1
|
Villa-Tapia JI, Vergara-Hernández HJ, Olmos L, Arteaga D, Téllez-Martínez JS, Solorio-García VM, Mihalcea E. Investigation of Pore Size Effect on the Infiltration Process of Ti6Al4V/xAg Metal Matrix Composites. MATERIALS (BASEL, SWITZERLAND) 2025; 18:939. [PMID: 40077164 PMCID: PMC11901321 DOI: 10.3390/ma18050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
This work investigates the fabrication of Ti6Al4V composites manufactured by powder metallurgy through pressureless infiltration. Porous Ti6Al4V alloy compacts with different particle sizes were fabricated by sintering and then, liquid Ag was infiltrated to obtain composites. Computed microtomography was used to analyze the samples before and after infiltration. Numerical flow simulations and dilatometry tests evaluated the kinetics of Ag infiltration into porous Ti6Al4V compacts. Microstructure was observed by SEM and mechanical strength was evaluated by compression tests. Results showed that the pore properties play a crucial role in the infiltration timing and the distribution of the Ag's liquid. In particular, large pores allowed the infiltration to start a few °C degrees earlier than samples with smaller pores. Three-dimensional images after infiltration showed that most of the pores were filled and the remaining ones were isolated. The resulting microstructure was composed of Ti2Ag, α-Ti and Ag phases, indicating that the Ag diffusion occurred. Furthermore, the mechanical strength depends on the interparticle neck sizes and the Ag improves the plastic deformation reached during compression tests. The best results were obtained for the samples with larger pore sizes because the resulting mechanical properties (E = 23 GPa and σy = 403 MPa) are close to that of human bones, making it the best candidate as an antibacterial material for biomedical use.
Collapse
Affiliation(s)
- Juan Israel Villa-Tapia
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico; (J.I.V.-T.); (H.J.V.-H.); (J.S.T.-M.); (V.M.S.-G.)
| | - Héctor Javier Vergara-Hernández
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico; (J.I.V.-T.); (H.J.V.-H.); (J.S.T.-M.); (V.M.S.-G.)
| | - Luis Olmos
- Instituto de Investigaciones en Ciencias de la Tierra (INICIT), Universidad Michoacana de San Nicolás de Hidalgo, Fco. J.Mujica S/N, Morelia C.P. 58060, Mexico;
| | - Dante Arteaga
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla No. 3001, Querétaro C.P. 76230, Mexico;
| | - Jorge Sergio Téllez-Martínez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico; (J.I.V.-T.); (H.J.V.-H.); (J.S.T.-M.); (V.M.S.-G.)
| | - Víctor Manuel Solorio-García
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico; (J.I.V.-T.); (H.J.V.-H.); (J.S.T.-M.); (V.M.S.-G.)
| | - Elena Mihalcea
- Unidad Académica de Ingeniería I, Universidad Autónoma de Zacatecas, Av. López Valverde 801, Zacatecas C.P. 98060, Mexico
| |
Collapse
|
2
|
Wang Z, Cheng H, Chen R, Wang MX, Jiang N, Lu Z, Yang H. Omnipotent antibacterial cotton fabrics with superhydrophobic and photothermal properties. Int J Biol Macromol 2025; 290:138901. [PMID: 39706440 DOI: 10.1016/j.ijbiomac.2024.138901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Due to the outbreak of global public health emergency, antibacterial fabrics such as face masks are in great demand. However, common antibacterial fabrics cannot kill bacteria in minutes and they are easy to be contaminated and lost biological activity. In this work, omnipotent antibacterial cotton fabrics with superhydrophobic and photothermal properties are developed by the combination of dopamine with copper sulfide (CuS) and silver nanoparticles on cotton fabrics, and post-modification with PDMS. The prepared PDA/CuS/Ag/PDMS composite fabrics were characterized by FE-SEM, XRD, EDS, ATR-FTIR and water contact angle. The photothermal antimicrobial properties of the fabrics were evaluated with Staphylococcus aureus (S. aureus) and Escherichia coli (E. coil) under near-infrared light (NIR) illumination or not. The results showed that the obtained superhydrophobic PDA/CuS/Ag/PDMS composite fabrics had excellent water repellence and self-cleaning effect. Regardless of NIR irradiation or not, PDA/CuS/Ag/PDMS composite fabrics possessed high antibacterial activity against S. aureus and E. coil, which proves their omnipotent antibacterial property.
Collapse
Affiliation(s)
- Zitong Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Huajing Cheng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| | - Ming-Xi Wang
- School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Nan Jiang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhong Lu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
3
|
Du C, Wang C, Sui J, Zheng L. Antibacterial performance of nanosecond laser irradiated zirconium-based bulk metallic glass. Proc Inst Mech Eng H 2024; 238:973-984. [PMID: 39380296 DOI: 10.1177/09544119241285659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bulk metallic glasses (BMGs) have garnered significant attention in recent decades due to the outstanding physical, chemical, and biomedical characteristics. The biomedical application of metallic glass also received extensive attention. This report investigates the interplay among antibacterial performance, crystallization and processing parameters of Zr-based bulk metallic glass (Zr-BMG) following nanosecond laser irradiation. We examined surface morphology, crystallization behavior, surface quality, binding energy, and ion release properties post-laser irradiation. Additionally, we evaluated the generation of reactive oxygen species upon immersion of Zr-BMG in phosphate-buffered saline using the 2',7'-dichlorofluorescin diacetate method. Staphylococcus aureus was chosen to assess Zr-BMG's antibacterial performance, while mouse osteoblasts were utilized to investigate in vitro cytotoxicity. Our findings revealed that at laser energy intensities below 0.08 J/mm2, the amorphous structure of Zr-BMG remained intact after irradiation. Moreover, laser irradiation significantly enhanced the antibacterial performance of Zr-BMG. The release rate of ion, concentration of reactive oxygen species, and antibacterial properties exhibited direct proportionality to laser energy intensity. However, surfaces exhibiting high antibacterial efficacy also displayed elevated cytotoxicity. The surface irradiated with a 7 μJ ablation pulse and 200 mm/s irradiation speed demonstrated a superior balance between antibacterial and cytotoxic properties while maintaining an amorphous state. We hope this research can provide theoretical reference and data support for the application of metallic glass in biomedical application.
