1
|
Li X, Sim D, Wang Y, Feng S, Longo B, Li G, Andreassen C, Hasturk O, Stout A, Yuen JSK, Cai Y, Sanders E, Sylvia R, Hatz S, Olsen T, Herget T, Chen Y, Kaplan DL. Fiber-based biomaterial scaffolds for cell support towards the production of cultivated meat. Acta Biomater 2024:S1742-7061(24)00659-7. [PMID: 39522627 DOI: 10.1016/j.actbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The in vitro production of animal-derived foods via cellular agriculture is emerging as a key solution to global food security challenges. Here, the potential for fiber-based scaffolds, including silk and cotton, in the cultivation of muscle cells for tissue formation was pursued. Mechanical properties and cytocompatibility with the mouse myoblast cell line C2C12 and immortalized bovine muscle satellite cells (iBSCs) were assessed, as well as pre-digestion options for the materials due to their resilience within the human digestive track. The fibers supported cell adhesion, proliferation, and guided muscle cell orientation, facilitating myotube formation per differentiation. A progressive increase in biomass was also documented. Interestingly, iBSC proliferation was enhanced with coatings of recombinant proteins while C2C12 cells showed minimal response. Thus, both cotton and silk yarns were suitable as fiber-based scaffolds towards cell supportive goals, suggesting an alternative path toward structured protein-rich foods via this initial stage of textile engineering for food. Biomass prediction models were generated, enabling forecasts of cell growth and maturation across various scaffold conditions and cell types. This capability enhances the precision of the cultivation process towards an engineering approach, building on the inherent benefits of hierarchical muscle tissue structure, but here via textile engineering with these initial muscle-coated edible fibers. Further, the approach offers to reduce costs by optimizing cultivation time and media needs. These approaches are part of a foundation for future scalable and sustainable cultivated meat production. STATEMENT OF SIGNIFICANCE: This research investigates the use of one-dimensional fiber-based scaffolds for cultivated meat production, contributing to advancements in cellular agriculture. It introduces a method to measure changes in biomass and scaffold degradation throughout the cultivation process. Additionally, our development of biomass prediction models improves the precision and predictability of cultivated meat production. This research not only aids in scaling up cultivated meats but also enhances the use of textile engineering techniques in tissue engineering, paving the way for producing complex, three-dimensional meat structures more sustainably.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Davin Sim
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Shuo Feng
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Christel Andreassen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - John S K Yuen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Yixin Cai
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ella Sanders
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA
| | - Ryan Sylvia
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Sonja Hatz
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Timothy Olsen
- MilliporeSigma, Inc., 400 Summit Drive, Burlington, Massachusetts 1803, USA
| | - Thomas Herget
- Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, Massachusetts 02155, USA.
| |
Collapse
|
2
|
Karami S, Landreville S, Proulx S. Choroidal melanocyte secretome from cultured cells and tissue-engineered choroid models exposed to acute or chronic oxidative stress. Exp Eye Res 2024; 249:110125. [PMID: 39406316 DOI: 10.1016/j.exer.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The choroid, located between the retina and the sclera, is a vascularized and pigmented connective tissue, playing a crucial role in providing oxygen and nutrients to the outer layers of the retina, and in absorbing excessive light. How choroidal melanocytes (CMs) participate in tissue homeostasis through paracrine signaling with neighboring cells is poorly understood. In this study, using two-dimensional and three-dimensional models, we aimed to identify proteins secreted by CMs under different oxidative stress conditions. To do so, CMs, choroidal fibroblasts (CFs), and retinal pigment epithelial (RPE) cells were isolated from native human RPE/choroidal tissues and expanded. RNA was isolated and processed for gene profiling analysis. The self-assembly approach of tissue engineering was used to form 3D stromal substitutes, and RPE cells and/or CMs were added to produce 3D models with different cell combinations. The medium conditioned by cells in 2D and 3D cultures was collected in a non-stressed condition and following acute or chronic oxidative stress exposures, then proteome and ELISA analyses were performed to identify cytokines secreted majorly by CMs. RNA analysis revealed 15 secretome-related transcripts that were more abundantly expressed in CMs compared to the other 2 cell types, including serpin family F member 1 (SERPINF1) (coding for pigment epithelium-derived factor; PEDF) and secreted phosphoprotein 1 (SPP1) (coding for osteopontin). At the protein level, the expression of osteopontin and PEDF was higher in CMs of different age groups compared to CFs and RPE cells. In the 3D models containing CMs, cytokine arrays also identified macrophage inflammatory protein (MIP)-1α/MIP-1β in non-stressed, MIP-1α/MIP-1β, interleukin (IL)-24, and angiogenin following an acute oxidative stress, and macrophage migration inhibitory factor (MIF), granulocyte-colony stimulating factor (G-CSF), intercellular adhesion molecule-1 (ICAM-1), and IL-1α following a chronic oxidative stress. This study identifies for the first time trophic factors secreted by CMs that could influence neighboring cells through paracrine signaling. Of those, PEDF and osteopontin are antioxidative proteins that are known to attenuate oxidative stress damage. Identifying factors that can help manage oxidative stress in the posterior segment of the eye may lead to promising treatments for retinal diseases.
