1
|
Akbarpour MR, Farajnezhad F, Poureshagh AH, Moniri Javadhesari S. Effects of Copper Doping on Fluorohydroxyapatite Coating: Analysis of Microstructure, Biocompatibility, Corrosion Resistance, and Cell Adhesion Characteristics. Inorg Chem 2024; 63:20314-20324. [PMID: 39418538 DOI: 10.1021/acs.inorgchem.4c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this research, Cu-doped fluorohydroxyapatite (Cu-FHAp) coatings containing varying levels of Cu in electrolyte as a dopant were synthesized by the ultrasonic-assisted pulse-reverse electrodeposition method on AZ31 alloy to improve the biocompatibility and corrosion resistance of the alloy for biomedical applications. Microstructural analysis revealed that the inclusion of the Cu dopant results in the formation of a more uniform coating. Energy dispersive spectroscopy analysis highlights a notable incorporation of copper within the fluorohydroxyapatite structure. The increase in Cu content significantly affected surface roughness and elevated hydrophobicity, leading to a contact angle of up to 136°. Electrochemical impedance spectroscopy analysis revealed that all samples containing copper exhibited favorable corrosion resistance, with the sample prepared using the electrolyte containing 0.036 g/L Cu(NO3)2 demonstrating the highest corrosion resistance. Cell adhesion evaluation yielded a satisfactory cell adhesion to the coated samples, indicating that the presence of the optimum value of Cu does not induce considerable cytotoxic effects.
Collapse
Affiliation(s)
- Mohammad Reza Akbarpour
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh 83111-55181, Iran
| | - Farshad Farajnezhad
- Materials and Energy Research Center (MERC), School of Nanotechnology and Advanced Materials, P.O. Box 31779-83634, Karaj 31779-83634, Iran
| | - Amir Hossein Poureshagh
- Department of Materials Engineering, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran 16846-13114, Iran
| | - Solmaz Moniri Javadhesari
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box 53751-71379, Tabriz 53751-71379, Iran
| |
Collapse
|
2
|
Quinaz T, Freire TF, Olmos A, Martins M, Ferreira FBN, de Moura MFSM, Zille A, Nguyễn Q, Xavier J, Dourado N. The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems. Biomimetics (Basel) 2024; 9:93. [PMID: 38392139 PMCID: PMC10886535 DOI: 10.3390/biomimetics9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.
Collapse
Affiliation(s)
- Tiago Quinaz
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Tânia F Freire
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Andrea Olmos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcos Martins
- INESC TEC, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando B N Ferreira
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcelo F S M de Moura
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, 4200-464 Porto, Portugal
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Quyền Nguyễn
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LASI, Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
- LABBELS-Laboratório Associado, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Li TT, Wang S, Li J, Zhang Y, Liu X, Liu L, Peng HK, Ren HT, Ling L, Lin JH, Lou CW. Braided scaffolds with polypyrrole/polydopamine/hydroxyapatite coatings with electrical conductivity and osteogenic properties for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2498-2515. [PMID: 37795599 DOI: 10.1080/09205063.2023.2265134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
When impaired bones are grafted with bone scaffolds, the behaviors of osteoblast are dependent on the implant materials and surface morphology. To this end, we modulated the surface morphology of scaffolds that promote cell growth. In this study, ice-template and spraying method methods are employed to coat different proportions of PDA and PPy over the PLA/PVA weaving scaffolds, after which HA is Coated over via the electrochemical deposition, forming weaving scaffolds with electrically conductive PDA/PPy/HA coating. The test results indicate that with a PPy/PDA concentration ratio is 30, the PPy particles are more uniformly distributed on the fiber surface. The scaffolds are wrapped in a HA coating layer with a high purity, and calcium and phosphorus elements are evenly dispersed with a Ca/P ratio being 1.69. Owing to the synergistic effect between PDA and PPy coating, the scaffolds demonstrate excellent electrochemical stability and electrochemical activity. The biological activity of the scaffold increased to 274.66% under electrical stimulation. The new thinking proposed by this study extends the worth of applying textile structure to the medical field, the application of which highly increases the prospect of bone tissue engineering.
