1
|
Wang J, Li C, Zhang J, An M, Zhao G, Stark SD, Liu Y. Effect of Decellularized Amniotic Membrane on the Tendon-Bone Integration in Rotator Cuff Repair: A Comparative Rat Model Study. Orthop Surg 2024. [PMID: 39660410 DOI: 10.1111/os.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Rotator cuff retear after arthroscopy repair is a difficult complication that is often due to poor tendon-bone healing. Decellularized amniotic membrane (DAM) has a variety of bioactive substances which have great potential to enhance tendon-bone healing. However, DAM has three layers, of which the middle basement layer is dense and thick. Whether DAM will hinder tendon-bone healing of rotator cuff after surgical repair is unclear. Our study aims to investigate the effect of DAM on tendon-bone healing of the rotator cuff after surgical repair. METHODS Thirty-three Sprague-Dawley (SD) rats were selected to establish unilateral supraspinatus (ST) tear models and were randomly treated with only suturing repair (OSR group, n = 11), and suturing repair with DAM placed between the ST and bone (DAM group, n = 11). In the normal control group (NCT group, n = 11), the supraspinatus was only exposed but not detached or repaired. After 4 weeks the rats were sacrificed. The assessment of specimens was conducted by micro-CT analysis, histopathological evaluation, and biomechanical testing. RESULTS The DAM group had a significantly higher ultimate load to failure, new bone volume, and histological evaluation at 4 weeks after surgery than the OSR group. When comparing the DAM group to the NCT group, the DAM group performed slightly worse in biomechanical testing, micro-CT analysis, and histological evaluation. CONCLUSION When placed between tendon and bone at the rotator cuff footprint, DAM, despite its dense and thick basement layer, does not impede tendon-bone healing after surgical repair for rotator cuff injury, but rather promotes increased healing quality and biomechanical properties. However, the healing quality and biomechanical properties are still lower than that of the normal rotator cuff, and further improvement should be made to the application strategy of a DAM.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
- Department of Orthopedics, The 980th Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, China
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiating Zhang
- Department of Orthopedics, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Gang Zhao
- Chinese PLA Medical School, Beijing, China
| | - Samuel D Stark
- Department of Orthopedics, Foot & Ankle Section, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Hainan, China
| |
Collapse
|
2
|
Arai K, Yoshida S, Furuichi E, Iwanaga S, Mir TA, Yoshida T. Transplanted artificial amnion membrane enhanced wound healing in third-degree burn injury diabetic mouse model. Regen Ther 2024; 27:170-180. [PMID: 38571890 PMCID: PMC10987674 DOI: 10.1016/j.reth.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Wound healing is severely compromised in patients with diabetes owing to factors such poor blood circulation, delayed immune response, elevated blood sugar levels, and neuropathy. Although the development of new wound healing products and prevention of serious complications such as infections in wounds have received substantial interest, wound healing remains a challenge in regenerative medicine. Burn wounds, especially third-degree burns, are difficult to treat because they are associated with immune and inflammatory reactions and distributive shock. Wound care and treatment that protects the burn site from infection and allows wound healing can be achieved with bioengineered wound dressings. However, few studies have reported effective dressings for third-degree burn wounds, making it important to develop new dressing materials. Methods In this study, we developed an artificial amniotic membrane (AM) using epithelial and mesenchymal cells derived from human amnion as a novel dressing material. The artificial AM was applied to the wound of a diabetic third-degree burn model and its wound healing ability was evaluated. Results This artificial amnion produced multiple growth factors associated with angiogenesis, fibroblast proliferation, and anti-inflammation. In addition, angiogenesis and granulation tissue formation were promoted in the artificial AM-treated mouse group compared with the control group. Furthermore, the inflammatory phase was prolonged in the control group. Conclusions Our preliminary results indicate that the artificial AM might be useful as a new dressing for refractory ulcers and third-degree burns. This artificial AM-based material represents great potential for downstream clinical research and treatment of diabetes patients with third-degree burns.
Collapse
Affiliation(s)
- Kenichi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Satoshi Yoshida
- Department of Medical Oncology, Toyama University Hospital, Toyama, Japan
| | - Etsuko Furuichi
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Tanveer Ahmad Mir
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Hu Y, Yu J, Fu Y, Guan X, Xiong F, Liao H, Xu Q, Wang A. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39469775 DOI: 10.1089/ten.teb.2024.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Amniotic membrane transplantation is commonly employed in ophthalmology to mend corneal epithelial and stromal defects. Its effectiveness in restoring the ocular surface has been widely acknowledged in clinical practice. Nevertheless, there is ongoing debate regarding the comparative effectiveness of using fresh amniotic membranes versus preserved ones. The objective of this meta-analysis was to ascertain whether there is a disparity in the effectiveness of fresh versus preserved amniotic membrane in the restoration of the ocular surface in clinical practice. The study utilized the following keywords: "fresh amniotic membrane," "preserved amniotic membrane," "amniotic membrane transplantation," and "ocular surface reconstruction." The study conducted a comprehensive search for relevant studies published until April 18, 2024. Seven different databases, namely PubMed, Web of Science, Embase, Cochrane, China Knowledge, China Science and Technology Journal VIP database, and Wanfang database, were utilized. The search was performed using the keywords "fresh amniotic membrane," "preserved amniotic membrane," "amniotic membrane transplantation," and "ocular surface reconstruction." The process of literature review and data extraction was carried out separately by two researchers, and all statistical analyses were conducted using Review Manager 5.4.1. The final analysis comprised nine cohort studies, encompassing a total of 408 participants. The statistics included six outcome indicators: visual acuity (relative risk [RR] = 1.07, 95% confidence interval [CI] = 0.93-1.24, I2 = 0); amniotic membrane viability (RR = 1.00, 95% CI = 0.93-1.08, I2 = 0); ocular congestion resolution (RR = 1.11, 95% CI = 0.97-1.26, I2 = 0); fluorescent staining of amniotic membranes on the second day after the operation (RR = 1.31, 95% CI = 0.80-2.14, I2 = 11); postoperative recurrence rate (RR = 1.01, 95% CI = 0.50-2.03, I2 = 0); and premature lysis of amniotic membrane implants (RR = 0.96, 95% CI = 0.49-1.88, I2 = 0). The findings indicated that there was no statistically significant disparity between fresh and preserved amniotic membranes across any of the measured variables. There is no substantial disparity in the effectiveness of fresh and preserved amniotic membrane transplants in restoring the ocular surface, and both yield favorable and consistent outcomes.
Collapse
Affiliation(s)
- Yu Hu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Jinhai Yu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Yuting Fu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Xinyi Guan
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Fen Xiong
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Hongfei Liao
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Qihua Xu
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| | - Anan Wang
- The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang City, China
- National Clinical Research Center for Ocular Diseases, Nanchang City, China
| |
Collapse
|
5
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
6
|
Ingraldi AL, Allen T, Tinghitella JN, Merritt WC, Becker T, Tabor AJ. Characterization of Amnion-Derived Membrane for Clinical Wound Applications. Bioengineering (Basel) 2024; 11:953. [PMID: 39451330 PMCID: PMC11504399 DOI: 10.3390/bioengineering11100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Human amniotic membrane (hAM), the innermost placental layer, has unique properties that allow for a multitude of clinical applications. It is a common misconception that birth-derived tissue products, such as dual-layered dehydrated amnion-amnion graft (dHAAM), are similar regardless of the manufacturing steps. A commercial dHAAM product, Axolotl Biologix DualGraft™, was assessed for biological and mechanical characteristics. Testing of dHAAM included antimicrobial, cellular biocompatibility, proteomics analysis, suture strength, and tensile, shear, and compressive modulus testing. Results demonstrated that the membrane can be a scaffold for fibroblast growth (cellular biocompatibility), containing an average total of 7678 unique proteins, 82,296 peptides, and 96,808 peptide ion variants that may be antimicrobial. Suture strength results showed an average pull force of 0.2 N per dHAAM sample (equating to a pull strength of 8.5 MPa). Tensile modulus data revealed variation, with wet samples showing 5× lower stiffness than dry samples. The compressive modulus and shear modulus displayed differences between donors (lots). This study emphasizes the need for standardized processing protocols to ensure consistency across dHAAM products and future research to explore comparative analysis with other amniotic membrane products. These findings provide baseline data supporting the potential of amniotic membranes in clinical applications.