Collapse
Affiliation(s)
- Samira Karami
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada
| | - Solange Landreville
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada; Centre de recherche sur le Cancer, Université Laval, Québec, Canada
| | - Stéphanie Proulx
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, Canada; Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Canada; Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
3
|
Su S, Yang Y, Chen J, Zhang S, Yang X, Sang A. TLR4/TRIF/Caspase-8/Caspase-1 Pathway in Choroidal Endothelial Cells Promotes Choroidal Neovascularization. Curr Eye Res 2024:1-10. [PMID: 39392113 DOI: 10.1080/02713683.2024.2409885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE The purpose of this study was to investigate the role and mechanism of caspase-8 in the development of choroidal neovascularization induced by age-related macular degeneration, with the aim of identifying a potential therapeutic target for neovascular age-related macular degeneration. METHODS Mouse models of laser photocoagulation-induced choroidal neovascularization and hypoxic human choroidal endothelial cells were utilized to examine the involvement of caspase-8 in choroidal neovascularization development. The toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8 pathway was explored in hypoxic human choroidal endothelial cells to elucidate its contribution to pathological angiogenesis. Various experimental techniques, including inhibition assays and immunoblotting analysis, were employed to assess the effects and mechanisms of caspase-8 activation. RESULTS Inhibition of caspase-8 demonstrated attenuated choroidal neovascularization development in mice subjected to laser photocoagulation. Activation of the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8 pathway was observed in hypoxic human choroidal endothelial cells. Upon activation by the toll-like receptor 4/TIR domain-containing adaptor molecule 1 axis, caspase-8 directly cleaved caspase-1, leading to the cleavage of interleukin-1β and interleukin-18 by caspase-1. Consequently, activation of interleukin-1β and interleukin-18 through the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8/caspase-1 pathway promoted the proliferative, migratory, and tube-forming abilities of hypoxic human choroidal endothelial cells. CONCLUSION The findings of this study indicate that caspase-8 plays a crucial role in promoting choroidal neovascularization by activating interleukin-1β and interleukin-18 through the toll-like receptor 4/TIR domain-containing adaptor molecule 1/caspase-8/caspase-1 pathway in choroidal endothelial cells. Therefore, targeting caspase-8 may hold promise as a therapeutic approach for neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Shu Su
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jia Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shenglai Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Aimin Sang
- Department of Ophthalmology, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Pal D, Das P, Mukherjee P, Roy S, Chaudhuri S, Kesh SS, Ghosh D, Nandi SK. Biomaterials-Based Strategies to Enhance Angiogenesis in Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:2725-2741. [PMID: 38630965 DOI: 10.1021/acsbiomaterials.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shyam Sundar Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
5
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Rickabaugh E, Weatherston D, Harris TI, Jones JA, Vargis E. Engineering a Biomimetic In Vitro Model of Bruch's Membrane Using Hagfish Slime Intermediate Filament Proteins. ACS Biomater Sci Eng 2023; 9:5051-5061. [PMID: 37458693 DOI: 10.1021/acsbiomaterials.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.
