1
|
Chen Z, Cheng C, Liu L, Lin B, Xiong Y, Zhu W, Zheng K, He B. Tyrosine Mutation in the Characteristic Motif of the Amorphous Region of Spidroin for Self-Assembly Capability Enhancement. ACS OMEGA 2024; 9:22441-22449. [PMID: 38799334 PMCID: PMC11112579 DOI: 10.1021/acsomega.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Spidroin, with robust mechanical performance and good biocompatibility, could fulfill broad applications in material science and biomedical fields. Development of miniature spidroin has made abundant fiber production economically feasible, but the mechanical properties of artificial silk still fall short of natural silk. The mechanism behind mechanical properties of spidroin usually focuses on β-microcrystalline regions; the effect of amorphous regions was barely studied. In this study, residue tyrosines (Y) were designed to replace asparagine (N)/glutamic acid (Q) in the characteristic motifs (GGX)n in amorphous regions for performance enhancement of spidroin; the mutants presented lower free energy and significantly exhibited stronger van der Waals and electrostatic interactions, which might result from π-π stacking interactions between the phenyl rings in the side chain of tyrosine. Additionally, the soluble expressions of wild-type spidroin and mutant spidroin were achieved when heterologously expressed in E. coli, with yields of 560 mg/L (2REP), 590 mg/L (2REPM), 240 mg/L (4REP), and 280 mg/L (4REPM). Significantly, secondary structure analysis confirmed that the mutant spidroin more avidly forms more β-sheets than the wild-type spidroin, and aggregation morphology suggested that mutant spidroin displayed better self-assembly capacity and was easier to form artificial spider silk fibers; in particular, self-assembled 4REPM nanofibrils had an average modulus of 11.2 ± 0.35 GPa, about 2 times higher than self-assembled B. mori silk nanofibrils and almost the same as that of native spider dragline silk fibers (10-15 GPa). Thus, we first demonstrated a new influence mechanism of the amorphous region's characteristic motif on the self-assembly and material properties of spidroin. Our study provides a reference for the design of high-performance material proteins and their heterologous preparation.
Collapse
Affiliation(s)
- Ziyang Chen
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Cheng Cheng
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Li Liu
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Baoyang Lin
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yongji Xiong
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Weiyu Zhu
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Ke Zheng
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bingfang He
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
2
|
de Souza JR, Cardoso LM, de Toledo PTA, Rahimnejad M, Kito LT, Thim GP, Campos TMB, Borges ALS, Bottino MC. Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2024; 112:e35406. [PMID: 38676957 PMCID: PMC11288622 DOI: 10.1002/jbm.b.35406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
The field of tissue engineering has witnessed significant advancements in recent years, driven by the pursuit of innovative solutions to address the challenges of bone regeneration. In this study, we developed an electrospun composite scaffold for bone tissue engineering. The composite scaffold is made of a blend of poly(L-lactide-co-ε-caprolactone) (PLCL) and polyethylene glycol (PEG), with the incorporation of calcined and lyophilized silicate-chlorinated bioactive glass (BG) particles. Our investigation involved a comprehensive characterization of the scaffold's physical, chemical, and mechanical properties, alongside an evaluation of its biological efficacy employing alveolar bone-derived mesenchymal stem cells. The incorporation of PEG and BG resulted in elevated swelling ratios, consequently enhancing hydrophilicity. Thermal gravimetric analysis confirmed the efficient incorporation of BG, with the scaffolds demonstrating thermal stability up to 250°C. Mechanical testing revealed enhanced tensile strength and Young's modulus in the presence of BG; however, the elongation at break decreased. Cell viability assays demonstrated improved cytocompatibility, especially in the PLCL/PEG+BG group. Alizarin red staining indicated enhanced osteoinductive potential, and fluorescence analysis confirmed increased cell adhesion in the PLCL/PEG+BG group. Our findings suggest that the PLCL/PEG/BG composite scaffold holds promise as an advanced biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Joyce R. de Souza
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Lais M. Cardoso