Collapse
Affiliation(s)
- Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Shiqi Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Jiaxin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Ying Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Liyan Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
| | - Hao-Kai Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
| | - Lei Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, China
| | - Jia-Horng Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin, China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City, Taiwan
- Department of Medical Research, China Medical University Hospital China Medica University, Taichung City, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
4
|
Wang S, Zhang Y, Peng HK, Ren HT, Lin JH, Liu X, Lou CW, Li TT. Synthesis of scale-like nano-hydroxyapatite and preparation of biodegradable woven scaffolds for bone tissue engineering. Biomed Mater 2023; 18:065024. [PMID: 37908154 DOI: 10.1088/1748-605x/ad0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Bone tissue engineering scaffolds should have bone compatibility, biological activity, porosity, and degradability. In this study, flake-like hydroxyapatite was synthesized by hydrothermal method and mixed with sodium alginate to make a gel, which was injected into a hollow braid. Porous and degradable SA/n-Hap woven scaffolds were prepared by freeze-drying technology. The morphology of hydroxyapatite was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction. The scaffolds were characterized by an improved liquid replacement method, compression test, and degradation test. The results showed that the hydroxyapatite synthesized at 160 °C had a scaly morphology. The prepared scaffold had a pore size of 5-100 μm, a porosity of 60%-70%, and a swelling rate of more than 300%. After 21 d the degradation rate reached 5.54%, and a cell survival rate of 214.98%. In summary, it is feasible to prepare porous bone scaffolds for potential bone tissue engineering. This study shows the feasibility of applying textile structures to the field of tissue scaffolds and provides a new idea for the application structure of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shiqi Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ying Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Hao-Kai Peng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Jia-Horng Lin
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research China Medical University Hospital China Medica University, Taichung City 404333, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, People's Republic of China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Xing Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ching-Wen Lou
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research China Medical University Hospital China Medica University, Taichung City 404333, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, People's Republic of China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ting-Ting Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
5
|
Safavi MS, Khalil-Allafi J, Restivo E, Ghalandarzadeh A, Hosseini M, Dacarro G, Malavasi L, Milella A, Listorti A, Visai L. Enhanced in vitro immersion behavior and antibacterial activity of NiTi orthopedic biomaterial by HAp-Nb 2O 5 composite deposits. Sci Rep 2023; 13:16045. [PMID: 37749260 PMCID: PMC10520115 DOI: 10.1038/s41598-023-43393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
NiTi is a class of metallic biomaterials, benefit from superelastic behavior, high biocompatibility, and favorable mechanical properties close to that of bone. However, the Ni ion leaching, poor bioactivity, and antibacterial activity limit its clinical applications. In this study, HAp-Nb2O5 composite layers were PC electrodeposited from aqueous electrolytes containing different concentrations of the Nb2O5 particles, i.e., 0-1 g/L, to evaluate the influence of the applied surface engineering strategy on in vitro immersion behavior, Ni2+ ion leaching level, and antibacterial activity of the bare NiTi. Surface characteristics of the electrodeposited layers were analyzed using SEM, TEM, XPS, and AFM. The immersion behavior of the samples was comprehensively investigated through SBF and long-term PBS soaking. Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) infective reference bacteria were employed to address the antibacterial activity of the samples. The results illustrated that the included particles led to more compact and smoother layers. Unlike bare NiTi, composite layers stimulated apatite formation upon immersion in both SBF and PBS media. The concentration of the released Ni2+ ion from the composite layer, containing 0.50 g/L Nb2O5 was ≈ 60% less than that of bare NiTi within 30 days of immersion in the corrosive PBS solution. The Nb2O5-reinforced layers exhibited high anti-adhesive activity against both types of pathogenic bacteria. The hybrid metallic-ceramic system comprising HAp-Nb2O5-coated NiTi offers the prospect of a potential solution for clinical challenges facing the orthopedic application of NiTi.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy.