Collapse
Affiliation(s)
| | - Tim Allen
- Axolotl Biologix, Scottsdale, AZ 85260, USA; (A.L.I.)
| | | | - William C. Merritt
- Mechanical Engineering and Center for Materials Interfaces in Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ 86011, USA; (W.C.M.)
| | - Timothy Becker
- Mechanical Engineering and Center for Materials Interfaces in Research and Applications (MIRA), Northern Arizona University, Flagstaff, AZ 86011, USA; (W.C.M.)
| | - Aaron J. Tabor
- Axolotl Biologix, Scottsdale, AZ 85260, USA; (A.L.I.)
- Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA;
| |
Collapse
|
7
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Ahmed K, Tauseef H, Ainuddin JA, Zafar M, Khan I, Salim A, Mirza MR, Mohiuddin OA. Assessment of the proteome profile of decellularized human amniotic membrane and its biocompatibility with umbilical cord-derived mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1041-1056. [PMID: 38380793 DOI: 10.1002/jbm.a.37685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.
Collapse
Affiliation(s)
- Kainat Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Haadia Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Omair Anwar Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
9
|
Dawiec G, Niemczyk W, Wiench R, Niemczyk S, Skaba D. Introduction to Amniotic Membranes in Maxillofacial Surgery-A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:663. [PMID: 38674309 PMCID: PMC11051762 DOI: 10.3390/medicina60040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Background: Amniotic membrane (AM) holds significant promise in various medical fields due to its unique properties and minimal ethical concerns. This study aims to explore the diverse applications of the human amniotic membrane (HAM) in maxillofacial surgery. Methodology: A comprehensive search was conducted on databases, namely Google Scholar, PubMed, and Scopus, from January 1985 to March 2024. Articles in English, Polish, and Spanish were included, focusing on keywords related to amniotic membrane and oral surgery. Results: Various preservation methods for HAM were identified, namely fresh, decellularized, cryopreserved, lyophilized, and air-dried formats. Clinical studies demonstrated the efficacy of HAM in repairing oral mucosal defects, vestibuloplasty, oronasal fistula closure, cleft palate treatment, bone defect repair, and medication-related osteonecrosis of the jaw (MRONJ). Surgeon evaluations highlighted the ease of handling but noted challenges in suturing and stability during application. Conclusions: Amniotic membranes offer a versatile and effective option in maxillofacial surgery, promoting wound healing, reducing inflammation, and providing a scaffold for tissue regeneration. Further research, including randomized trials and comparative studies, is warranted to validate the efficacy and optimize the utilization of HAM in clinical practice.
Collapse
Affiliation(s)
- Grzegorz Dawiec
- Department of Paediatric Otolaryngology, Head and Neck Surgery, Department of Paediatric Surgery, Faculty of Medical Sciences, ul. Medyków 16, 40-752 Katowice, Poland
- Outpatient Clinic for Dental Surgery in Zabrze, University Dental Centre, Silesian Medical University Ltd. in Katowice, Pl. Akademicki 17, 41-902 Bytom, Poland
- Private Dental Practice NZOZ Stomatologia-Dawiec s.c., Ul. Witczaka 49/15, 41-902 Bytom, Poland
| | - Wojciech Niemczyk
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (R.W.); (D.S.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (R.W.); (D.S.)
| | - Stanisław Niemczyk
- Municipal Hospital No. 4 in Gliwice, Zygmunta Starego 20, 44-100 Gliwice, Poland;
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland; (R.W.); (D.S.)
| |
Collapse
|
10
|
Gurdal M, Korkmaz I, Barut Selver O. An important detail that is still not clear in amniotic membrane applications: How do we store the amniotic membrane best? Cell Tissue Bank 2024; 25:339-347. [PMID: 38191687 DOI: 10.1007/s10561-023-10121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The use of fresh amniotic membrane (AM) is not a viable option, as it has many disadvantages. Preserving the AM reduces the risk of cross-infection and maintains its effectiveness for a long time. In order to maximize the therapeutic effects of the AM, the basic need is to preserve its vitality and the bioactive molecules it contains. However, the effect of preservation procedures on cell viability and growth factors is a still matter of debate. Optimum preservation method is expected to be cost-effective, easily-accessible, and most importantly, to preserve the effectiveness of the tissue for the longest time. However, each preservation technique has its advantages and disadvantages over the other, and each one compromises the vitality and bioactive molecules of the tissue to some extent. Therefore, the best method of preservation is still controversial, and the question of 'how to preserve the AM best?' has not yet been definitively answered.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Limbustem R&D Medical Products Ltd., Izmir, Turkey
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
| | - Ilayda Korkmaz
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey
| | - Ozlem Barut Selver
- Limbustem R&D Medical Products Ltd., Izmir, Turkey.
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey.
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey.
| |
Collapse
|
11
|
Ahmed Omar N, Roque J, Galvez P, Siadous R, Chassande O, Catros S, Amédée J, Roques S, Durand M, Bergeaut C, Bidault L, Aprile P, Letourneur D, Fricain JC, Fenelon M. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering (Basel) 2023; 10:1257. [PMID: 38002381 PMCID: PMC10669683 DOI: 10.3390/bioengineering10111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
Collapse
Affiliation(s)
- Naïma Ahmed Omar
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Jéssica Roque
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Paul Galvez
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Robin Siadous
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Olivier Chassande
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Sylvain Catros
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| | - Joëlle Amédée
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Samantha Roques
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Marlène Durand
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Céline Bergeaut
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Laurent Bidault
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Paola Aprile
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Didier Letourneur
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Jean-Christophe Fricain
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Mathilde Fenelon
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
12
|
Ingraldi AL, Audet RG, Tabor AJ. The Preparation and Clinical Efficacy of Amnion-Derived Membranes: A Review. J Funct Biomater 2023; 14:531. [PMID: 37888195 PMCID: PMC10607219 DOI: 10.3390/jfb14100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Biological tissues from various anatomical sources have been utilized for tissue transplantation and have developed into an important source of extracellular scaffolding material for regenerative medicine applications. Tissue scaffolds ideally integrate with host tissue and provide a homeostatic environment for cellular infiltration, growth, differentiation, and tissue resolution. The human amniotic membrane is considered an important source of scaffolding material due to its 3D structural architecture and function and as a source of growth factors and cytokines. This tissue source has been widely studied and used in various areas of tissue repair including intraoral reconstruction, corneal repair, tendon repair, microvascular reconstruction, nerve procedures, burns, and chronic wound treatment. The production of amniotic membrane allografts has not been standardized, resulting in a wide array of amniotic membrane products, including single, dual, and tri-layered products, such as amnion, chorion, amnion-chorion, amnion-amnion, and amnion-chorion-amnion allografts. Since these allografts are not processed using the same methods, they do not necessarily produce the same clinical responses. The aim of this review is to highlight the properties of different human allograft membranes, present the different processing and preservation methods, and discuss their use in tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Alison L. Ingraldi
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Robert G. Audet
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron J. Tabor
- Carmell Corporation, Pittsburg, PA 15203, USA;
- Department of Research and Development, Axolotl Biologix, Flagstaff, AZ 86001, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Clinical Operations, Axolotl Biologix, Flagstaff, AZ 86001, USA
| |
Collapse
|
13
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
14
|