Collapse
Affiliation(s)
- Emilee Rickabaugh
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Dillon Weatherston
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Thomas I Harris
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Justin A Jones
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| |
Collapse
|
7
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
8
|
Youn J, Hong H, Shin W, Kim D, Kim HJ, Kim DS. Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developing in vitro barrier models. Biofabrication 2022; 14. [DOI: 10.1088/1758-5090/ac4dd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity to in vivo basement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes an ultra-thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved by in situ self-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (< 5 μm), high permeability (< 9 × 10−5 cm s-1), and nanofibrillar architecture (~10 to 100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types of in vitro barrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10 to 15%) and was demonstrated to manipulate the cell and tissue-level functions of the in vitro barrier model.
Collapse
|
9
|
Cipriano M, Schlünder K, Probst C, Linke K, Weiss M, Fischer MJ, Mesch L, Achberger K, Liebau S, Mesquida M, Nicolini V, Schneider A, Giusti AM, Kustermann S, Loskill P. Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. Commun Biol 2022; 5:52. [PMID: 35027657 PMCID: PMC8758775 DOI: 10.1038/s42003-021-02977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Disorders of the eye leading to visual impairment are a major issue that affects millions of people. On the other side ocular toxicities were described for e.g. molecularly targeted therapies in oncology and may hamper their development. Current ocular model systems feature a number of limitations affecting human-relevance and availability. To find new options for pharmacological treatment and assess mechanisms of toxicity, hence, novel complex model systems that are human-relevant and readily available are urgently required. Here, we report the development of a human immunocompetent Choroid-on-Chip (CoC), a human cell-based in vitro model of the choroid layer of the eye integrating melanocytes and microvascular endothelial cells, covered by a layer of retinal pigmented epithelial cells. Immunocompetence is achieved by perfusion of peripheral immune cells. We demonstrate controlled immune cell recruitment into the stromal compartments through a vascular monolayer and in vivo-like cytokine release profiles. To investigate applicability for both efficacy testing of immunosuppressive compounds as well as safety profiling of immunoactivating antibodies, we exposed the CoCs to cyclosporine and tested CD3 bispecific antibodies.
Collapse
Affiliation(s)
- Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Schlünder
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kirstin Linke
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mona Julia Fischer
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Mesch
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Mesquida
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Valeria Nicolini
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anneliese Schneider
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anna Maria Giusti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
10
|
Lv D, Chen D, Wang Z, Cui Z, Ma JH, Ji S, Chen J, Tang S. COL10A1 is a novel factor in the development of choroidal neovascularization. Microvasc Res 2022; 139:104239. [PMID: 34520774 DOI: 10.1016/j.mvr.2021.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
With the dramatic rise in the aging population, researching age-related macular degeneration (AMD), especially the severe form neovascular AMD (nAMD), has become more important than ever. In this study, we found that collagen type X was increased in retina-choroid tissue of mice with laser-induced choroidal neovascularization (CNV) based on immunohistofluorescence. RNA sequencing and bioinformatic analyses were performed to compare the retina-choroid tissue complex of the CNV mouse model to normal controls. Collagen type X alpha 1 chain (Col10a1) was among the most significantly upregulated genes, and the results were validated with an animal model at the mRNA and protein levels by quantitative real-time polymerase chain reaction (qPCR) and western blotting, respectively. COL10A1 was also upregulated in human retinal microvascular endothelial cells (HRMECs), human umbilical vein endothelial cells (HUVECs), RPE19 cells and RF/6A cells under hypoxic conditions. Next, in vitro and in vivo experiments were performed to study the effect of COL10A1 on neovascularization. siRNA knockdown of COL10A1 suppressed the proliferation and tube formation ability of HRMECs under hypoxic conditions. Snail family transcriptional repressor 1 (SNAIL1) and angiopoietin-2 (ANGPT2) were downregulated in COL10A1 knockdown HRMECs under hypoxic conditions and thus were potential downstream genes. Significant decreases in CNV leakage and CNV lesion area, as assessed by fundus fluorescein angiography (FFA) and immunofluorescence of choroidal flat mounts, respectively, were observed in a mouse model intravitreally injected with anti-collagen X monoclonal antibody (mAb) compared to the controls. In conclusion, COL10A1 promotes CNV formation and may represent a new candidate target for the treatment and diagnosis of nAMD and other neovascular diseases.