Collapse
Affiliation(s)
- Cezhi Du
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| | - Jianbo Sui
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| | - Lijuan Zheng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Hao Y, Shi C, Zhang Y, Zou R, Dong S, Yang C, Niu L. The research status and future direction of polyetheretherketone in dental implant -A comprehensive review. Dent Mater J 2024; 43:609-620. [PMID: 39085142 DOI: 10.4012/dmj.2024-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Changquan Shi
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | | | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
5
|
Gkioka M, Rausch-Fan X. Antimicrobial Effects of Metal Coatings or Physical, Chemical Modifications of Titanium Dental Implant Surfaces for Prevention of Peri-Implantitis: A Systematic Review of In Vivo Studies. Antibiotics (Basel) 2024; 13:908. [PMID: 39335082 PMCID: PMC11428254 DOI: 10.3390/antibiotics13090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Peri-implantitis poses a significant challenge for implant dentistry due to its association with bacterial colonization on implant surfaces and the complexity of its management. This systematic review aims to assess evidence from in vivo studies regarding the antimicrobial efficacy of titanium (Ti) dental implant surfaces following physical/chemical modifications or the application of various metal element coatings in preventing bacterial growth associated with peri-implantitis. Materials and Methods: A literature review was conducted across four scientific databases (PubMed, Embase, Scopus, Web of Science), encompassing in vivo studies published between 2013 and 2024, and 18 reports were included in the systematic review. Results: The findings suggest that titanium dental implant surfaces, following physical/chemical modifications and metal element coatings, exhibit antimicrobial effects against bacteria associated with peri-implantitis in humans and various animal models. Conclusions: The reviewed studies indicated a reduction in bacterial colonization, diminished biofilm formation, and decreased signs of inflammation in the peri-implant tissues, which provides evidence that physical/chemical alterations on titanium dental implant surfaces or metal element coatings, like silver (Ag), zinc (Zn), magnesium (Mg), and copper (Cu), demonstrate antimicrobial properties in in vivo studies. However, caution is warranted when translating findings to clinical practice due to methodological disparities and high bias risks. Further larger-scale clinical trials are imperative to assess their long-term efficacy and validate their clinical applicability.
Collapse
Affiliation(s)
- Maria Gkioka
- Department of Dentistry, Division of Oral and Maxillofacial Surgery, Vaud University Hospital Center, 1005 Lausanne, Switzerland
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
6
|
Fang Y, Zheng Y, Chi C, Jiang S, Qin W, Zhang Y, Liu H, Chen Q. PAA-PU Janus Hydrogels Stabilized by Janus Particles and its Interfacial Performance During Hemostatic Processing. Adv Healthc Mater 2024; 13:e2303802. [PMID: 38341630 DOI: 10.1002/adhm.202303802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Hydrogel is a very promising dressing for hemostasis and wound healing due to its good adhesion and long-term moist environment. However, secondary injury caused by tissue adhesion due to homogeneous hydrogel cannot be ignored. The obvious interface existing in Janus hydrogel will weaken its asymmetric function. Here, a hierarchical adhesive polyacrylic acid-polyurushiol water-oil Janus hydrogel (JPs@PAA-PU) without adhesive layer is fabricated by one-pot method in the stabilization of polystyrene@silica-siliver Janus particles (JPs). The morphological structure, mechanical properties, anisotropic chemical composition, and adhesion performance, in vivo, and in vitro hemostatic properties of Janus hydrogel are investigated. Result shows that the obtained Janus hydrogel possesses obvious compartmentalization in microstructure, functional groups, and chemical elements. Janus hydrogel is provided with asymmetric interfacial toughness with top 52.45 ± 2.29 Kpa and bottom 7.04 ± 0.88 Kpa on porcine liver. The adhesion properties of PAA side to tissue, red blood cells and platelets, promoting effect of PU side on coagulation cascade reaction and its physical battier endow Janus hydrogel with shorter hemostatic time and less blood loss than control group. It also exhibits excellent antibacterial effects against Escherichia coli and Staphylococcus aureus (>90%). Janus hydrogel possesses biosafety, providing safety guarantee for clinical applications in the future.
Collapse
Affiliation(s)
- Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yanyan Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Sai Jiang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wanbang Qin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yicheng Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| |
Collapse
|
7
|
Xie Y, Cui S, Hu J, Yu H, Xuan A, Wei Y, Lian Y, Wu J, Du W, Zhang E. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference. Biometals 2024; 37:337-355. [PMID: 37904075 DOI: 10.1007/s10534-023-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.