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Priscila T. A. de Toledo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP 16015-050, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Letícia T. Kito
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São José dos Campos, SP 12228-900, Brazil
| | - Gilmar P. Thim
- Department of Materials Manufacture and Automation, Technological Institute of Aeronautics (ITA), São José dos Campos, SP 12228-900, Brazil
| | - Tiago M. B. Campos
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, SP 17012-901, Brazil
| | - Alexandre L. S. Borges
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology of São José dos Campos, São Paulo State University (UNESP), São José dos Campos, São José dos Campos, SP 12245-000, Brazil
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Gao X, Hou T, Wang L, Liu Y, Guo J, Zhang L, Yang T, Tang W, An M, Wen M. Aligned electrospun fibers of different diameters for improving cell migration capacity. Colloids Surf B Biointerfaces 2024; 234:113674. [PMID: 38039823 DOI: 10.1016/j.colsurfb.2023.113674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Electrospun fibers have gained significant attention as scaffolds in skin tissue engineering due to their biomimetic properties, which resemble the fibrous extracellular matrix. The morphological characteristics of electrospun fibers play a crucial role in determining cell behavior. However, the effects of electrospun fibers' arrangement and diameters on human skin fibroblasts (HSFs) remain elusive. Here, we revealed the impact of electrospun fiber diameters (700 nm, 2000 nm, and 3000 nm) on HSFs' proliferation, migration, and functional expression. The results demonstrated that all fibers exhibited good cytocompatibility. HSFs cultured on nanofibers (700 nm diameter) displayed a more dispersed and elongated morphology. Conversely, fibers with a diameter of 3000 nm exhibited a reduced specific surface area and lower adsorption of adhesion proteins, resulting in enhanced cell migration speed and effective migration rate. Meanwhile, the expression levels of migration-related genes and proteins were upregulated at 48 h for the 3000 nm fibers. This study demonstrated the unique role of fiber diameters in controlling the physiological functions of cells, especially decision-making and navigating migration in complex microenvironments of aligned electrospun fibers, and highlights the utility of these bioactive substitutes in skin tissue engineering applications.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Tian Hou
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Li Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Wenjie Tang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
4
|
Li K, Zhu Z, Zhai Y, Chen S. Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics 2023; 15:2285. [PMID: 37765254 PMCID: PMC10535965 DOI: 10.3390/pharmaceutics15092285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.
Collapse
Affiliation(s)
- Kun Li
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| | - Zhijun Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Yanling Zhai
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Shaojuan Chen
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
5
|
Lin B, Yuan L, Gao B, He B. Patterned Duplex Fabric Based on Genetically Modified Spidroin for Smart Wound Management. Adv Healthc Mater 2023; 12:e2202213. [PMID: 36349744 DOI: 10.1002/adhm.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The treatment of diabetic wounds remains a great challenge for the medical community. Here, a smart patterned DNA double helix (duplex)-like fabric based on genetically modified spider silk protein (PDF-S) which is inspired by soft plant tendrils, is proposed for diabetic wound treatment. Benefiting from spider silk protein (spidroin); PDF-S is equipped with high strength; high toughness, and excellent biocompatibility. Notably, the fabric crimped through the biomimetic DNA double-helix-like structure can effectively adapt to tensile impact and the maximum stretch rate reaches 1500%. A pattern-based microfluidic channel of PDF-S allowed wound secretion to flow spontaneously through the channel. Meanwhile; due to the optical properties of the introduced photonic crystal structure; PDF-S is equipped with fluorescence enhancement properties; enabling PDF-S to display color-sensitive behavior suitable for wound monitoring and guiding clinical treatment. In addition, to enable sensitive motion monitoring, microelectronic circuits are integrated on the surface of the PDF-S. These unique material features suggest that this study will lead to a new generation of biomimetic artificial spider silk materials for design and application in the biomedical field.