Collapse
Affiliation(s)
- Da Lv
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Jacey Hongjie Ma
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China
| | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China; Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China; Aier Eye Institute, Changsha, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Lee J, Jang EH, Kim JH, Park S, Kang Y, Park S, Lee K, Kim JH, Youn YN, Ryu W. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J Control Release 2021; 340:125-135. [PMID: 34688718 DOI: 10.1016/j.jconrel.2021.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Various perivascular drug delivery techniques have been demonstrated for localized post-treatment of intimal hyperplasia: a vascular inflammatory response caused by endothelial damages. Although most perivascular devices have focused on controlling the delivery duration of anti-proliferation drug, the confined and unidirectional delivery of the drug to the target tissue has become increasingly important. In addition, careful attention should also be paid to the luminal stability and the adequate exchange of vascular protein or cell between the blood vessel and extravascular tissue to avoid any side effect from the long-term application of any perivascular device. Here, a highly flexible and porous silk fibroin microneedle wrap (Silk MN wrap) is proposed to directly inject antiproliferative drug to the anastomosis sites while ensuring sufficient vascular exchanges. Drug-embedded silk MNs were transfer-molded on a highly flexible and porous silk wrap. The enhanced cell compatibility, molecular permeability, and flexibility of silk MN wrap guaranteed the structural integrity of blood vessels. Silk wrap successfully supported the silk MNs and induced multiple MN penetration to the target tissue. Over 28 days, silk MN wrap significantly inhibited intimal hyperplasia with a 62.1% reduction in neointimal formation.
Collapse
Affiliation(s)
- JiYong Lee
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - SeungHyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Yosup Kang
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Sanghyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - KangJu Lee
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90005, USA
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea.
| | - WonHyoung Ryu
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea.
| |
Collapse
|
12
|
Zhu S, Wang H, Zhang Z, Ma M, Zheng Z, Xu X, Sun T. IGFBP‑rP1‑silencing promotes hypoxia‑induced angiogenic potential of choroidal endothelial cells via the RAF/MEK/ERK signaling pathway. Mol Med Rep 2020; 22:4837-4847. [PMID: 33173998 PMCID: PMC7646924 DOI: 10.3892/mmr.2020.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has been reported to have various functions in different cellular contexts. Our previous investigation discovered that IGFBP-rP1 inhibited retinal angiogenesis in vitro and in vivo by inhibiting the pro-angiogenic effect of VEGF and downregulating VEGF expression. Recently, IGFBP-rP1 was confirmed to be downregulated in the aqueous humor of patients with neovascular age-related macular degeneration compared with controls; however, its specific role remains unknown. The present study applied the technique of gene silencing, reverse transcription-quantitative PCR, western blotting, cell viability assays, cell motility assays and tube formation assays. Chemical hypoxic conditions and choroidal endothelial (RF/6A) cells were used to explore the effect of IGFBP-rP1-silencing on the phenotype activation of RF/6A cells under hypoxic conditions and to elucidate the underlying mechanisms. siRNA achieved IGFBP-rP1-silencing in RF/6A cells without cytotoxicity. IGFBP-rP1-silencing significantly restored the viability of RF/6A cells in hypoxia and enhanced hypoxia-induced migration and capillary-like tube formation of RF/6A cells. Furthermore, IGFBP-rP1-silencing significantly upregulated the expression of B-RAF, phosphorylated (p)-MEK, p-ERK and VEGF in RF/6A cells under hypoxic conditions; however, these upregulations were inhibited by exogenous IGFBP-rP1. These data indicated that silencing IGFBP-rP1 expression in RF/6A cells effectively promoted the hypoxia-induced angiogenic potential of choroidal endothelial cells by upregulating RAF/MEK/ERK signaling pathway activation and VEGF expression.