Collapse
Affiliation(s)
- Yanchun Xie
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Shenshen Cui
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Jiali Hu
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Hailong Yu
- Northern Theater General Hospital, Shenyang, 110016, China.
| | - Anwu Xuan
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Yongcun Wei
- Graduate School of Dalian Medical University, Dalian, 116051, China
| | - Yi Lian
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Jinhua Wu
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Weinan Du
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
8
|
Georgakopoulos-Soares I, Papazoglou EL, Karmiris-Obratański P, Karkalos NE, Markopoulos AP. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf B Biointerfaces 2023; 231:113584. [PMID: 37837687 DOI: 10.1016/j.colsurfb.2023.113584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
The spread of bacteria through contaminated surfaces is a major issue in healthcare, food industry, and other economic sectors. The widespread use of antibiotics is not a sustainable solution in the long term due to the development of antibiotic resistance. Therefore, surfaces with antibacterial properties have the potential to be a disruptive approach to combat microbial contamination. Different methods and approaches have been studied to impart or enhance antibacterial properties on surfaces. The surface roughness and texture are inherent parameters that significantly impact the antibacterial properties of a surface. They are also directly related to the previously employed machining and treatment methods. This review article discusses the correlation between surface roughness and antibacterial properties is presented and discussed. It begins with an introduction to the concepts of surface roughness and texture, followed by a description of the most commonly utilized machining methods and surface. A thorough analysis of bacterial adhesion and growth is then presented. Finally, the most recent studies in this research area are comprehensively reviewed. The studies are sorted and classified based on the utilized machining and treatment methods, which are divided into mechanical processes, surface treatments and coatings. Through the systematic review and record of the recent advances, the authors aim to assist and promote further research in this very promising and extremely important direction, by providing a systematic review of recent advances.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Emmanouil L Papazoglou
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Panagiotis Karmiris-Obratański
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Cracow, Poland.
| | - Nikolaos E Karkalos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| | - Angelos P Markopoulos
- School of Mechanical Engineering, Section of Manufacturing Technology, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens, Greece
| |
Collapse
|
9
|
Ma M, Zhao M, Ji R, Guo Y, Li D, Zeng S. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants. ACS OMEGA 2023; 8:39269-39278. [PMID: 37901550 PMCID: PMC10601048 DOI: 10.1021/acsomega.3c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The prevention of aseptic loosening and peri-implantitis is crucial for the success of dental implant surgery. In this study, different doses of Ag-implanted TiN/Ag nanomultilayers were prepared on the sandblasting with large grit and acid etching (SLA)-Ti surface using a multiarc ion-plating system and an ion-implantation system, respectively. The physical and chemical properties of the samples were assessed using various techniques, including scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, inductively coupled plasma atomic emission spectrometry, and water contact angle measurements. In addition, the applicability and biosafety of the SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were determined via biocompatibility testing in vivo and in vitro. The results demonstrated that the physical and chemical properties of SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were different to some extent. However, compared with SLA-Ti, silver-loaded TiN/Ag-modified SLA-Ti surfaces (SLA/1 × 1018-Ag) with enhanced bacteriostatis, osteogenesis, and biocompatibility have great potential for dental applications.
Collapse
Affiliation(s)
- Ming Ma
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Mengli Zhao
- School
of Electronic Engineering, Chaohu University, Anhui 238024, China
| | - Ruotong Ji
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Yi Guo
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Dejun Li
- College
of Physics and Materials Science, Tianjin
Normal University, Tianjin 300387, China
| | - Sujuan Zeng
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| |
Collapse
|
10
|
Liang Y, Song Y, Wang L, Wei C, Zhou X, Feng Y. Research progress on antibacterial activity of medical titanium alloy implant materials. Odontology 2023; 111:813-829. [PMID: 37402971 DOI: 10.1007/s10266-023-00832-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Titanium and its alloys are the preferred materials for medical implants. However, easy infection is a fatal shortcoming of Ti implants. Fortunately, the ongoing development of antibacterial implant materials is a promising solution, and Ti alloys with antibacterial properties hold immense potential for medical applications. In this review, we briefly outline the mechanisms of bacterial colonization and biofilm formation on implants; discuss and classify the major antimicrobials currently in use and development, including inorganic and organic antimicrobials; and describe the important role of antimicrobials in the development of implant materials for clinical applications. Strategies and challenges related to improving the antimicrobial properties of implant materials as well as the prospects of antibacterial Ti alloys in the medical field are also discussed.
Collapse
Affiliation(s)
- Yi Liang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Yuying Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Chao Wei
- School of Intelligent Manufacturing, Shandong University of Engineering and Vocational Technology, Jinan, 250200, China
| | - Xuan Zhou
- School of Intelligent Manufacturing, Shandong University of Engineering and Vocational Technology, Jinan, 250200, China
| | - Yihua Feng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China.