Collapse
Affiliation(s)
- Baoyang Lin
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Luo C, Liu S, Luo W, Wang J, He H, Chen C, Xiao L, Liu C, Li Y. Fabrication of PLCL Block Polymer with Tunable Structure and Properties for Biomedical Application. Macromol Biosci 2023; 23:e2200507. [PMID: 36645702 DOI: 10.1002/mabi.202200507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Biodegradable materials are pivotal in the biomedical field, where how to precisely control their structure and performance is critical for their translational application. In this study, poly(L-lactide-b-ε-caprolactone) block copolymers (bPLCL) with well-defined segment structure are obtained by a first synthesis of poly(ε-caprolactone) soft block, followed by ring opening polymerization of lactide to form poly(L-lactide acid) hard block. The pre-polymerization allows for fabrication of bPLCL with the definite compositions of soft/hard segment while preserving the individual segment of their special soft or hard segment. These priorities make the bPLCL afford biodegradable polymer with better mechanical and biodegradable controllability than the random poly(L-lactide-co-ε-caprolactone) (rPLCL) synthesized via traditional one-pot polymerization. 10 mol% ε-caprolactone introduction can result in a formation of an elastic polymer with elongation at break of 286.15% ± 55.23%. Also, bPLCL preserves the unique crystalline structure of the soft and hard segments to present a more sustainable biodegradability than the rPLCL. The combinative merits make the pre-polymerization technique a promising strategy for a scalable production of PLCL materials for potential biomedical application.
Collapse
Affiliation(s)
- Chenmin Luo
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Luo
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Can Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Queensland, 4000, Australia
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
7
|
Characteristic Evaluation of Recombinant MiSp/Poly(lactic- co-glycolic) Acid (PLGA) Nanofiber Scaffolds as Potential Scaffolds for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24021219. [PMID: 36674734 PMCID: PMC9861889 DOI: 10.3390/ijms24021219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Biomaterial-based nanofibrous scaffolds are the most effective alternative to bone transplantation therapy. Here, two recombinant minor ampullate spidroins (spider silk proteins), R1SR2 and NR1SR2C, were blended with Poly(lactic-co-glycolic) Acid (PLGA), respectively, to generate nanofiber scaffolds by electrospinning. The N-terminal (N), C-terminal (C), repeating (R1 and R2) and spacer (S) modules were all derived from the minor ampullate spidroins (MiSp). The physical properties and structures of the blended scaffolds were measured by scanning electron microscopy (SEM), water contact angle measurement, Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and Tensile mechanical testing. The results showed that blending of MiSp (R1SR2 and NR1SR2C) reduced the diameter of nanofibers, increased the porosity and glass transition temperatures of nanofibrous scaffolds, and effectively improved the hydrophilicity and ultimate strain of scaffolds. It is worth noting that the above changes were more significant in the presence of the N- and C-termini of MiSp. In cell culture assays, human bone mesenchymal stem cells (HBMSCs) grown on NR1SR2C/PLGA (20/80) scaffolds displayed markedly enhanced proliferative and adhesive abilities compared with counterparts grown on pure PLGA scaffolds. Jointly, these findings indicated recombinant MiSp/PLGA, particularly NR1SR2C/PLGA (20/80) blend nanofibrous scaffolds, is promising for bone tissue engineering.
Collapse
|
8
|
Gao X, Wen M, Liu Y, Hou T, Niu B, An M. Synthesis and Characterization of PU/PLCL/CMCS Electrospun Scaffolds for Skin Tissue Engineering. Polymers (Basel) 2022; 14:polym14225029. [PMID: 36433156 PMCID: PMC9699124 DOI: 10.3390/polym14225029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
As tissue regeneration material, electrospun fibers can mimic the microscale and nanoscale structure of the natural extracellular matrix (ECM), which provides a basis for cell growth and achieves organic integration with surrounding tissues. At present, the challenge for researchers is to develop a bionic scaffold for the regeneration of the wound area. In this paper, polyurethane (PU) is a working basis for the subsequent construction of tissue-engineered skin. poly(L-lactide-co-caprolactone) (PLCL)/carboxymethyl chitosan (CMCS) composite fibers were prepared via electrospinning and cross-linked by glutaraldehyde. The effect of CMCS content on the surface morphology, mechanical properties, hydrophilicity, swelling degree, and cytocompatibility were explored, aiming to assess the possibility of composite scaffolds for tissue engineering applications. The results showed that randomly arranged electrospun fibers presented a smooth surface. All scaffolds exhibited sufficient tensile strength (5.30-5.60 MPa), Young's modulus (2.62-4.29 MPa), and swelling degree for wound treatment. The addition of CMCS improved the hydrophilicity and cytocompatibility of the scaffolds.