Collapse
Affiliation(s)
- Shuting Zhu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhihua Zhang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Mingming Ma
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Xun Xu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Tao Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
13
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
14
|
News & Views. Altern Lab Anim 2020. [DOI: 10.1177/0261192920915125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Park BU, Park SM, Lee KP, Lee SJ, Nam YE, Park HS, Eom S, Lim JO, Kim DS, Kim HK. Collagen immobilization on ultra-thin nanofiber membrane to promote in vitro endothelial monolayer formation. J Tissue Eng 2019; 10:2041731419887833. [PMID: 31762986 PMCID: PMC6856979 DOI: 10.1177/2041731419887833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The endothelialization on the poly (ε-caprolactone) nanofiber has been limited due to its low hydrophilicity. The aim of this study was to immobilize collagen on an ultra-thin poly (ε-caprolactone) nanofiber membrane without altering the nanofiber structure and maintaining the endothelial cell homeostasis on it. We immobilized collagen on the poly (ε-caprolactone) nanofiber using hydrolysis by NaOH treatment and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide reaction as a cost-effective and stable approach. NaOH was first applied to render the poly (ε-caprolactone) nanofiber hydrophilic. Subsequently, collagen was immobilized on the surface of the poly (ε-caprolactone) nanofibers using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/sulfo-N-hydroxysulfosuccinimide. Scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence microscopy were used to verify stable collagen immobilization on the surface of the poly (ε-caprolactone) nanofibers and the maintenance of the original structure of poly (ε-caprolactone) nanofibers. Furthermore, human endothelial cells were cultured on the collagen-immobilized poly (ε-caprolactone) nanofiber membrane and expressed tight junction proteins with the increase in transendothelial electrical resistance, which demonstrated the maintenance of the endothelial cell homeostasis on the collagen-immobilized-poly (ε-caprolactone) nanofiber membrane. Thus, we expected that this process would be promising for maintaining cell homeostasis on the ultra-thin poly (ε-caprolactone) nanofiber scaffolds.
Collapse
Affiliation(s)
- Byeong-Ung Park
- Bio-Medical Institute, Kyungpook National University Hospital (KNUH), Daegu, South Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Kyoung-Pil Lee
- Bio-Medical Institute, Kyungpook National University Hospital (KNUH), Daegu, South Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Yu Eun Nam
- Bio-Medical Institute, Kyungpook National University Hospital (KNUH), Daegu, South Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Han Sang Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jeong Ok Lim
- Biomedical Research Institute, Joint Institute for Regenerative Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital (KNUH), Daegu, South Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
16
|
Kim D, Eom S, Park SM, Hong H, Kim DS. A collagen gel-coated, aligned nanofiber membrane for enhanced endothelial barrier function. Sci Rep 2019; 9:14915. [PMID: 31624315 PMCID: PMC6797789 DOI: 10.1038/s41598-019-51560-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Herein, a collagen gel-coated and aligned nanofiber membrane named Col-ANM is developed, which remarkably improves endothelial barrier function by providing biochemical and topographical cues simultaneously. Col-ANM is fabricated by collagen gel coating process on an aligned polycaprolactone (PCL) nanofiber membrane, which is obtained by a simple electrospinning process adopting a parallel electrode collector. Human umbilical vein endothelial cells (HUVECs) cultured on Col-ANM exhibit remarkably enhanced endothelial barrier function with high expression levels of intercellular junction proteins of ZO-1 and VE-cadherin, a high TEER, and a cellular permeability compared with the artificial porous membranes in commercial cell culture well inserts. The enhanced endothelial barrier function is conjectured to be attributed to the synergistic effects of topographical and biochemical cues provided by the aligned PCL nanofibers and collagen gel in the Col-ANM, respectively. Finally, the reactive oxygen species is applied to the HUVEC monolayer formed on the Col-ANM to destroy the tight junctions between HUVECs. The destruction of the tight junctions is demonstrated by the decreased TEER value over time. Results indicate the potential of Col-ANM in modeling endothelial barrier dysfunction-related diseases.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
- Department of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Busan, 46241, South Korea
| | - Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|