| |
Collapse
|
11
|
Yang J, Liu C, Sun H, Liu Y, Liu Z, Zhang D, Zhao G, Wang Q, Yang D. The progress in titanium alloys used as biomedical implants: From the view of reactive oxygen species. Front Bioeng Biotechnol 2022; 10:1092916. [PMID: 36601391 PMCID: PMC9806234 DOI: 10.3389/fbioe.2022.1092916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Titanium and Titanium alloys are widely used as biomedical implants in oral and maxillofacial surgery, due to superior mechanical properties and biocompatibility. In specific clinical populations such as the elderly, diabetics and patients with metabolic diseases, the failure rate of medical metal implants is increased significantly, putting them at increased risk of revision surgery. Many studies show that the content of reactive oxygen species (ROS) in the microenvironment of bone tissue surrounding implant materials is increased in patients undergoing revision surgery. In addition, the size and shape of materials, the morphology, wettability, mechanical properties, and other properties play significant roles in the production of ROS. The accumulated ROS break the original balance of oxidation and anti-oxidation, resulting in host oxidative stress. It may accelerate implant degradation mainly by activating inflammatory cells. Peri-implantitis usually leads to a loss of bone mass around the implant, which tends to affect the long-term stability and longevity of implant. Therefore, a great deal of research is urgently needed to focus on developing antibacterial technologies. The addition of active elements to biomedical titanium and titanium alloys greatly reduce the risk of postoperative infection in patients. Besides, innovative technologies are developing new biomaterials surfaces conferring anti-infective properties that rely on the production of ROS. It can be considered that ROS may act as a messenger substance for the communication between the host and the implanted material, which run through the entire wound repair process and play a role that cannot be ignored. It is necessary to understand the interaction between oxidative stress and materials, the effects of oxidative stress products on osseointegration and implant life as well as ROS-induced bactericidal activity. This helps to facilitate the development of a new generation of well-biocompatible implant materials with ROS responsiveness, and ultimately prolong the lifespan of implants.
Collapse
Affiliation(s)
- Jun Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Liu
- School of Stomatology, Jiamusi University, Jiamusi, China,Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ying Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Zhaogang Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| | - Gang Zhao
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Donghong Yang
- School of Stomatology, Jiamusi University, Jiamusi, China,*Correspondence: Donghong Yang, ; Dan Zhang,
| |
Collapse
|
12
|
Togawa G, Takahashi M, Tada H, Takada Y. Development of Ternary Ti-Ag-Cu Alloys with Excellent Mechanical Properties and Antibiofilm Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9011. [PMID: 36556817 PMCID: PMC9781584 DOI: 10.3390/ma15249011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Titanium-20 mass% Silver (Ti-20%Ag) alloy can suppress biofilm formation on the surface. Unlike bactericidal agents, it does not kill bacteria; therefore, the healthy oral microflora remains undisturbed. To utilize the unique functions of this alloy and enable its use in the fabrication of dental prostheses that require relatively high strength, we added copper (Cu) as an alloying element to improve strength. This study aimed to develop ternary Ti-Ag-Cu alloys with excellent mechanical properties and antibiofilm activity. As a result of investigating the mechanical properties of several experimental alloys, the tensile strength, yield strength, and hardness of Ti-20%Ag-1%Cu and Ti-20%Ag-2%Cu alloys were improved by the solid-solution strengthening or hardening of the αTi phase. In addition, these alloys had the same ability to suppress biofilm formation as the Ti-20Ag alloy. Thus, Ti-20%Ag-1-2%Cu alloys can be used for fabrication of narrow-diameter dental implants and prostheses subjected to extremely high force, and these prostheses are useful in preventing post-treatment oral diseases.
Collapse
Affiliation(s)
- Genichi Togawa
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masatoshi Takahashi
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukyo Takada
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
13
|
Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022; 17:100447. [PMID: 36278144 PMCID: PMC9579810 DOI: 10.1016/j.mtbio.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti-Cu implants with antibacterial activity. The review first discusses the fundamentals of interactions between bacteria and implanted surfaces followed by an overview of the most common engineering strategies utilized to endow an implant with antibacterial activity. The underlying mechanisms for antibacterial activity of Ti-Cu implants are then discussed in detail. Special attention is paid to contact killing mechanisms because the misinterpretation of this mechanism is the root of discrepancies in the literature.
Collapse
Affiliation(s)
- Pezhman Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-9466, Iran
| | - Mohammad Reza Akbarpour
- Department of Materials Engineering, University of Maragheh, Maragheh, P.O. Box 55136-553, Iran
| | | | - Fengjuan Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mohammad Reza Hadidi
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Research Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
14
|
Feasibility study on Ti-15Mo-7Cu with low elastic modulus and high antibacterial property. Biometals 2022; 35:1225-1241. [PMID: 35996064 DOI: 10.1007/s10534-022-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Titanium and titanium alloy with low density, high specific strength, good biological, excellent mechanical compatibility and easy to process have been widely used in the medical materials, but their application in orthopedics and dentistry often face bacterial infection, corrosion failure and stress shielding. In this paper, Ti-15Mo-7Cu (TM-7Cu) alloy was prepared by high vacuum non-consumable electric arc melting furnace and then treated by solution and aging treatment. The microstructure, mechanical properties, antibacterial properties and cytocompatibility were studied by X-ray diffraction, microhardness tester, electrochemical working station, antibacterial test and Live/Dead staining technology. The results have shown that the heat treatment significantly influenced the phase transformation, the precipitation of Ti2Cu phase, the elastic modulus and the antibacterial ability. With the extension of the aging time, the elastic modulus slightly increased and the antibacterial rate obviously increased. TM-7Cu alloy with a low elastic modulus of 83GPa and a high antibacterial rate of > 93% was obtained. TM-7Cu alloy showed no cytotoxicity to MC3T3. It was suggested that TM-7Cu might be a highly competitive medical material.
