells, neuronal smooth muscle cells, and pan T cells. Thy-1 plays vital roles in cell migration, adhesion, differentiation, transdifferentiation, apoptosis, mechanotransduction, and cell division, which in turn are involved in tumor development, pulmonary fibrosis, neurite outgrowth, and T cell activation. Studies have increasingly indicated a significant role of Thy-1 in cell differentiation and regeneration. However, despite recent research, many questions remain regarding the roles of Thy-1 in cell differentiation and regeneration. This review aimed to summarize the roles of Thy-1 in cell differentiation and regeneration. Furthermore, since Thy-1 is an outer leaflet membrane protein anchored by GPI, we attempted to address how Thy-1 regulates intracellular pathways through cis and trans signals. Due to the complexity and mystery surrounding the issue, we also summarized the Thy-1-related pathways in different biological processes, and this might provide novel insights in the field of cell differentiation and regeneration.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Zhen Zhan
- Department of Stomatology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jonathan Malola
- College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, 47906, IN, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
26
|
Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci 2020; 7:33. [PMID: 32211418 PMCID: PMC7067892 DOI: 10.3389/fmolb.2020.00033] [Citation(s) in RCA: 807] [Impact Index Per Article: 201.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cell culture is an important and necessary process in drug discovery, cancer research, as well as stem cell study. Most cells are currently cultured using two-dimensional (2D) methods but new and improved methods that implement three-dimensional (3D) cell culturing techniques suggest compelling evidence that much more advanced experiments can be performed yielding valuable insights. When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases. Scaffold based techniques such as hydrogel-based support, polymeric hard material-based support, hydrophilic glass fiber, and organoids are employed, and each provide their own advantages and applications. Likewise, there are also scaffold free techniques used such as hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment coating. 3D cell culture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models. The present review compares 2D cell culture to 3D cell culture, provides the details surrounding the different 3D culture techniques, as well as focuses on the present and future applications of 3D cell culture.
Collapse
Affiliation(s)
- Caleb Jensen
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biology, College of Science and Mathematics, Augusta University, Augusta, GA, United States
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
27
|
Rodríguez-Pena A, Uranga-Solchaga J, Ortiz-de-Solórzano C, Cortés-Domínguez I. Spheroscope: A custom-made miniaturized microscope for tracking tumour spheroids in microfluidic devices. Sci Rep 2020; 10:2779. [PMID: 32066786 PMCID: PMC7026415 DOI: 10.1038/s41598-020-59673-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
3D cell culture models consisting of self-assembled tumour cells in suspension, commonly known as tumour spheroids, are becoming mainstream for high-throughput anticancer drug screening. A usual measurable outcome of screening studies is the growth rate of the spheroids in response to treatment. This is commonly quantified on images obtained using complex, expensive, optical microscopy systems, equipped with high-quality optics and customized electronics. Here we present a novel, portable, miniaturized microscope made of low-cost, mass-producible parts, which produces both fluorescence and phase-gradient contrast images. Since phase-gradient contrast imaging is based on oblique illumination, epi-illumination is used for both modalities, thus simplifying the design of the system. We describe the system, characterize its performance on synthetic samples and show proof-of-principle applications of the system consisting in imaging and monitoring the formation and growth of lung and pancreas cancer tumour spheroids within custom made microfluidic devices.
Collapse
Affiliation(s)
- A Rodríguez-Pena
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - J Uranga-Solchaga
- USCAL, S.L. Ingeniería Mecatrónica + Dirección, Pol. Industrial Arazuri-Orcoyen, Calle C - No1, 31160, Orcoyen, Spain
| | - C Ortiz-de-Solórzano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - I Cortés-Domínguez
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
28
|
|
29
|
Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials 2019; 218:119334. [PMID: 31306826 PMCID: PMC6663598 DOI: 10.1016/j.biomaterials.2019.119334] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue engineering utilizes three critical elements - cells, scaffolds, and bioactive factors - to recapitulate the bone tissue microenvironment, inducing the formation of new bone. Recent advances in materials development have enabled the production of scaffolds that more effectively mimic the hierarchical features of bone matrix, ranging from molecular composition to nano/micro-scale biochemical and physical features. This review summarizes recent advances within the field in utilizing these features of native bone to guide the hierarchical design of materials and scaffolds. Biomimetic strategies discussed in this review cover several levels of hierarchical design, including the development of element-doped compositions of bioceramics, the usage of molecular templates for in vitro biomineralization at the nanoscale, the fabrication of biomimetic scaffold architecture at the micro- and nanoscale, and the application of external physical stimuli at the macroscale to regulate bone growth. Developments at each level are discussed with an emphasis on their in vitro and in vivo outcomes in promoting osteogenic tissue development. Ultimately, these hierarchically designed scaffolds can complement or even replace the usage of cells and biological elements, which present clinical and regulatory barriers to translation. As the field progresses ever closer to clinical translation, the creation of viable therapies will thus benefit from further development of hierarchically designed materials and scaffolds.
Collapse
Affiliation(s)
- Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jason L Guo
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
30
|
Tan GZ, Zhou Y. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1636248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- George Z. Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Yingge Zhou
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
31
|
Byun H, Bin Lee Y, Kim EM, Shin H. Fabrication of size-controllable human mesenchymal stromal cell spheroids from micro-scaled cell sheets. Biofabrication 2019; 11:035025. [PMID: 31096204 DOI: 10.1088/1758-5090/ab21f6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, stromal cell spheroids have been actively studied for use in tissue regeneration. In this study, we report a method for the fabrication of size-controllable stromal cell spheroids in different sizes from micro-scaled cell sheets (μCS) using thermosensitive hydrogels and investigated their effects on stromal cell function. Mesenchymal stromal cells isolated from different tissues such as human turbinate tissue, bone marrow, and adipose tissue were adhered selectively to each micro-pattern (squares with widths of 100 and 400 μm) on the surface of the hydrogel and formed μCS. The diameters of the spheroids were modulated by the size of the patterns (45 ± 5 and 129 ± 4 μm in diameter for the 100 and 400 μm micro-patterns, respectively) and the seeding density (129 ± 4, 149 ± 6, and 163 ± 6 μm for 5.0, 10.0, and 15.0 × 104 cells cm-2, respectively, on 400 μm micro-pattern). In addition, the spheroids were successfully fabricated regardless of stromal cell origin, and the diameter of the spheroids was also affected by cell spreading area on a cell culture dish. Stemness markers were highly expressed in the spheroids regardless of the spheroid size. Furthermore, an increase in E-cadherin and decrease in N-cadherin gene expression showed the stable formation of spheroids of different sizes. Gene expression levels of hypoxia inducible factors and secretion of vascular endothelial growth factor were increased (13.2 ± 1.4, 325 ± 83.4 and 534.3 ± 121.5 pg ng-1 DNA in a monolayer, and 100 and 400 μm micro-patterned spheroids, respectively) proportional to the diameters of the spheroids. The size of spheroids were maintained even after injection, cryopreservation and 7 d of suspension culture with high viability (∼90%). In conclusion, this novel technique to fabricate spheroids with controlled size could be widely applied in various applications that require a controlled size in regenerative medicine.
Collapse
Affiliation(s)
- Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea. BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | | | | | | |
Collapse
|