Fenelon M, Galvez P, Kalbermatten D, Scolozzi P, Madduri S. Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications. Int J Mol Sci 2023; 24:14424. [PMID: 37833872 PMCID: PMC10572287 DOI: 10.3390/ijms241914424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The amniotic membrane (AM) is the innermost part of the fetal placenta, which surrounds and protects the fetus. Due to its structural components (stem cells, growth factors, and proteins), AMs display unique biological properties and are a widely available and cost-effective tissue. As a result, AMs have been used for a century as a natural biocompatible dressing for healing corneal and skin wounds. To further increase its properties and expand its applications, advanced hybrid materials based on AMs have recently been developed. One existing approach is to combine the AM with a secondary material to create composite membranes. This review highlights the increasing development of new multilayer composite-based AMs in recent years and focuses on the benefits of additive manufacturing technologies and electrospinning, the most commonly used strategy, in expanding their use for tissue engineering and clinical applications. The use of AMs and multilayer composite-based AMs in the context of nerve regeneration is particularly emphasized and other tissue engineering applications are also discussed. This review highlights that these electrospun multilayered composite membranes were mainly created using decellularized or de-epithelialized AMs, with both synthetic and natural polymers used as secondary materials. Finally, some suggestions are provided to further enhance the biological and mechanical properties of these composite membranes.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Paul Galvez
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Daniel Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Paolo Scolozzi
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
15
|
Li Y, An S, Deng C, Xiao S. Human Acellular Amniotic Membrane as Skin Substitute and Biological Scaffold: A Review of Its Preparation, Preclinical Research, and Clinical Application. Pharmaceutics 2023; 15:2249. [PMID: 37765218 PMCID: PMC10534359 DOI: 10.3390/pharmaceutics15092249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Human acellular amniotic membrane (HAAM) has emerged as a promising tool in the field of regenerative medicine, particularly for wound healing and tissue regeneration. HAAM provides a natural biological scaffold with low immunogenicity and good anti-infective and anti-scarring results. Despite its potential, the clinic application of HAAM faces challenges, particularly with respect to the preparation methods and its low mechanical strength. This review provides a comprehensive overview of HAAM, covering its preparation, sterilization, preclinical research, and clinical applications. This review also discusses promising decellularization and sterilization methods, such as Supercritical Carbon Dioxide (SC-CO2), and the need for further research into the regenerative mechanisms of HAAM. In addition, we discuss the potential of HAAM as a skin dressing and cell delivery system in preclinical research and clinical applications. Both the safety and effectiveness of HAAM have been validated by extensive research, which provides a robust foundation for its clinical application.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Siyu An
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| |
Collapse
|
16
|
Laleh M, Tahernejad M, Bonakdar S, Asefnejad A, Golkar M, Kazemi-Lomedasht F, Habibi-Anbouhi M. Positive effect of acellular amniotic membrane dressing with immobilized growth factors in skin wound healing. J Biomed Mater Res A 2023; 111:1216-1227. [PMID: 36752269 DOI: 10.1002/jbm.a.37509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
The human amniotic membrane dressing has been shown to accelerate the wound healing process in the clinic. In this study, heparin was conjugated to a human Acellular Amniotic Membrane (hAAM) to provide affinity binding sites for immobilizing growth factors. To study the acceleration of the wound healing process, we bound epidermal growth factor and fibroblast growth factor 1 to heparinized hAAMs (GF-Hep-hAAMs). The heparinized hAAMs (Hep-hAAMs) were characterized by toluidine blue staining and infrared spectroscopy. The quality control of hAAM was performed by hematoxylin staining, swelling capacity test and biomechanical evaluation. The cytotoxicity, adhesion, and migration in vitro assays of GF-Hep-hAAMs on L-929 fibroblast cells were also studied by MTT assay, scanning electron microscopy, and scratch assay, respectively. Finally, in vivo skin wound healing study was performed to investigate the wound closure rate, re-epithelization, collagen deposition, and formation of new blood vessels. The results showed that GF-Hep-hAAMs enhance the rate of wound closure and epidermal regeneration in BALB/c mice. In conclusion, GF-Hep-hAAMs could accelerate the wound healing process, significantly in the first week.
Collapse
Affiliation(s)
- Mahsa Laleh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahrokh Tahernejad
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom and Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
17
|
Mao Y, Protzman NM, John N, Kuehn A, Long D, Sivalenka R, Junka RA, Shah AU, Gosiewska A, Hariri RJ, Brigido SA. An in vitro comparison of human corneal epithelial cell activity and inflammatory response on differently designed ocular amniotic membranes and a clinical case study. J Biomed Mater Res B Appl Biomater 2023; 111:684-700. [PMID: 36370413 PMCID: PMC10099462 DOI: 10.1002/jbm.b.35186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
Amniotic membrane (AM) is a naturally derived biomaterial with biological and mechanical properties important to Ophthalmology. The epithelial side of the AM promotes epithelialization, while the stromal side regulates inflammation. However, not all AMs are equal. AMs undergo different processing with resultant changes in cellular content and structure. This study evaluates the effects of sidedness and processing on human corneal epithelial cell (HCEC) activity, the effect of processing on HCEC inflammatory response, and then a case study is presented. Three differently processed, commercially available ocular AMs were selected: (1) Biovance®3L Ocular, a decellularized, dehydrated human AM (DDHAM), (2) AMBIO2®, a dehydrated human AM (DHAM), and (3) AmnioGraft®, a cryopreserved human AM (CHAM). HCECs were seeded onto the AMs and incubated for 1, 4 and 7 days. Cell adhesion and viability were evaluated using alamarBlue assay. HCEC migration was evaluated using a scratch wound assay. An inflammatory response was induced by TNF-α treatment. The effect of AM on the expression of pro-inflammatory genes in HCECs was compared using quantitative polymerase chain reaction (qPCR). Staining confirmed complete decellularization and the absence of nuclei in DDHAM. HCEC activity was best supported on the stromal side of DDHAM. Under inflammatory stimulation, DDHAM promoted a higher initial inflammatory response with a declining trend across time. Clinically, DDHAM was used to successfully treat anterior basement membrane dystrophy. Compared with DHAM and CHAM, DDHAM had significant positive effects on the cellular activities of HCECs in vitro, which may suggest greater ocular cell compatibility in vivo.
Collapse
Affiliation(s)
- Yong Mao
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Nicole M Protzman
- Department of Research, Healthcare Analytics, LLC, Easton, Pennsylvania, USA
| | - Nikita John
- Department of Chemistry and Chemical Biology, Rutgers University Laboratory for Biomaterials Research, Piscataway, New Jersey, USA
| | - Adam Kuehn
- Celularity Inc., Florham Park, New Jersey, USA
| | | | | | | | - Anish U Shah
- Ophthalmic Surgeon, Norwich Ophthalmology Group, Norwich, Connecticut, USA
| | | | | | | |
Collapse
|
18
|
Jia Z, Ma H, Liu J, Yan X, Liu T, Cheng YY, Li X, Wu S, Zhang J, Song K. Preparation and Characterization of Polylactic Acid/Nano Hydroxyapatite/Nano Hydroxyapatite/Human Acellular Amniotic Membrane (PLA/nHAp/HAAM) Hybrid Scaffold for Bone Tissue Defect Repair. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1937. [PMID: 36903052 PMCID: PMC10003763 DOI: 10.3390/ma16051937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Bone tissue engineering is a novel and efficient repair method for bone tissue defects, and the key step of the bone tissue engineering repair strategy is to prepare non-toxic, metabolizable, biocompatible, bone-induced tissue engineering scaffolds of suitable mechanical strength. Human acellular amniotic membrane (HAAM) is mainly composed of collagen and mucopolysaccharide; it has a natural three-dimensional structure and no immunogenicity. In this study, a polylactic acid (PLA)/Hydroxyapatite (nHAp)/Human acellular amniotic membrane (HAAM) composite scaffold was prepared and the porosity, water absorption and elastic modulus of the composite scaffold were characterized. After that, the cell-scaffold composite was constructed using newborn Sprague Dawley (SD) rat osteoblasts to characterize the biological properties of the composite. In conclusion, the scaffolds have a composite structure of large and small holes with a large pore diameter of 200 μm and a small pore diameter of 30 μm. After adding HAAM, the contact angle of the composite decreases to 38.7°, and the water absorption reaches 249.7%. The addition of nHAp can improve the scaffold's mechanical strength. The degradation rate of the PLA+nHAp+HAAM group was the highest, reaching 39.48% after 12 weeks. Fluorescence staining showed that the cells were evenly distributed and had good activity on the composite scaffold; the PLA+nHAp+HAAM scaffold has the highest cell viability. The adhesion rate to HAAM was the highest, and the addition of nHAp and HAAM could promote the rapid adhesion of cells to scaffolds. The addition of HAAM and nHAp can significantly promote the secretion of ALP. Therefore, the PLA/nHAp/HAAM composite scaffold can support the adhesion, proliferation and differentiation of osteoblasts in vitro which provide sufficient space for cell proliferation, and is suitable for the formation and development of solid bone tissue.