Collapse
|
15
|
Wu T, Yang Y, Su H, Gu Y, Ma Q, Zhang Y. Recent developments in antibacterial or antibiofilm compound coating for biliary stents. Colloids Surf B Biointerfaces 2022; 219:112837. [PMID: 36137334 DOI: 10.1016/j.colsurfb.2022.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cholestasis of the indwelling biliary stents usually leads to stone recurrence after endoscopic retrograde cholangio pancreatoraphy (ERCP). Biliary stents, including metallic and none-degradable plastic stents are widely used in clinical settings due to their many excellent properties. However, conventional biliary stents still suffer from poor antibacterial activity and anti-bile-adhesion, which lead to injured, local fibroblasts proliferating. Currently, various coatings for biliary stents have been prepared to meet the clinical demands. In this review, we start by summarizing and discussing classifications of biliary stents and antibacterial/antibiofilm mechanism. Then, the latest advances about developing antibacterial and antibiofilm coatings for improving the properties of biliary stents are reviewed and discussed in detail. Lastly, we list several possible directions for future development of biliary stents coatings and biliary stent, such as anti-bile-adhesion coating, multifunctional coating, drug-eluting biodegradable biliary stents and 3D printed biliary stents.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Yang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - He Su
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yuanhui Gu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Quanming Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China; The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, PR China.
| |
Collapse
|
16
|
Olmos L, Gonzaléz-Pedraza AS, Vergara-Hernández HJ, Chávez J, Jimenez O, Mihalcea E, Arteaga D, Ruiz-Mondragón JJ. Ti64/20Ag Porous Composites Fabricated by Powder Metallurgy for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175956. [PMID: 36079338 PMCID: PMC9457260 DOI: 10.3390/ma15175956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
We present a novel Ti64/20Ag highly porous composite fabricated by powder metallurgy for biomedical applications and provide an insight into its microstructure and mechanical proprieties. In this work, the Ti64/20Ag highly porous composites were successfully fabricated by the space holder technique and consolidated by liquid phase sintering, at lower temperatures than the ones used for Ti64 materials. The sintering densification was evaluated by dilatometry tests and the microstructural characterization and porosity features were determined by scanning electron microscopy and computed microtomography. Permeability was estimated by numerical simulations on the 3D real microstructure. Mechanical properties were evaluated by simple compression tests. Densification was achieved by interparticle pore filling with liquid Ag that does not drain to the large pores, with additional densification due to the macroscopical deformation of large pores. Pore characteristics are closely linked to the pore formers and the permeability was highly increased by increasing the pore volume fraction, mainly because the connectivity was improved. As expected, with the increase in porosity, the mechanical properties decreased. These results permitted us to gain a greater understanding of the microstructure and to confirm that we developed a promising Ti64/20Ag composite, showing E of 7.4 GPa, σy of 123 MPa and permeability of 3.93 × 10-11 m2. Enhanced adaptability and antibacterial proprieties due to Ag were obtained for bone implant applications.
Collapse
Affiliation(s)
- Luis Olmos
- INICIT, Universidad Michoacana de San Nicolás de Hidalgo, Fco. J. Mujica S/N, Morelia C.P. 58060, Mexico
| | - Ana S. Gonzaléz-Pedraza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
| | - Héctor J. Vergara-Hernández
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
- Correspondence:
| | - Jorge Chávez
- Departamento de Ingeniería Mecánica Eléctrica, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Guadalajara C.P. 44430, México
| | - Omar Jimenez
- Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, José Guadalupe Zuno # 48, Los Belenes, Zapopan C.P. 45100, Mexico
| | - Elena Mihalcea
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia C.P. 58120, Mexico
| | - Dante Arteaga
- Centro de Geociencias, Universidad Nacional Autónoma de México, Blvd. Juriquilla No. 3001, Querétaro C.P. 76230, Mexico
| | - José J. Ruiz-Mondragón
- Corporación Mexicana de Investigación en Materiales SA de CV, Calle Ciencia y Tecnología 790, Fracc. Saltillo 400, Saltillo C.P. 25290, Mexico
| |
Collapse
|
17
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
18
|
Construction of a Rough Surface with Submicron Ti2Cu Particle on Ti-Cu Alloy and Its Effect on the Antibacterial Properties and Cell Biocompatibility. METALS 2022. [DOI: 10.3390/met12061008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium-copper (Ti-Cu) alloy is an advanced antibacterial material with excellent mechanical properties, thermodynamic stability, corrosion resistance and biocompatibility. Sandblasting and acid-etching was applied to the Ti-3Cu alloy to construct a rough surface with Ti2Cu phase on the surface in order to improve the antibacterial properties and the osseointegration. The phase constitutes and the physical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM), and the surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS) and electrochemical testing. The antibacterial property was assessed by the plate-count method and the cell compatibility was evaluated by the CCK-8 test in order to reveal the effect of surface characteristics on the antibacterial ability and bioactivity. The results demonstrated a rough and lamellar surface structure with many submicron Ti2Cu particles on the surface of Ti-3Cu, which could enhance the antibacterial ability and promote the cell proliferation and the initial adhesion of osteoblasts. However, the surface treatment also reduced the corrosion resistance and accelerated the Cu ion release.
Collapse
|
19
|
Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. MATERIALS 2022; 15:ma15103622. [PMID: 35629649 PMCID: PMC9145924 DOI: 10.3390/ma15103622] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement. This study reviews the properties of commonly used materials and the advantages and disadvantages of each, with special emphasis on the sensitivity, toxicity, irritancy, and possible mutagenic and teratogenic capabilities. In addition, the production and final finishing processes of implants are discussed. Finally, potential directions for future implant development are discussed, with an emphasis on developing advanced personalised implants, according to a patient’s stature and physical requirements.