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
| | - Elisa Restivo
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Milad Hosseini
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Giacomo Dacarro
- Department of Chemistry, Physical Chemistry section, and CHT, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonella Milella
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Andrea Listorti
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Safavi MS, Khalil-Allafi J, Visai L. Improved osteogenic activity of NiTi orthopedic implant by HAp-Nb 2O 5 composite coatings: Materials and biological points of view. BIOMATERIALS ADVANCES 2023; 150:213435. [PMID: 37098321 DOI: 10.1016/j.bioadv.2023.213435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
The surface properties of NiTi, as an interface between the synthetic implant and living tissue, play a vital role in guaranteeing implantation success, especially during the initial stage. This contribution endeavors to enhance the surface features of NiTi orthopedic implants through the application of HAp-based coatings, placing emphasis on assessing the influence of Nb2O5 particles concentration in the electrolyte on resultant properties of HAp-Nb2O5 composite electrodeposits. The coatings were electrodeposited via pulse current mode under galvanostatic current control from an electrolyte containing 0-1 g/L of Nb2O5 particles. Surface morphology, topography, and phase composition were evaluated using FESEM, AFM, and XRD, respectively. EDS was employed to study surface chemistry. In vitro biomineralization and osteogenic activity of the samples were studied by immersing the samples in SBF and incubating them with osteoblastic SAOS-2 cells, respectively. The added Nb2O5 particles, at the optimum concentration, stimulated biomineralization, suppressed the Ni ion leaching, and improved SAOS-2 cell adhesion and proliferation. NiTi implant coated by HAp-0.50 g/L Nb2O5 layer showed tremendous osteogenic properties. Overall, the HAp-Nb2O5 composite layers bring forth fascinating coating in vitro biological performance, reducing Ni leaching, and promoting osteogenic activity, which are fundamental for the successful use of NiTi in vivo.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran; Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335-1996, Iran.
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy.
| |
Collapse
|
7
|
Wang L, Xu C, Meng K, Xia Y, Zhang Y, Lian J, Wang X, Zhao B. Biomimetic Hydroxyapatite Composite Coatings with a Variable Morphology Mediated by Silk Fibroin and Its Derived Peptides Enhance the Bioactivity on Titanium. ACS Biomater Sci Eng 2023; 9:165-181. [PMID: 36472618 DOI: 10.1021/acsbiomaterials.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various modifications performed on titanium alloy surfaces are shown to improve osteointegration and promote the long-term success of implants. In this work, a bioactive nanostructured hydroxyapatite (HA) composite coating with a variable morphology mediated by silk fibroin (SF) and its derived peptides (Cs) was prepared. Numerous experimental techniques were used to characterize the constructed coatings in terms of morphology, roughness, hydrophilicity, protein adsorption, in vitro biomineralization, and adhesion strength. The mixed protein layer with different contents of SF and Cs exhibited different secondary structures at different temperatures, effectively mediating the electrodeposited HA layer with different characteristics and finally forming proteins/HA composite coatings with versatile morphologies. The addition of Cs significantly improved the hydrophilicity and protein adsorption capacity of the composite coatings, while the electrodeposition of the HA layer effectively enhanced the adhesion between the composite coatings and Ti surface. In the in vitro mineralization experiments, all the composite coatings exhibited excellent apatite formation ability. Moreover, the composite coatings showed excellent cell growth and proliferation activity. Osteogenic induction experiments revealed that the coating could significantly increase the expression of specific osteogenic markers, including ALP, Col-I, Runx-2, and OCN. Overall, the proposed modification of the Ti implant surface by protein/HA coatings had good potential for clinical applications in enhancing bone induction and osteogenic activity of implants.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Changzhen Xu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Kejing Meng
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yijing Xia
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Yufang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Jing Lian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Xing Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, China
| |
Collapse
|
8
|
Singh N, Batra U, Kumar K, Ahuja N, Mahapatro A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact Mater 2023; 19:717-757. [PMID: 35633903 PMCID: PMC9117289 DOI: 10.1016/j.bioactmat.