Collapse
Affiliation(s)
- Zhilin Jia
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Yan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Wu
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Gaudet C, Odet S, Meyer C, Chatelain B, Weber E, Parmentier AL, Derruau S, Laurence S, Mauprivez C, Brenet E, Kerdjoudj H, Fenelon M, Fricain JC, Zwetyenga N, Hoarau D, Curien R, Gerard E, Louvrier A, Gindraux F. Reporting Criteria for Clinical Trials on Medication-Related Osteonecrosis of the Jaw (MRONJ): A Review and Recommendations. Cells 2022; 11:4097. [PMID: 36552861 PMCID: PMC9777472 DOI: 10.3390/cells11244097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a complication caused by anti-resorptive agents and anti-angiogenesis drugs. Since we wanted to write a protocol for a randomized clinical trial (RCT), we reviewed the literature for the essential information needed to estimate the size of the active patient population and measure the effects of therapeutics. At the same time, we designed a questionnaire intended for clinicians to collect detailed information about their practices. Twelve essential criteria and seven additional items were identified and compiled from 43 selected articles. Some of these criteria were incorporated in the questionnaire coupled with data on clinical practices. Our review found extensive missing data and a lack of consensus. For example, the success rate often combined MRONJ stages, diseases, and drug treatments. The occurrence date and evaluation methods were not harmonized or quantitative enough. The primary and secondary endpoints, failure definition, and date coupled to bone measurements were not well established. This information is critical for writing a RCT protocol. With this review article, we aim to encourage authors to contribute all their findings in the field to bridge the current knowledge gap and provide a stronger database for the coming years.
Collapse
Affiliation(s)
- Camille Gaudet
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
| | - Stephane Odet
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
| | - Christophe Meyer
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Brice Chatelain
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
| | - Elise Weber
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
| | - Anne-Laure Parmentier
- Unité de Méthodologie, INSERM Centre d’Investigation Clinique 1431, CHU Besançon, F-25000 Besançon, France;
| | - Stéphane Derruau
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, CHU Reims, F-51092 Reims, France; (S.D.); (S.L.); (C.M.)
- Laboratoire BioSpecT EA-7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, F-51100 Reims, France
| | - Sébastien Laurence
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, CHU Reims, F-51092 Reims, France; (S.D.); (S.L.); (C.M.)
- Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, HERVI EA3801 UFR de Médecine, Université de Reims Champagne Ardenne, F-51100 Reims, France
| | - Cédric Mauprivez
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, CHU Reims, F-51092 Reims, France; (S.D.); (S.L.); (C.M.)
- Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Université de Reims Champagne Ardenne, F-51100 Reims, France;
- UFR d’Odontologie, Université de Reims Champagne Ardenne, F-51100 Reims, France
| | - Esteban Brenet
- Service d’ORL et Chirurgie Cervico-Faciale, CHU Reims, F-51092 Reims, France;
| | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Université de Reims Champagne Ardenne, F-51100 Reims, France;
- UFR d’Odontologie, Université de Reims Champagne Ardenne, F-51100 Reims, France
| | - Mathilde Fenelon
- CHU Bordeaux, Dentistry and Oral Health Department, F-33404 Bordeaux, France; (M.F.); (J.-C.F.)
- INSERM U1026, University of Bordeaux, Tissue Bioengineering (BioTis), F-33076 Bordeaux, France
| | - Jean-Christophe Fricain
- CHU Bordeaux, Dentistry and Oral Health Department, F-33404 Bordeaux, France; (M.F.); (J.-C.F.)
- INSERM U1026, University of Bordeaux, Tissue Bioengineering (BioTis), F-33076 Bordeaux, France
| | - Narcisse Zwetyenga
- Chirurgie Maxillo-Faciale-Stomatologie-Chirurgie Plastique Réparatrice et Esthétique-Chirurgie de La main, CHU Dijon, F-21079 Dijon, France; (N.Z.); (D.H.)
| | - David Hoarau
- Chirurgie Maxillo-Faciale-Stomatologie-Chirurgie Plastique Réparatrice et Esthétique-Chirurgie de La main, CHU Dijon, F-21079 Dijon, France; (N.Z.); (D.H.)
| | - Rémi Curien
- Service d’Odontologie, CHR Metz-Thionville, F-57530 Thionville, France; (R.C.); (E.G.)
| | - Eric Gerard
- Service d’Odontologie, CHR Metz-Thionville, F-57530 Thionville, France; (R.C.); (E.G.)
| | - Aurélien Louvrier
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Florelle Gindraux
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000 Besançon, France; (C.G.); (S.O.); (C.M.); (B.C.); (E.W.); (A.L.)
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
20
|
Doudi S, Barzegar M, Taghavi EA, Eini M, Ehterami A, Stokes K, Alexander JS, Salehi M. Applications of acellular human amniotic membrane in regenerative medicine. Life Sci 2022; 310:121032. [DOI: 10.1016/j.lfs.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
21
|
Odet S, Solecki L, Meyer C, Weber E, Chatelain B, Euvrard E, Barrabé A, Gualdi T, Parmentier AL, Tatu L, Pouthier F, Louvrier A, Gindraux F. Human amniotic membrane application in oral surgery—An ex vivo pilot study. Front Bioeng Biotechnol 2022; 10:968346. [DOI: 10.3389/fbioe.2022.968346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The purpose of this pilot porcine study was to explore and illustrate the surgical application of human amniotic membrane (hAM) in an ex vivo model of medication-related osteonecrosis of the jaw (MRONJ).Material and methods: Five oral and maxillofacial surgeons participated to this study. MRONJ was simulated on porcine mandible specimens. hAM was applied using four different techniques: implantation with complete coverage, implantation with partial coverage, apposition and covering graft material. At the same time, the surgeons evaluated how well the hAM handled and its physical properties during the surgery.Results: Surgeons found that hAM had suitable mechanical properties, as it was easy to detach from the support, handle, bind to the defect and bury. hAM was also found to be strong and stable. The “implantation with complete coverage” and “implantation with partial coverage” techniques were the preferred choices for the MRONJ indication.Conclusion: This study shows that hAM is a graft material with suitable properties for oral surgery. It is preferable to use it buried under the gingiva with sutures above it, which increases its stability. This technical note aims to educate surgeons and provide them with details about the handling of hAM in oral surgery.Clinical relevance: Two surgical techniques for hAM application in MRONJ were identified and illustrated. hAM handling and physical properties during surgery were reported.
Collapse
|
22
|
Pozzobon M, D’Agostino S, Roubelakis MG, Cargnoni A, Gramignoli R, Wolbank S, Gindraux F, Bollini S, Kerdjoudj H, Fenelon M, Di Pietro R, Basile M, Borutinskaitė V, Piva R, Schoeberlein A, Eissner G, Giebel B, Ponsaerts P. General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Front Bioeng Biotechnol 2022; 10:961987. [PMID: 36263355 PMCID: PMC9574482 DOI: 10.3389/fbioe.2022.961987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Stefania D’Agostino
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Maria G. Roubelakis
- Laboratory of Biology, Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA Trauma Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et plastique, CHU Besançon, Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, University Bourgogne Franche-Comté, Besançon, France
| | - Sveva Bollini
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Halima Kerdjoudj
- University of Reims Champagne Ardenne, EA 4691 BIOS “Biomatériaux et Inflammation en Site Osseux”, UFR d’Odontologie, Reims, France
| | | | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Guenther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Questions about Residual Cell Viability in Cryopreserved Human Amniotic Membrane and Its Impact on Clinical Applications. Biomedicines 2022; 10:biomedicines10102456. [PMID: 36289719 PMCID: PMC9598775 DOI: 10.3390/biomedicines10102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
We questioned the relevance of evaluating residual cell viability in human amniotic membrane (hAM) after its cryopreservation since cell survival is controversial and its ability to act as a matrix (including the presence of growth factors and cytokines) appears to be most important for tissue regeneration purposes. We also discussed the usefulness of osteodifferentiating amniotic cells in whole hAM for bone repair applications. We have evidence that determining residual cell viability after cryopreservation and hAM osteodifferentiation is not justified.