Collapse
Affiliation(s)
- Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
- Correspondence:
| | - Denis J. Politis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 20537, Cyprus;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| | - Adam Łazarski
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Tomasz Szolc
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| |
Collapse
|
20
|
Lukose CC, Anestopoulos I, Mantso T, Bowen L, Panayiotidis MI, Birkett M. Thermal activation of Ti(1-x)Au(x) thin films with enhanced hardness and biocompatibility. Bioact Mater 2022; 15:426-445. [PMID: 35386358 PMCID: PMC8958427 DOI: 10.1016/j.bioactmat.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
The lifetime of orthopaedic implants can be extended by coating the softer Ti6Al4V alloy with harder biocompatible thin films. In this work, thin films of Ti(1-x)Au(x) are grown on Ti6Al4V and glass substrates by magnetron sputtering in the entire x = 0–1 range, before their key biomechanical properties are performance tuned by thermal activation. For the first time, we explore the effect of in-situ substrate heating versus ex-situ post-deposition heat-treatment, on development of mechanical and biocompatibility performance in Ti–Au films. A ∼250% increase in hardness is achieved for Ti–Au films compared to bulk Ti6Al4V and a ∼40% improvement from 8.8 GPa as-grown to 11.9 and 12.3 GPa with in-situ and ex-situ heat-treatment respectively, is corelated to changes in structural, morphological and chemical properties, providing insights into the origins of super-hardness in the Ti rich regions of these materials. X-ray diffraction reveals that as-grown films are in nanocrystalline states of Ti–Au intermetallic phases and thermal activation leads to emergence of mechanically hard Ti–Au intermetallics, with films prepared by in-situ substrate heating having enhanced crystalline quality. Surface morphology images show clear changes in grain size, shape and surface roughness following thermal activation, while elemental analysis reveals that in-situ substrate heating is better for development of oxide free Ti3Au β-phases. All tested Ti–Au films are non-cytotoxic against L929 mouse fibroblast cells, while extremely low leached ion concentrations confirm their biocompatibility. With peak hardness performance tuned to >12 GPa and excellent biocompatibility, Ti–Au films have potential as a future coating technology for load bearing medical implants. Combined study on biocompatibility and mechanical performance of Ti–Au films. Reports on effect of varying of thermal activation on quality of Ti–Au film structure. Clear development of super-hard β-Ti3Au phase with in-situ thermal activation. Peak hardness value > 12 GPa attained for Ti rich films with ex-situ thermal activation. All Ti–Au films highly biocompatible with safe cytotoxic profile against L929 cells.
Collapse
Affiliation(s)
- Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Leon Bowen
- Department of Physics, G.J. Russell Microscopy Facility, Durham University, Durham, UK
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, UK
- Corresponding author.
| |
Collapse
|
21
|
Zhang Y, Li Y, Lv Y, Zhang X, Dong Z, Yang L, Zhang E. Ag distribution and corrosion behaviour of the plasma electrolytic oxidized antibacterial Mg-Ag alloy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
High Flux and Antifouling Nanofiltration Membrane Modified by Ag@UiO-66-NH2 and Its Application for Biphenol A Removal. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/4197365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to the specific porous structure which could provide additional passage channel for some molecules, metal organic frameworks are attractive candidates for enhancing permeability and selectivity of membranes in pervaporation, reverse osmosis, and gas separation. In this experiment, Ag@UiO-66-NH2 was introduced into polyamide separation layer by interfacial polymerization of triethylenetetramine and 1,3,5-benzenetricarboxylic acid chloride for nanofiltration. The results indicated that Ag@UiO-66-NH2 nanoparticles did endow the membranes with rapid diffusion pathways for water molecules. When the content of Ag@UiO-66-NH2 was 0.03 g, the prepared membrane (NF-Ag-3) showed high flux about 47.3 L·m-2·h-1 at 0.6 MPa, which is about 2-fold higher than that of polyamide membrane without Ag@UiO-66-NH2, while the MgSO4 rejection rate remained about 87.4%. The membrane also showed excellent antifouling properties, and the water flux recovery ratio was 95.6% after filtration BSA solution. When it was applied for 50 mg/L bisphenol A removal, the rejection rate reached 94.6%, and the flux is about 49.1 L·m-2·h-1. Moreover, Ag particles on UiO-66-NH2 rendered the membrane with good inhibition for Escherichia coli. The antibacterial rate of the membranes is above 95% when the loading of Ag@UiO-66-NH2 is more than 0.03 g.
Collapse
|
23
|
Fu S, Zhao X, Yang L, Qin G, Zhang E. A novel Ti-Au alloy with strong antibacterial properties and excellent biocompatibility for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112653. [PMID: 35034820 DOI: 10.1016/j.msec.2022.112653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
In order to avoid the toxic and side effects on human body of long-term dissolution of metal ions from antibacterial titanium alloys, Au element with non-toxicity and non-side effect was selected as the alloying element to prepare a new Ti-Au alloy with strong antibacterial property. We produced Ti-Au(S) sintered alloy by powder metallurgy and Ti-Au ingot alloy by ingot metallurgy, and investigated the influence of the secondary phase on the relative antimicrobial properties and antibacterial mechanism in this work. The results indicated that the aged Ti-Au(T6) alloy and Ti-Au(S) sintered alloy exhibited strong antibacterial rate against S. aureus due to the formation of Ti3Au phases. In vitro cell culture (MC3T3 cells) experiments showed that Ti-Au alloys had good cytocompatibility and osteogenic properties. The following viewpoints of antibacterial mechanism are that the Ti3Au destroyed the ROS homeostasis of bacteria, causing oxidative stress in bacterial cells and preventing from the biofilms formation.