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Mg and its alloys evince strong candidature for biodegradable bone implants, cardiovascular stents, and wound closing devices. However, their rapid degradation rate causes premature implant failure, constraining clinical applications. Bio-functional surface coatings have emerged as the most competent strategy to fulfill the diverse clinical requirements, besides yielding effective corrosion resistance. This article reviews the progress of biodegradable and advanced surface coatings on Mg alloys investigated in recent years, aiming to build up a comprehensive knowledge framework of coating techniques, processing parameters, performance measures in terms of corrosion resistance, adhesion strength, and biocompatibility. Recently developed conversion and deposition type surface coatings are thoroughly discussed by reporting their essential therapeutic responses like osteogenesis, angiogenesis, cytocompatibility, hemocompatibility, anti-bacterial, and controlled drug release towards in-vitro and in-vivo study models. The challenges associated with metallic, ceramic and polymeric coatings along with merits and demerits of various coatings have been illustrated. The use of multilayered hybrid coating comprising a unique combination of organic and inorganic components has been emphasized with future perspectives to obtain diverse bio-functionalities in a facile single coating system for orthopedic implant applications.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Uma Batra
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Kamal Kumar
- Department of Mechanical Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Neeraj Ahuja
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Anil Mahapatro
- Department of Biomedical Engineering, Wichita State University, Wichita, KS, 67260, United States
| |
Collapse
|
9
|
Asaduzzaman Chowdhury M, Helal Hossain MD, Hossain N, Hossen Z, Arefin Kowser M, Masud Rana M. Advances in coatings on Mg alloys and their anti-microbial activity for implant applications. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Wu Y, Li Q, Xu B, Fu H, Li Y. Nano-hydroxyapatite coated TiO 2 nanotubes on Ti-19Zr-10Nb-1Fe alloy promotes osteogenesis in vitro. Colloids Surf B Biointerfaces 2021; 207:112019. [PMID: 34388611 DOI: 10.1016/j.colsurfb.2021.112019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Titanium and titanium alloys have broad applications in orthopedic implants due to their excellent mechanical properties and biocompatibility. The biological activity of the metallic implants can be improved by implementing a nano-hydroxyapatite (nano-HA) coating, while it is still challenging to synthesize uniform and stable nano-HA on the metallic materials. The characterization results confirmed that the nanotube array with a diameter of 87 ± 21 nm and a length of 8.1 ± 1.3 μm is achieved by using double anodic oxidation, and then microsphere-like nano-HA crystals are formed on the TiO2 nanotube arrays. Through X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR) analysis, it is determined that the chemical composition of the coating is hydroxyapatite. in vitro cell experiments, compared to the TZNF metal surface, the TZNF-NTs/HA is beneficial to the proliferation and adhesion of osteoblasts, and the activity of ALP was 6.93 ± 0.47 DEA unit and the content of OCN was 7.04 ± 0.51 ng/L. In terms of the expression of osteogenic gene information as osterix, osteopontin, and osteonectin, the mRNA levels of TZNF-NTs/HA were 2.6-fold, 1.6-fold, and 4.3-fold higher than that of TZNF samples, respectively, at 14 days. The results suggested that the introduction of nano-HA improves osteoblast differentiation and local factor production, as well as indicates the potential for improved implant osseointegration.
Collapse
Affiliation(s)
- Yan Wu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
| | - Qiquan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
| | - Boyang Xu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Haiyang Fu
- Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
11
|
Cerium doped ZIF nanoparticles and hydroxyapatite co‐deposited coating on titanium dioxide nanotubes array exhibiting biocompatibility and antibacterial property. NANO SELECT 2021. [DOI: 10.1002/nano.202000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Zhang Z, Zhang Y, Zhang S, Yao K, Sun Y, Liu Y, Wang X, Huang W. Synthesis of rare earth doped MOF base coating on TiO2nanotubes arrays by electrochemical method using as antibacterial implant material. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Effect of Current Density on the Wear Resistance of Ni–P Alloy Coating Prepared through Immersion-Assisted Jet-Electrodeposition. COATINGS 2021. [DOI: 10.3390/coatings11050527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve the wear resistance of 45 steel surfaces, a Ni−P alloy coating was prepared on the surface of 45 steel with an immersion-assisted jet-electrodeposition technology. Scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and confocal microscopy were used in testing the surface morphology, composition, structure, grain size, and wear scar parameters of the coating. The effect of immersion-assisted jet-electrodeposition on the wear resistance of Ni−P alloy coating at current densities of 20–60 A·cm−2 were explored and analyzed. Results showed that the surface quality, microhardness, and wear resistance of Ni−P alloy coatings prepared through immersion-assisted jet-electrodeposition were improved compared with those of the coatings prepared through traditional jet-electrodeposition. With the increase in the current density, the surface cell structure of the alloy coating was refined, the flatness was improved, the surface Ni content was increased, the grain size was refined, and the coating thickness, the microhardness, and wear resistance showed a trend of first increasing and then decreasing. The best surface quality of the coating was observed at a current density of 50 A·cm−2. Moreover, the unit cell structure was obvious, the surface was flat and dense, the coating thickness was the largest, reaching 21.42 μm, the highest Ni content was obtained (98.25 wt.%), the smallest grain size (6.6 nm) was obtained, the microhardness of the coating reached a maximum value (725.58 HV0.1), and the best wear resistance was observed.