Collapse
|
24
|
Grémare A, Thibes L, Gluais M, Torres Y, Potart D, Da Silva N, Dusserre N, Fénelon M, Senthilhes L, Lacomme S, Svahn I, Gontier É, Fricain JC, L'Heureux N. Development of a vascular substitute produced by weaving yarn made from human amniotic membrane. Biofabrication 2022; 14. [PMID: 35896106 DOI: 10.1088/1758-5090/ac84ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
Because synthetic vascular prostheses perform poorly in small-diameter revascularization, biological vascular substitutes are being developed as an alternative. Although their in vivo results are promising, their production involves long, complex, and expensive tissue engineering methods. To overcome these limitations, we propose an innovative approach that combines the human amniotic membrane (HAM), which is a widely available and cost-effective biological raw material, with a rapid and robust textile-inspired assembly strategy. Fetal membranes were collected after cesarean deliveries at term. Once isolated by dissection, HAM sheets were cut into ribbons that could be further processed by twisting into threads. Characterization of the HAM yarns (both ribbons and threads) showed that their physical and mechanical properties could be easily tuned. Since our clinical strategy will be to provide an off-the-shelf allogeneic implant, we studied the effects of decellularization and/or gamma sterilization on the histological, mechanical, and biological properties of HAM ribbons. Gamma irradiation of hydrated HAMs, with or without decellularization, did not interfere with the ability of the matrix to support endothelium formation in vitro. Finally, our HAM-based, woven tissue-engineered vascular grafts (TEVGs) exhibited clinically relevant mechanical properties. Thus, this study demonstrates that human, completely biological, allogeneic, small-diameter TEVGs can be produced from HAM, thereby avoiding costly cell culture and bioreactors.
Collapse
Affiliation(s)
- Agathe Grémare
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Lisa Thibes
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Maude Gluais
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Yoann Torres
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Diane Potart
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nicolas Da Silva
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nathalie Dusserre
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Mathilde Fénelon
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Loïc Senthilhes
- Obstetrics and Gynecology, CHU de Bordeaux, Hopital Pellegrin, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33076, FRANCE
| | - Sabrina Lacomme
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Isabelle Svahn
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Étienne Gontier
- University of Bordeaux, 146, Rue Léo Saignat, Bordeaux, Aquitaine, 33000, FRANCE
| | - Jean-Christophe Fricain
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| | - Nicolas L'Heureux
- Heath Sciences and Technologies, University of Bordeaux, Campus Carreire, 146, Rue Léo Saignat, Bâtiment 4A, 2ième étage, Case 84, Bordeaux, Aquitaine, 33076, FRANCE
| |
Collapse
|
25
|
Odet S, Meyer C, Gaudet C, Weber E, Quenot J, Derruau S, Laurence S, Bompy L, Girodon M, Chatelain B, Mauprivez C, Brenet E, Kerdjoudj H, Zwetyenga N, Marchetti P, Hatzfeld AS, Toubeau D, Pouthier F, Lafarge X, Redl H, Fenelon M, Fricain JC, Di Pietro R, Ledouble C, Gualdi T, Parmentier AL, Louvrier A, Gindraux F. Tips and Tricks and Clinical Outcome of Cryopreserved Human Amniotic Membrane Application for the Management of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Pilot Study. Front Bioeng Biotechnol 2022; 10:936074. [PMID: 35935507 PMCID: PMC9355383 DOI: 10.3389/fbioe.2022.936074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a complication of certain pharmacological treatments such as bisphosphonates, denosumab, and angiogenesis inhibitors. There are currently no guidelines on its management, particularly in advanced stages. The human amniotic membrane (hAM) has low immunogenicity and exerts anti-inflammatory, antifibrotic, antimicrobial, antiviral, and analgesic effects. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with suitable mechanical properties (permeability, stability, elasticity, flexibility, and resorbability) to prevent the proliferation of fibrous tissue and promote early neovascularization at the surgical site. In oral surgery, hAM stimulates healing and facilitates the proliferation and differentiation of epithelial cells in the oral mucosa and therefore its regeneration. We proposed using cryopreserved hAM to eight patients suffering from cancer (11 lesions) with stage 2–3 MRONJ on a compassionate use basis. A collagen sponge was added in some cases to facilitate hAM grafting. One or three hAMs were applied and one patient had a reapplication. Three patients had complete closure of the surgical site with proper epithelialization at 2 weeks, and two of them maintained it until the last follow-up. At 1 week after surgery, three patients had partial wound dehiscence with partial healing 3 months later and two patients had complete wound dehiscence. hAM reapplication led to complete healing. All patients remained asymptomatic with excellent immediate significant pain relief, no infections, and a truly positive impact on the patients’ quality of life. No adverse events occurred. At 6 months of follow-up, 80% of lesions had complete or partial wound healing (30 and 50%, respectively), while 62.5% of patients were in stage 3. Radiological evaluations found that 85.7% of patients had stable bone lesions (n = 5) or new bone formation (n = 1). One patient had a worsening MRONJ but remained asymptomatic. One patient did not attend his follow-up radiological examination. For the first time, this prospective pilot study extensively illustrates both the handling and surgical application of hAM in MRONJ, its possible association with a collagen sponge scaffold, its outcome at the site, the application of multiple hAM patches at the same time, and its reapplication.
Collapse
Affiliation(s)
- Stéphane Odet
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Camille Gaudet
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Elise Weber
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Julie Quenot
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Stéphane Derruau
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne-Ardenne, Laboratoire BioSpecT EA-7506, UFR de Pharmacie, Reims, France
| | - Sebastien Laurence
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, HERVI EA3801, UFR de Médecine, Reims, France
| | - Lisa Bompy
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Marine Girodon
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Brice Chatelain
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
| | - Cédric Mauprivez
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Esteban Brenet
- Service d’ORL et chirurgie cervico-faciale, CHU Reims, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - Narcisse Zwetyenga
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France
| | - Philippe Marchetti
- Banque de Tissus CBP CHU Lille, Lille, France
- Institut de Cancérologie ONCOLILLE CANTHER, UMR9020 CNRS–U1277 Inserm—Université de Lille, Lille, France
| | - Anne-Sophie Hatzfeld
- Banque de Tissus CBP CHU Lille, Lille, France
- Institut de Cancérologie ONCOLILLE CANTHER, UMR9020 CNRS–U1277 Inserm—Université de Lille, Lille, France
| | | | - Fabienne Pouthier
- Activité d’Ingénierie Cellulaire et Tissulaire (AICT), Établissement Français du Sang Bourgogne Franche-Comté, Besançon, France
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Xavier Lafarge
- Établissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France
- INSERM U1035, Université de Bordeaux, Biothérapie des Maladies Génétiques Inflammatoires et Cancers (BMGIC), Bordeaux, France
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA, Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Gabriele D’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Gabriele D’Annunzio Foundation, University of Chieti-Pescara, Chieti, Italy
| | - Charlotte Ledouble
- Pôle Médecine bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | | | | | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Florelle Gindraux
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
- *Correspondence: Florelle Gindraux,
| |
Collapse
|
26
|
Ashouri S, Hosseini SA, Hoseini SJ, Tara F, Ebrahimzadeh-Bideskan A, Webster TJ, Kargozar S. Decellularization of human amniotic membrane using detergent-free methods: Possibilities in tissue engineering. Tissue Cell 2022; 76:101818. [DOI: 10.1016/j.tice.2022.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
27
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
28
|
Lamon M, Bertolin M, Trojan D, Spagnol L, Donisi PM, Camposampiero D, Ponzin D, Ferrari S. Cryopreservation of human amniotic membrane for ocular surface reconstruction: a comparison between protocols. Cell Tissue Bank 2022; 23:851-861. [PMID: 35338396 DOI: 10.1007/s10561-022-10002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare the effects on adhesive and structural properties of newer preservation conditions to those obtained with an established, standardized protocol (dimethyl sulfoxide at -180 °C). In attempt to simplify and enhance the safety of the procedure, we tested dextran-based freezing medium and a dry condition (no medium) at temperatures of -80 °C. METHODS Five patches of human amniotic membrane were obtained from three different donors. For each donor, five preservation condition were tested: dimethyl sulfoxide at -180 °C, dimethyl sulfoxide at -80 °C, dextran-based medium at -180 °C, dextran-based medium at -80 °C and dry freezing at -80 °C (no medium). At the end of four months storage period, adhesive properties and structure were analyzed. RESULTS None of the newer preservation protocols showed differences in adhesive and structural properties of the tissues. The stromal layer always kept its adhesiveness, while both structure and basement membrane were not altered by any the preservation protocol. CONCLUSIONS Switching from liquid nitrogen cryopreservation to -80 °C would reduce manipulation, simplify the procedure, making it also cheaper. The use of dextran-based freezing medium or no medium at all (dry condition) would avoid the potential toxicity of the dimethyl sulfoxide-based freezing media.