Collapse
Affiliation(s)
- Shan Fu
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaotong Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Lei Yang
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
24
|
Esteban J, Vallet-Regí M, Aguilera-Correa JJ. Antibiotics- and Heavy Metals-Based Titanium Alloy Surface Modifications for Local Prosthetic Joint Infections. Antibiotics (Basel) 2021; 10:1270. [PMID: 34680850 PMCID: PMC8532710 DOI: 10.3390/antibiotics10101270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.
Collapse
Affiliation(s)
- Jaime Esteban
- Clinical Microbiology Department, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, Av. Reyes Católicos 2, 28040 Madrid, Spain
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - John J Aguilera-Correa
- Networking Research Centre on Infectious Diseases (CIBER-ID), 28029 Madrid, Spain
- Department of Chemistry in Pharmaceutical Sciences, Research Institute Hospital 12 de Octubre (i+12), School of Pharmacy, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
25
|
Antibacterial effect of TiAg alloy motivated by Ag-containing phases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112266. [PMID: 34474825 DOI: 10.1016/j.msec.2021.112266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
The precipitates in Ti-Ag alloy made an important contribution to antibacterial activity. In order to study this specific effects, Ti-Ag samples with different forms of precipitates were produced by powder metallurgy and ingot metallurgy followed by heat treatment: Ti-Ag(T4) with no precipitate, Ti-Ag(as-cast) and Ti-Ag(T6) with Ti2Ag and Ti-Ag(PM) with Ti2Ag and Ag-rich phase. Microstructure was analyzed by scanning electronic microscope (SEM), and the antibacterial effects, expression of reactive oxygen species (ROS), protein leakage and biocompatibility were investigated by plate count method, staining technology and cell test. The antibacterial ability was in the following order from low to high: Ti-Ag(T4) < Ti-Ag(as-cast) < Ti-Ag(T6) < Ti-Ag(PM). It was elucidated that Ag-containing phase was the major controlling factor of Ti-Ag antibacterial property and Ti-Ag(PM) with micro-size Ti2Ag and Ag-rich phase exhibited high antibacterial activity. It was proposed that the existence of Ag-containing phases induced high expression of ROS in bacteria, which destroyed the homeostasis of the bacteria and eventually leads to the rupture of the bacterial membrane. Cell test indicated that Ti-Ag samples had no adverse effect on cells and had good biocompatibility.
Collapse
|
26
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
27
|
Jiao J, Zhang S, Qu X, Yue B. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Front Cell Infect Microbiol 2021; 11:693939. [PMID: 34277473 PMCID: PMC8283567 DOI: 10.3389/fcimb.2021.693939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Implants are widely used in orthopedic surgery and are gaining attention of late. However, their use is restricted by implant-associated infections (IAI), which represent one of the most serious and dangerous complications of implant surgeries. Various strategies have been developed to prevent and treat IAI, among which the closest to clinical translation is designing metal materials with antibacterial functions by alloying methods based on existing materials, including titanium, cobalt, tantalum, and biodegradable metals. This review first discusses the complex interaction between bacteria, host cells, and materials in IAI and the mechanisms underlying the antibacterial effects of biomedical metals and alloys. Then, their applications for the prevention and treatment of IAI are highlighted. Finally, new insights into their clinical translation are provided. This review also provides suggestions for further development of antibacterial metals and alloys.
Collapse
Affiliation(s)
- Juyang Jiao
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Shi A, Cai D, Hu J, Zhao X, Qin G, Han Y, Zhang E. Development of a low elastic modulus and antibacterial Ti-13Nb-13Zr-5Cu titanium alloy by microstructure controlling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112116. [PMID: 34082933 DOI: 10.1016/j.msec.2021.112116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
In order to prepare a titanium with a low elastic modulus and good antibacterial property to meet the requirements as a biomedical material, Ti-13Nb-13Zr-5Cu (TNZ-5Cu) alloy was prepared by high vacuum consume electric arc melting furnace and then subjected to a solution treatment at 950 °C followed by a short-term aging treatment at 600 °C, for 15 min, 30 min, 1 h and 2 h, respectively. The microstructure, mechanical property, antibacterial property and biocompatibility of TNZ-5Cu were investigated in detail. The research results have shown that the solid solution treated alloy was mainly composed of β-phase and α″-phase, while the aged alloys of β-phase, α″-phase, α-phase and Ti2Cu. Compared with Ti-13Nb-13Zr alloy (65 GPa) and Ti-6Al-4 V alloy (111 GPa), the elastic modulus of TNZ-5Cu alloy after solution treatment was about 72 GPa and increased with the aging treatment up to 85 GPa, and the hardness was maintained at a higher level than that of Ti-13Nb-13Zr alloys (288 HV). The bacteria plate count results showed that the antibacterial ability of TNZ-5Cu alloy increased with the extension of the aging duration from <60% at 15-30 min to >90% at 1-2 h. Cell experiments showed that all TNZ-5Cu alloy had good cell compatibility. The low modulus and the antibacterial property could provide potential to avoid stress shield and device-related inflection in the clinical application.