Collapse
|
14
|
Zhang Z, Ni X, Yao K, Zhang S, Liu Y, Sun Y, Wang X, Huang W, Zhang Y. An electrochemical synthesis of a rare-earth(La 3+)-doped ZIF-8 hydroxyapatite composite coating for a Ti/TiO 2 implant material. NEW J CHEM 2021. [DOI: 10.1039/d0nj05274d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enhance the antibacterial and anti-corrosion property on the premise of minimizing the biocompatibility loss of titanium implants.
Collapse
Affiliation(s)
- Ziqi Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiang Ni
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Kaida Yao
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Siqi Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yang Liu
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yueqiu Sun
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiangzhi Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Weimin Huang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
- Key Laboratory of Physics and Technology for Advanced Batteries of Ministry of Education
| | - Yan Zhang
- Hospital of Stomatology
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
15
|
Mąkiewicz M, Wach RA, Nawrotek K. Investigation of Parameters Influencing Tubular-Shaped Chitosan-Hydroxyapatite Layer Electrodeposition. Molecules 2020; 26:E104. [PMID: 33379393 PMCID: PMC7796046 DOI: 10.3390/molecules26010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tubular-shaped layer electrodeposition from chitosan-hydroxyapatite colloidal solutions has found application in the field of regeneration or replacement of cylindrical tissues and organs, especially peripheral nerve tissue regeneration. Nevertheless, the quantitative and qualitative characterisation of this phenomenon has not been described. In this work, the colloidal systems are subjected to the action of an electric current initiated at different voltages. Parameters of the electrodeposition process (i.e., total charge exchanged, gas volume, and deposit thickness) are monitored over time. Deposit structures are investigated by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The value of voltage influences structural characteristics but not thickness of deposit for the process lasting at least 20 min. The calculated number of exchanged electrons for studied conditions suggests that the mechanism of deposit formation is governed not only by water electrolysis but also interactions between formed hydroxide ions and calcium ions coordinated by chitosan chains.
Collapse
Affiliation(s)
- Mariusz Mąkiewicz
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| | - Radosław A. Wach
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15 Street, 93-590 Lodz, Poland;
| | - Katarzyna Nawrotek
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213 Street, 90-924 Lodz, Poland;
| |
Collapse
|
16
|
Liu J, Fang X, Zhu C, Xing X, Cui G, Li Z. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125498] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Lu M, Chen H, Yuan B, Zhou Y, Min L, Xiao Z, Yang X, Zhu X, Tu C, Zhang X. The morphological effect of nanostructured hydroxyapatite coatings on the osteoinduction and osteogenic capacity of porous titanium. NANOSCALE 2020; 12:24085-24099. [PMID: 33241829 DOI: 10.1039/d0nr06306a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Weak osteogenic activity affects the long-term fixation and lifespan of titanium (Ti) implants. Surface modification along with a built-in porous structure is a highly considerable approach to improve the osteoinduction and osseointegration capacity of Ti. Herein, the osteoinduction and osteogenic activities of electrochemically deposited (ED) nanoplate-like, nanorod-like and nanoneedle-like hydroxyapatite (HA) coatings (named EDHA-P, EDHA-R, and EDHA-N, respectively) were evaluated in vitro and in vivo by comparison with those of acid/alkali (AA) treatment. The results revealed that the apatite forming ability of all nanostructured EDHA coatings was excellent, and only 12 h of soaking in SBF was needed to induce a complete layer of apatite. More serum proteins adsorbed on EDHA-P than others. In cellular experiments, different from those on EDHA-R and EDHA-N, the cells on EDHA-P presented a polygonal shape with lamellipodia extension, and thus exhibited a relatively larger spreading area. Furthermore, EDHA-P was more favorable for the enhancement of the proliferation and ALP activity of BMSCs, and the up-regulation of OPN gene expression. Based on the good biological performance in vitro, EDHA-P was selected to further evaluate its osteoinduction and osteogenic activities in vivo by comparison with AA treatment. Interestingly, a greater ability of ectopic osteoinduction was observed in the EDHA-P group compared to that in the AA group. At the osseous site, EDHA-P promoted more bone on/ingrowth, and had a higher area percentage of newly formed bone in the bone-implant interface and inner pores of the implants than in the AA group. Thus, a nanoplate-like HA coating has good potential in improving the osteoinductivity and osteogenic activity of porous Ti implants in clinical applications.