Collapse
Affiliation(s)
- Mattia Lamon
- Fondazione Banca degli Occhi del Veneto, c/o Pad. G. Rama - Via Paccagnella 11, 30174, Venice, Italy
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto, c/o Pad. G. Rama - Via Paccagnella 11, 30174, Venice, Italy.
| | | | - Lisa Spagnol
- Fondazione Banca dei Tessuti di Treviso, Treviso, Italy
| | - Pietro Maria Donisi
- Department of Pathological Anatomy, Hospital "SS Giovanni e Paolo", Venice, Italy
| | - Davide Camposampiero
- Fondazione Banca degli Occhi del Veneto, c/o Pad. G. Rama - Via Paccagnella 11, 30174, Venice, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, c/o Pad. G. Rama - Via Paccagnella 11, 30174, Venice, Italy
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Pad. G. Rama - Via Paccagnella 11, 30174, Venice, Italy
| |
Collapse
|
29
|
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther 2022; 13:8. [PMID: 35012669 PMCID: PMC8744057 DOI: 10.1186/s13287-021-02684-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The amniotic membrane (Amnio-M) has various applications in regenerative medicine. It acts as a highly biocompatible natural scaffold and as a source of several types of stem cells and potent growth factors. It also serves as an effective nano-reservoir for drug delivery, thanks to its high entrapment properties. Over the past century, the use of the Amnio-M in the clinic has evolved from a simple sheet for topical applications for skin and corneal repair into more advanced forms, such as micronized dehydrated membrane, amniotic cytokine extract, and solubilized powder injections to regenerate muscles, cartilage, and tendons. This review highlights the development of the Amnio-M over the years and the implication of new and emerging nanotechnology to support expanding its use for tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Radwa A Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, 12582, Giza, Egypt.
| |
Collapse
|
30
|
Cao L, Tong Y, Wang X, Zhang Q, Qi Y, Zhou C, Yu X, Wu Y, Miao X. Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair. Front Cell Dev Biol 2021; 9:647166. [PMID: 34900977 PMCID: PMC8657407 DOI: 10.3389/fcell.2021.647166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Repairing articular cartilage damage is challenging. Clinically, tissue engineering technology is used to induce stem cell differentiation and proliferation on biological scaffolds to repair defective joints. However, no ideal biological scaffolds have been identified. This study investigated the effects of amniotic membrane/collagen scaffolds on the differentiation of adipose-derived stem cells (ADSCs) and articular cartilage repair. Methods: Adipose tissue of New Zealand rabbits was excised, and ADSCs were isolated and induced for differentiation. An articular cartilage defect model was constructed to identify the effect of amniotic membrane/collagen scaffolds on cartilage repair. Cartilage formation was analyzed by imaging and toluene blue staining. Knee joint recovery in rabbits was examined using hematoxylin and eosin, toluidine, safranine, and immunohistochemistry at 12 weeks post-operation. Gene expression was examined using ELISA, RT-PCR, Western blotting, and immunofluorescence. Results: The adipose tissue was effectively differentiated into ADSCs, which further differentiated into chondrogenic, osteogenic, and lipogenic lineages after 3 weeks’ culture in vitro. Compared with platelet-rich plasmon (PRP) scaffolds, the amniotic membrane scaffolds better promoted the growth and differentiation of ADSCs. Additionally, scaffolds containing the PRP and amniotic membrane efficiently enhanced the osteogenic differentiation of ADSCs. The levels of COL1A1, COL2A1, COL10A1, SOX9, and ACAN in ADSCs + amniotic membrane + PRP group were significantly higher than the other groups both in vitro and in vivo. The Wakitani scores of the ADSC + amniotic membrane + PRP group were lower than that in ADSC + PRP (4.4 ± 0.44**), ADSC + amniotic membrane (2.63 ± 0.38**), and control groups (6.733 ± 0.21) at week 12 post-operation. Osteogenesis in rabbits of the ADSC + amniotic membrane + PRP group was significantly upregulated when compared with other groups. Amniotic membranes significantly promoted the expression of cartilage regeneration-related factors (SOX6, SOX9, RUNX2, NKX3-2, MEF2C, and GATA4). The ADSC + PRP + amniotic membrane group exhibited the highest levels of TGF-β, PDGF, and FGF while exhibiting the lowest level of IL-1β, IL6, and TNF-α in articular cavity. Conclusion: Amniotic membrane/collagen combination-based scaffolds promoted the proliferation and cartilage differentiation of ADSCs, and may provide a new treatment paradigm for patients with cartilage injury.
Collapse
Affiliation(s)
- Le Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yuling Tong
- Department of General Practice, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wang
- Shaoxing Shangyu Hospital of Traditional Chinese medicine, Shaoxing, China
| | - Qiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xinning Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Yongping Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Xudong Miao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Luo Y, Shen M, Feng P, Qiu H, Wu X, Yang L, Zhu Y. Various administration forms of decellularized amniotic membrane extract towards improving corneal repair. J Mater Chem B 2021; 9:9347-9357. [PMID: 34724021 DOI: 10.1039/d1tb01848e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amniotic membrane (AM) transplantation is often used as a treatment for corneal repair, but AM is prone to dissolving and shedding after surgery; multiple transplants will cause pain and financial burden. In this work, human amniotic membrane was firstly decellularized to obtain an AM extracellular matrix (dAM). This dAM was homogenized and extracted to obtain the dAM extract (simplified as dAME). Different forms of administration for corneal injury were performed as liquid drops (diluted dAME), in situ gels (using temperature-dependent Poloxamer 407 as the matrix), and tablets (poly(vinyl alcohol) as the matrix). The cytocompatibility of dAME was evaluated using corneal epithelial cells, corneal stromal cells and fibroblasts as cell models. The results showed that dAME is biocompatible to all these cells. Cells exhibited normal morphology and growth state at a dAME concentration of up to 160 μg mL-1. In vivo, dAME exhibited increased wound healing efficiency in severe corneal injury, being characterized with a shorter healing time for epithelium and a faster recovery for stromal opacity and thickness, compared with those of the control eyes. Different forms of administration have different effects on corneal repair; among them, in situ gels achieved the best therapeutic efficiency. Their biological mechanism was detected via quantitative real-time polymerase chain reaction (qRT-PCR) technology. It was confirmed that dAME plays important roles in promoting the mRNA expression of leucine-rich and immunoglobulin-like domains 1 (LRIG1) and in inhibiting the mRNA of transforming growth factor-β1 (TGF-β1).
Collapse
Affiliation(s)
- Yang Luo
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Meiting Shen
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Lu Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315000, China.