Collapse
Affiliation(s)
- Anqi Shi
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Diangeng Cai
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
29
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
30
|
Effects of Ag-Rich Nano-Precipitates on the Antibacterial Properties of 2205 Duplex Stainless Steel. METALS 2020. [DOI: 10.3390/met11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The effects of the addition of silver on the microstructural variation and antibacterial performance of 2205 duplex stainless steel after solution and aging treatment were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and antibacterial testing. The microstructure showed that 2205Ag is composed of a ferrite (α) + austenite (γ) duplex phase and Ag-rich nano-precipitates (Ag-NPs). The morphology of the Ag-NPs varied from spherical to polygonal after aging treatment at 450 °C for 4 h. These precipitates were identified as face-centered-cubic structures with a lattice parameter of a = 0.354 nm and a mismatch of δ = 0.84% relative to the austenite matrix. Notably, 2205Ag with polygonal Ag-NPs exhibited excellent antibacterial properties that were superior to those of 2205Ag with spherical Ag-NPs.
Collapse
|
31
|
Nagase T. Alloy Design, Thermodynamics, and Electron Microscopy of Ternary Ti-Ag-Nb Alloy with Liquid Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5268. [PMID: 33233371 PMCID: PMC7700205 DOI: 10.3390/ma13225268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/23/2023]
Abstract
The Ti-Ag alloy system is an important constituent of dental casting materials and metallic biomaterials with antibacterial functions. The binary Ti-Ag alloy system is characterized by flat liquidus lines with metastable liquid miscibility gaps in the phase diagram. The ternary Ti-Ag-based alloys with liquid phase separation (LPS) were designed based on the mixing enthalpy parameters, thermodynamic calculations using FactSage and Scientific Group Thermodata Europe (SGTE) database, and the predicted ground state diagrams constructed by the Materials Project. The LPS behavior in the ternary Ti-Ag-Nb alloy was investigated using the solidification microstructure analysis in arc-melted ingots and rapidly solidified melt-spun ribbons via trans-scale observations, combined with optical microscopy (OM), scanning electron microscopy (SEM) including electron probe micro analysis (EPMA), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). The solidification microstructures depended on the solidification processing in ternary Ti-Ag-Nb alloys; macroscopic phase-separated structures were observed in the arc-melted ingots, whereas fine Ag globules embedded in the Ti-based matrix were observed in the melt-spun ribbons.
Collapse
Affiliation(s)
- Takeshi Nagase
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University,7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Xu D, Wang T, Wang S, Jiang Y, Wang Y, Chen Y, Bi Z, Geng S. Antibacterial Effect of the Controlled Nanoscale Precipitates Obtained by Different Heat Treatment Schemes with a Ti-Based Nanomaterial, Ti-7.5Mo-5Cu Alloy. ACS APPLIED BIO MATERIALS 2020; 3:6145-6154. [PMID: 35021747 DOI: 10.1021/acsabm.0c00716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that copper is an excellent option for a Ti-based alloy component as a β-stabilizer that provides improved biocompatibility and antibacterial ability. The development of a Ti-based nanomaterial containing Cu is a promising strategy for addressing implant-associated infections (OII). However, the antibacterial mechanism of copper-related alloys is still unknown. There are two popular hypotheses: copper ion release sterilization and alloy contact sterilization. The main mechanism of contact sterilization may be Cu-related phase (Ti2Cu) precipitation. Because excess copper can lead to cytotoxicity and reduce the β-Ti phase content, molybdenum needs to be added to the alloy given its well-known and widely researched β-stabilizer characteristics, which can provide satisfactory mechanical properties, wear resistance, and biocompatibility. Our study created a Ti-based nanomaterial, Ti-7.5Mo-5Cu, and performed two kinds of heat treatment schemes at different solution temperatures: 750 and 900 °C. The above schemes resulted in homogeneous and heterogeneous nucleation on the precipitation behavior of the Ti2Cu crystal phase, which controlled its amount, distribution, and size. Finally, our results showed that Ti-7.5Mo-5Cu, especially at 900 °C, possessed excellent antibacterial ability, corrosion resistance, cytocompatibility, and induced osteogenic differentiation, indicating its potential for use as a biomedical antibacterial alloy in the future.
Collapse
Affiliation(s)
- Duo Xu
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianyu Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shudan Wang
- Department of Ophthalmology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yao Jiang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yajing Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuxi Chen
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhenggang Bi
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shuo Geng
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
33
|
Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110921. [PMID: 32600677 DOI: 10.1016/j.msec.2020.110921] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
Abstract
In order to improve antibacterial properties and cell biocompatibility of Ti-Cu alloy, an ultrasonic micro-arc oxidation (UMAO) has been applied to Ti-Cu alloy. The corrosion resistance, antibacterial activity and cell compatibility of Ti-Cu alloy before and after UMAO were studied in detail by means of electrochemical test, plate count method and CCK-8 test scanning electron microscopy (SEM) technology to evaluate the application possibilities of UMAO as a surface bio-modification method for Ti-Cu alloy. The surface microstructure characterisation showed that a typical porous coating with a pore diameter of 3-8 μm and a thickness of 5-15 μm was formed on the surface of the Ti-Cu alloy, which significantly improved the surface roughness and hydrophilicity. The plate count method demonstrated that UMAO coatings on Ti-Cu alloy showed strong antibacterial activity (≥99%) against Staphylococcus aureus (S. aureus) even after being immersed in a physiological saline for up to 20 days, indicating that UMAO-treated Ti-Cu alloy had very strong long-term antibacterial properties. It is believed that the strong long-term antimicrobial properties of Ti-Cu-UMAO samples were mainly due to the formation of Cu2O and CuO in UMAO coatings. The results of cell compatibility evaluation showed that UMAO treatment did not bring about cytotoxicity but improved the early adhesion of MC3T3 cell.
Collapse
|