Collapse
Affiliation(s)
- Minxun Lu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Costa JM, Almeida Neto AFD. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: A review. ULTRASONICS SONOCHEMISTRY 2020; 68:105193. [PMID: 32505102 DOI: 10.1016/j.ultsonch.2020.105193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/10/2023]
Abstract
The development of electrodeposited materials with improved technological properties has been attracting the attention of researchers and companies from different industrial sectors. Many studies have demonstrated that the electrodeposition and synthesis of alloys and composite materials assisted by ultrasound may promote the de-agglomeration of particles in the electrolytic solution due to microturbulence, microjets, shock waves, and breaking of Van der Waals forces. The sonoelectrochemical technique, in which the ultrasound probe acts as a working electrode, also has been used for the formation of nanostructures in greater quantity, in addition to accelerating the electrolysis process and eliminating the reaction products on the electrode surface. Regarding the morphological aspects, the acoustic cavitation promotes the formation of smooth and uniform surfaces with incorporated particles homogeneously distributed. These changes have a direct impact on the composition and physical properties of the material, such as corrosion resistance, magnetization, wear, and microhardness. Despite the widespread use of acoustic cavitation in the synthesis of nanostructured materials, the discussion of how process variables such as acoustic power, frequency, and type of ultrasound device, as well as their effects still are scarce. In this sense, this review discusses the influence of ultrasound technology on obtaining electrodeposited coatings. The trends and challenges in this research field were reviewed from 2014 to 2019. Moreover, the effects of process variables in electrodeposition and how these ones change the technological properties of these materials were evaluated.
Collapse
Affiliation(s)
- Josiel Martins Costa
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Products and Processes Design, School of Chemical Engineering, University of Campinas, Avenida Albert Einstein, 500, Campinas 13083-852, SP, Brazil
| |
Collapse
|
19
|
Electrodeposited Biocoatings, Their Properties and Fabrication Technologies: A Review. COATINGS 2020. [DOI: 10.3390/coatings10080782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coatings deposited under an electric field are applied for the surface modification of biomaterials. This review is aimed to characterize the state-of-art in this area with an emphasis on the advantages and disadvantages of used methods, process determinants, and properties of coatings. Over 170 articles, published mainly during the last ten years, were chosen, and reviewed as the most representative. The most recent developments of metallic, ceramic, polymer, and composite electrodeposited coatings are described focusing on their microstructure and properties. The direct cathodic electrodeposition, pulse cathodic deposition, electrophoretic deposition, plasma electrochemical oxidation in electrolytes rich in phosphates and calcium ions, electro-spark, and electro-discharge methods are characterized. The effects of electrolyte composition, potential and current, pH, and temperature are discussed. The review demonstrates that the most popular are direct and pulse cathodic electrodeposition and electrophoretic deposition. The research is mainly aimed to introduce new coatings rather than to investigate the effects of process parameters on the properties of deposits. So far tests aim to enhance bioactivity, mechanical strength and adhesion, antibacterial efficiency, and to a lesser extent the corrosion resistance.