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
32
|
Dziedzic DSM, Mogharbel BF, Irioda AC, Stricker PEF, Perussolo MC, Franco CRC, Chang HW, Abdelwahid E, de Carvalho KAT. Adipose-Derived Stromal Cells and Mineralized Extracellular Matrix Delivery by a Human Decellularized Amniotic Membrane in Periodontal Tissue Engineering. MEMBRANES 2021; 11:membranes11080606. [PMID: 34436369 PMCID: PMC8401540 DOI: 10.3390/membranes11080606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Periodontitis is a prevalent disease characterized by the loss of periodontal supporting tissues, bone, periodontal ligament, and cementum. The application of a bone tissue engineering strategy with Decellularized Human Amniotic Membrane (DAM) with adipose-derived stromal cells (ASCs) has shown to be convenient and valuable. This study aims to investigate the treatments of a rat periodontal furcation defect model with DAM, ASCs, and a mineralized extracellular matrix (ECM). Rat ASCs were expanded, cultivated on DAM, and with a bone differentiation medium for four weeks, deposited ECM on DAM. Periodontal healing for four weeks was evaluated by micro-computed tomography and histological analysis after treatments with DAM, ASCs, and ECM and compared to untreated defects on five consecutive horizontal levels, from gingival to apical. The results demonstrate that DAM preserves its structure during cultivation and healing periods, supporting cell attachment, permeation, bone deposition on DAM, and periodontal regeneration. DAM and DAM+ASCs enhance bone healing compared to the control on the gingival level. In conclusion, DAM with ASC or without cells and the ECM ensures bone tissue healing. The membrane supported neovascularization and promoted osteoconduction.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
| | | | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Curitiba, Paraná 80250-060, Brazil; (D.S.M.D.); (B.F.M.); (A.C.I.); (P.E.F.S.); (M.C.P.)
- Correspondence: ; Tel.: +55-41-3310-1719
| |
Collapse
|
33
|
Gulameabasse S, Gindraux F, Catros S, Fricain JC, Fenelon M. Chorion and amnion/chorion membranes in oral and periodontal surgery: A systematic review. J Biomed Mater Res B Appl Biomater 2021; 109:1216-1229. [PMID: 33354857 DOI: 10.1002/jbm.b.34783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to perform a systematic review on the clinical applications where chorion membrane (CM) and amnion/chorion membrane (ACM) were used for oral tissue regeneration procedures. Selection of articles was carried out by two evaluators in Pubmed and Scopus databases, and Outcomes (PICO) method was used to select the relevant articles. Clinical studies reporting the use of CM or ACM for oral soft and hard tissue regeneration were included. The research involved 21 studies conducted on 375 human patients. Seven clinical applications of CM and ACM in oral and periodontal surgery were identified: gingival recession treatment, intrabony and furcation defect treatment, alveolar ridge preservation, keratinized gum width augmentation around dental implants, maxillary sinus membrane repair, and large bone defect reconstruction. CM and ACM were compared to negative controls (conventional surgeries without membrane) or to the following materials: collagen membranes, dense polytetrafluoroethylene membranes, platelet-rich fibrin membranes, amnion membranes, and to a bone substitute. Several studies support the use of CM and ACM as an efficient alternative to current techniques for periodontal and oral soft tissue regeneration procedures. However, further studies are necessary to increase the level of evidence and especially to demonstrate their role for bone regeneration.
Collapse
Affiliation(s)
- Sarah Gulameabasse
- Département de chirurgie orale, UFR d'Odontologie, Université de Bordeaux, 46 rue Léo-Saignat, Bordeaux, France
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
| | - Sylvain Catros
- Département de chirurgie orale, UFR d'Odontologie, Université de Bordeaux, 46 rue Léo-Saignat, Bordeaux, France
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
| | - Jean-Christophe Fricain
- Département de chirurgie orale, UFR d'Odontologie, Université de Bordeaux, 46 rue Léo-Saignat, Bordeaux, France
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
| | - Mathilde Fenelon
- Département de chirurgie orale, UFR d'Odontologie, Université de Bordeaux, 46 rue Léo-Saignat, Bordeaux, France
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
| |
Collapse
|
34
|
Odet S, Louvrier A, Meyer C, Nicolas FJ, Hofman N, Chatelain B, Mauprivez C, Laurence S, Kerdjoudj H, Zwetyenga N, Fricain JC, Lafarge X, Pouthier F, Marchetti P, Gauthier AS, Fenelon M, Gindraux F. Surgical Application of Human Amniotic Membrane and Amnion-Chorion Membrane in the Oral Cavity and Efficacy Evaluation: Corollary With Ophthalmological and Wound Healing Experiences. Front Bioeng Biotechnol 2021; 9:685128. [PMID: 34178969 PMCID: PMC8222622 DOI: 10.3389/fbioe.2021.685128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Due to its intrinsic properties, there has been growing interest in human amniotic membrane (hAM) in recent years particularly for the treatment of ocular surface disorders and for wound healing. Herein, we investigate the potential use of hAM and amnion-chorion membrane (ACM) in oral surgery. Based on our analysis of the literature, it appears that their applications are very poorly defined. There are two options: implantation or use as a cover material graft. The oral cavity is submitted to various mechanical and biological stimulations that impair membrane stability and maintenance. Thus, some devices have been combined with the graft to secure its positioning and protect it in this location. This current opinion paper addresses in detail suitable procedures for hAM and ACM utilization in soft and hard tissue reconstruction in the oral cavity. We address their implantation and/or use as a covering, storage format, application side, size and number, multilayer use or folding, suture or use of additional protective covers, re-application and resorption/fate. We gathered evidence on pre- and post-surgical care and evaluation tools. Finally, we integrated ophthalmological and wound healing practices into the collected information. This review aims to help practitioners and researchers better understand the application of hAM and ACM in the oral cavity, a place less easily accessible than ocular or cutaneous surfaces. Additionally, it could be a useful reference in the generation of new ideas for the development of innovative protective covering, suturing or handling devices in this specific indication. Finally, this overview could be considered as a position paper to guide investigators to fulfill all the identified criteria in the future.
Collapse
Affiliation(s)
- Stéphane Odet
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France
| | - Aurélien Louvrier
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR 1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Christophe Meyer
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France.,Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | | | - Nicola Hofman
- Deutsche Gesellschaft für Gewebetransplantation (DGFG), Hannover, Germany
| | - Brice Chatelain
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France
| | - Cédric Mauprivez
- Pôle Médecine Bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France.,Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, UFR d'Odontologie, Reims, France
| | - Sébastien Laurence
- Pôle Médecine Bucco-dentaire, Hôpital Maison Blanche, CHU Reims, Reims, France.,Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, HERVI EA3801, UFR de Médecine, Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux, Pôle Santé, URCA, BIOS EA 4691, UFR d'Odontologie, Reims, France
| | - Narcisse Zwetyenga
- Chirurgie Maxillo-Faciale - Stomatologie - Chirurgie Plastique Réparatrice et Esthétique - Chirurgie de la main, CHU de Dijon, Dijon, France.,Université Bourgogne Franche-Comté, Besançon, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France.,CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Xavier Lafarge
- Établissement Français du Sang Nouvelle-Aquitaine, Bordeaux, France/INSERM U1035, Université de Bordeaux, Biothérapie des Maladies Génétiques Inflammatoires et Cancers (BMGIC), Bordeaux, France
| | - Fabienne Pouthier
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR 1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France.,Établissement Français du Sang Bourgogne Franche-Comté, Besançon, France
| | - Philippe Marchetti
- CNRS, INSERM, UMR-9020-UMR-S 1277 Canther, Banque de Tissus CHU Lille, Lille, France
| | - Anne-Sophie Gauthier
- Université Bourgogne Franche-Comté, Besançon, France.,Service d'ophtalmologie, CHU Besançon, Besançon, France
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France.,CHU Bordeaux, Service de chirurgie orale, Bordeaux, France
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France.,Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
| |
Collapse
|
35
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
36
|
Fenelon M, Etchebarne M, Siadous R, Grémare A, Durand M, Sentilhes L, Catros S, Gindraux F, L'Heureux N, Fricain JC. Comparison of amniotic membrane versus the induced membrane for bone regeneration in long bone segmental defects using calcium phosphate cement loaded with BMP-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112032. [PMID: 33947534 DOI: 10.1016/j.msec.2021.112032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) combined with a bone substitute could be a single-step surgical alternative to the two-step Masquelet induced membrane (IM) technique for regeneration of critical bone defects. However, no study has directly compared these two membranes. We first designed a 3D-printed scaffold using calcium phosphate cement (CPC). We assessed its suitability in vitro to support human bone marrow mesenchymal stromal cells (hBMSCs) attachment and osteodifferentiation. We then performed a rat femoral critical size defect to compare the two-step IM technique with a single-step approach using the HAM. Five conditions were compared. Group 1 was left empty. Group 2 received the CPC scaffold loaded with rh-BMP2 (CPC/BMP2). Group 3 and 4 received the CPC/BMP2 scaffold covered with lyophilized or decellularized/lyophilized HAM. Group 5 underwent a two- step induced membrane procedure with insertion of a polymethylmethacrylate (PMMA) spacer followed by, after 4 weeks, its replacement with the CPC/BMP2 scaffold wrapped in the IM. Micro-CT and histomorphometric analysis were performed after six weeks. Results showed that the CPC scaffold supported the proliferation and osteodifferentiation of hBMSCs in vitro. In vivo, the CPC/BMP2 scaffold very efficiently induced bone formation and led to satisfactory healing of the femoral defect, in a single-step, without autograft or the need for any membrane covering. In this study, there was no difference between the two-step induced membrane procedure and a single step approach. However, the results indicated that none of the tested membranes further enhanced bone healing compared to the CPC/BMP2 group.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France.