Collapse
|
20
|
Magnesium Doped Hydroxyapatite-Based Coatings Obtained by Pulsed Galvanostatic Electrochemical Deposition with Adjustable Electrochemical Behavior. COATINGS 2020. [DOI: 10.3390/coatings10080727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to adapt the electrochemical behavior in synthetic body fluid (SBF) of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition through addition of Mg in different concentrations. The coatings were obtained by electrochemical deposition in a typical three electrodes electrochemical cell in galvanic pulsed mode. The electrolyte was obtained by subsequently dissolving Ca(NO3)2·4H2O, NH4H2PO4, and Mg(NO3)2·6H2O in ultra-pure water and the pH value was set to 5. The morphology consists of elongated and thin ribbon-like crystals for hydroxyapatite (HAp), which after the addition of Mg became a little wider. The elemental and phase composition evidenced that HAp was successfully doped with Mg through pulsed galvanostatic electrochemical deposition. The characteristics and properties of hydroxyapatite obtained electrochemically can be controlled by adding Mg in different concentrations, thus being able to obtain materials with different properties and characteristics. In addition, the addition of Mg can lead to the control of hydroxyapatite bioactive ceramics in terms of dissolution rate.
Collapse
|
21
|
Sun F, Li T, Zhang X, Shiu B, Zhang Y, Lou C, Lin J. Preparation and
oil–water
separation evaluations of polypropylene/low‐melt‐point polyester composites reinforced by thermal bonding and one‐step solution immersion. POLYM INT 2020. [DOI: 10.1002/pi.6010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fei Sun
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
| | - Ting‐Ting Li
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite MaterialsTiangong University Tianjin China
| | - Xiayun Zhang
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
| | | | - Yue Zhang
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
| | - Ching‐Wen Lou
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
- Ocean CollegeMinjiang University Fuzhou China
- Department of Bioinformatics and Medical EngineeringAsia University Taichung Taiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical University Taichung Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and ClothingQingdao University Shandong China
| | - Jia‐Horng Lin
- Innovation Platform of Intelligent and Energy‐Saving Textiles, School of Textile Science and EngineeringTiangong University Tianjin China
- Ocean CollegeMinjiang University Fuzhou China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and ClothingQingdao University Shandong China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite MaterialsFeng Chia University Taichung Taiwan
- Department of Fashion DesignAsia University Taichung Taiwan
| |
Collapse
|
22
|
Manufacture and characteristics of HA-Electrodeposited polylactic acid/polyvinyl alcohol biodegradable braided scaffolds. J Mech Behav Biomed Mater 2020; 103:103555. [PMID: 32090949 DOI: 10.1016/j.jmbbm.2019.103555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
This study proposes the braided bone scaffolds. First, biologically degradable polylactic acid (PLA) filaments and polyvinyl alcohol (PVA) filaments are plied into composite yarns using a doubling and twisting machine. The composite yarns are tested to determine the optimal mechanical properties and a stabilized morphology. The PLA/PVA composite yarns are then braided into bone scaffolds, during which the optimal braiding process parameters and yarn ratio are determined. Based on the surface observation and tensile strength, a gear ratio of 45:45 provides the tubular braids with an optimal morphology and porosity that meet the biological requirements. When the PLA/PVA ratio is 3:1, the braids exhibit the maximum tensile properties and the most stable space structure. Furthermore, to make the braids a bioactive material with surface active sites, the braids are coated with hydroxyapatite (HA) by electrodeposition. The resulting HA-electrodeposited bone scaffolds are tested by in vitro biological experiments using a scanning electronic microscope (SEM), energy dispersive x-ray analysis(EDAX), X-ray Diffraction(XRD), and Fourier transform infrared spectroscopy(FT-IR), thereby examining their characteristics and microstructure. Results suggest that HA is electrodeposited over the bone scaffolds successfully. The immersion in simulated body fluid (SBF) is proven to contribute a good in vitro bioactivity to bone scaffolds. As a result, bone scaffolds are a good candidate for the application in the cancellous bone repairing field.
Collapse
|