| | - Marion Etchebarne
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Department of maxillofacial surgery, F-33076 Bordeaux, France
| | - Robin Siadous
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Agathe Grémare
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Odontology and Oral Health Department, F-33076 Bordeaux, France
| | - Marlène Durand
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, CIC 1401, 33000, Bordeaux, France; INSERM, CIC 1401, 33000 Bordeaux, France
| | - Loic Sentilhes
- CHU Bordeaux, Department of Obstetrics and Gynecology, F-33076, Bordeaux, France
| | - Sylvain Catros
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, F-25000 Besançon, France; Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | | | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France; CHU Bordeaux, Service de chirurgie orale, F-33076 Bordeaux, France
| |
Collapse
|
37
|
Etchebarne M, Fricain JC, Kerdjoudj H, Di Pietro R, Wolbank S, Gindraux F, Fenelon M. Use of Amniotic Membrane and Its Derived Products for Bone Regeneration: A Systematic Review. Front Bioeng Biotechnol 2021; 9:661332. [PMID: 34046400 PMCID: PMC8144457 DOI: 10.3389/fbioe.2021.661332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
Thanks to their biological properties, amniotic membrane (AM), and its derivatives are considered as an attractive reservoir of stem cells and biological scaffolds for bone regenerative medicine. The objective of this systematic review was to assess the benefit of using AM and amniotic membrane-derived products for bone regeneration. An electronic search of the MEDLINE-Pubmed database and the Scopus database was carried out and the selection of articles was performed following PRISMA guidelines. This systematic review included 42 articles taking into consideration the studies in which AM, amniotic-derived epithelial cells (AECs), and amniotic mesenchymal stromal cells (AMSCs) show promising results for bone regeneration in animal models. Moreover, this review also presents some commercialized products derived from AM and discusses their application modalities. Finally, AM therapeutic benefit is highlighted in the reported clinical studies. This study is the first one to systematically review the therapeutic benefits of AM and amniotic membrane-derived products for bone defect healing. The AM is a promising alternative to the commercially available membranes used for guided bone regeneration. Additionally, AECs and AMSCs associated with an appropriate scaffold may also be ideal candidates for tissue engineering strategies applied to bone healing. Here, we summarized these findings and highlighted the relevance of these different products for bone regeneration.
Collapse
Affiliation(s)
- Marion Etchebarne
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Department of Maxillofacial Surgery, Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Bordeaux, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
- Université de Reims Champagne Ardenne, UFR d'Odontologie, Reims, France
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Gabriele D'Annunzio Foundation, Gabriele D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BIOTIS, U1026, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Bordeaux, France
- *Correspondence: Mathilde Fenelon
| |
Collapse
|
38
|
Frazão LP, Vieira de Castro J, Nogueira-Silva C, Neves NM. Decellularized Human Chorion Membrane as a Novel Biomaterial for Tissue Regeneration. Biomolecules 2020; 10:E1208. [PMID: 32825287 PMCID: PMC7565174 DOI: 10.3390/biom10091208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Although some placenta-derived products are already used for tissue regeneration, the human chorion membrane (HCM) alone has been poorly explored. In fact, just one study uses decellularized HCM (dHCM) with native tissue architecture (i.e., without extracellular matrix (ECM) suspension creation) as a substrate for cell differentiation. The aim of this work is to fully characterize the dHCM for the presence and distribution of cell nuclei, DNA and ECM components. Moreover, mechanical properties, in vitro biological performance and in vivo biocompatibility were also studied. Our results demonstrated that the HCM was successfully decellularized and the main ECM proteins were preserved. The dHCM has two different surfaces, the reticular layer side and the trophoblast side; and is biocompatible both in vitro and in vivo. Importantly, the in vivo experiments demonstrated that on day 28 the dHCM starts to be integrated by the host tissue. Altogether, these results support the hypothesis that dHCM may be used as a biomaterial for different tissue regeneration strategies, particularly when a membrane is needed to separate tissues, organs or other biologic compartments.
Collapse
Affiliation(s)
- Laura P. Frazão
- I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal; (L.P.F.); (J.V.d.C.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal;
| | - Joana Vieira de Castro
- I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal; (L.P.F.); (J.V.d.C.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal;
| | - Cristina Nogueira-Silva
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal;
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, 4710-057 Braga, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, 4710-243 Braga, Portugal
| | - Nuno M. Neves
- I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, 4805-017 Guimarães, Portugal; (L.P.F.); (J.V.d.C.)
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal;
| |
Collapse
|
39
|
Fenelon M, Etchebarne M, Siadous R, Grémare A, Durand M, Sentilhes L, Torres Y, Catros S, Gindraux F, L'Heureux N, Fricain JC. Assessment of fresh and preserved amniotic membrane for guided bone regeneration in mice. J Biomed Mater Res A 2020; 108:2044-2056. [PMID: 32319212 DOI: 10.1002/jbm.a.36964] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Thanks to its biological properties, the human amniotic membrane (HAM) can be used as a barrier membrane for guided bone regeneration (GBR). However, no study has assessed the influence of the preservation method of HAM for this application. This study aimed to establish the most suitable preservation method of HAM for GBR. Fresh (F), cryopreserved (C) lyophilized (L), and decellularized and lyophilized (DL) HAM were compared. The impact of preservation methods on collagen and glycosaminoglycans (GAG) content was evaluated using Masson's trichrome and alcian blue staining. Their suture retention strengths were assessed. In vitro, the osteogenic potential of human bone marrow mesenchymal stromal cells (hBMSCs) cultured on the four HAMs was evaluated using alkaline phosphatase staining and alizarin red quantification assay. In vivo, the effectiveness of fresh and preserved HAMs for GBR was assessed in a mice diaphyseal bone defect after 1 week or 1 month healing. Micro-CT and histomorphometric analysis were performed. The major structural components of HAM (collagen and GAG) were preserved whatever the preservation method used. The tearing strength of DL-HAM was significantly higher. In vitro, hBMSCs seeded on DL-HAM displayed a stronger ALP staining, and alizarin red staining quantification was significantly higher at Day 14. In vivo, L-HAM and DL-HAM significantly enhanced early bone regeneration. One month after the surgery, only DL-HAM slightly promoted bone regeneration. Several preserving methods of HAM have been studied for bone regeneration. Here, we have demonstrated that DL-HAM achieved the most promising results for GBR.
Collapse
Affiliation(s)
- Mathilde Fenelon
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| | - Marion Etchebarne
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,Department of Maxillofacial Surgery, CHU Bordeaux, Bordeaux, France
| | - Robin Siadous
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Agathe Grémare
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,Department of Odontology and Oral Health, CHU Bordeaux, Bordeaux, France
| | - Marlène Durand
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,CHU Bordeaux, CIC 1401, Bordeaux, France.,INSERM, CIC 1401, Bordeaux, France
| | - Loic Sentilhes
- Department of Obstetrics and Gynecology, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | - Yoann Torres
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Sylvain Catros
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| | - Florelle Gindraux
- Department of Orthopedic, Traumatology & Plastic Surgery, University Hospital of Besançon, Besançon, France.,Nanomedicine Lab, Imagery and Therapeutics (EA 4662), SFR FED 4234, University of Franche-Comté, Besançon, France
| | - Nicolas L'Heureux
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Jean-Christophe Fricain
- INSERM, Laboratory BioTis, UMR 1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| |
Collapse
|