Collapse
|
9
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
10
|
Johari N, Khodaei A, Samadikuchaksaraei A, Reis RL, Kundu SC, Moroni L. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomater 2022; 153:38-67. [PMID: 36126911 DOI: 10.1016/j.actbio.2022.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Silkworm silk protein fibroin and spider silk spidroin are known biocompatible and natural biodegradable polymers in biomedical applications. The presence of β-sheets in silk fibroin and spider spidroin conformation improves their mechanical properties. The strength and toughness of pure recombinant silkworm fibroin and spidroin are relatively low due to reduced molecular weight. Hence, blending is the foremost approach of recent studies to optimize silk fibroin and spidroin's mechanical properties. As summarised in the present review, numerous research investigations evaluate the blending of natural and synthetic polymers. The effects of blending silk fibroin and spidroin with natural and synthetic polymers on the mechanical properties are discussed in this review article. Indeed, combining natural and synthetic polymers with silk fibroin and spidroin changes their conformation and structure, fine-tuning the blends' mechanical properties. STATEMENT OF SIGNIFICANCE: Silkworm and spider silk proteins (silk fibroin and spidroin) are biocompatible and biodegradable natural polymers having different types of biomedical applications. Their mechanical and biological properties may be tuned through various strategies such as blending, conjugating and cross-linking. Blending is the most common method to modify fibroin and spidroin properties on demand, this review article aims to categorize and evaluate the effects of blending fibroin and spidroin with different natural and synthetic polymers. Increased polarity and hydrophilicity end to hydrogen bonding triggered conformational change in fibroin and spidroin blends. The effect of polarity and hydrophilicity of the blending compound is discussed and categorized to a combinatorial, synergistic and indirect impacts. This outlook guides us to choose the blending compounds mindfully as this mixing affects the biochemical and biophysical characteristics of the biomaterials.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
12
|
Mechanical performance and cyocompatibility of PU/PLCL nanofibrous electrospun scaffolds for skin regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
13
|
Huang Y, Wang L, Liu Y, Li T, Xin B. Drug-loaded PLCL/PEO-SA bilayer nanofibrous membrane for controlled release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:2331-2348. [PMID: 34491876 DOI: 10.1080/09205063.2021.1970881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bilayer nanofibrous membrane fabricated via electrospinning technique can be considered as an ideal structure for the treatment of chronic skin diseases and exudative wound dressings. Wound exudate would affect healing and increases the likelihood of infection at the same time. Therefore, it is essential to produce a kind of wound dressing with relatively high hygroscopicity which could absorb wound exudate and provide a relatively dry healing environment. Bilayer nanofibrous membranes of poly(L-lactide-co-ε-caprolactone)/tetracycline hydrochloride- polyethylene oxide/sodium alginate-zinc oxide (PLCL/TCH-PEO/SA-ZnO) with drug delivery potential were prepared by electrospinning for wound healing. Then, a cross-linking which involved soaking the samples in an aqueous solution containing strontium ions for 4 h was conducted. SEM images showed that membranes still maintained the peculiar nanofibrous structure. The spinning aid (PEO) used was removed in the cross-linked alginate without affecting the PLCL/TCH outer layer gave the membrane good mechanical properties and manageability. The hydrophilicity of the mats was tested to evaluate the ability of the bilayer membrane to absorb exudate from the wound. In vitro drug release suggested that antibacterial agents TCH could release continuously more than 10 days. The cross-linked fibrous membrane has improved mechanical properties and fluid repellency, thus representing a barrier to the external environment and effective wound protection. Consequently, the bilayer fibrous scaffold with good hygroscopicity and drug release properties would have wide applications prospects for the treatment of chronic skin diseases and exudative wound dressings.
Collapse
Affiliation(s)
- Yifan Huang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Lei Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Yi Liu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Tingxiao Li
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Binjie Xin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| |
Collapse
|
14
|
Chen L, Huang Y, Yang R, Xiao J, Gao J, Zhang D, Cao D, Ke X. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability. Bioengineered 2021; 12:8031-8042. [PMID: 34670479 PMCID: PMC8806928 DOI: 10.1080/21655979.2021.1982270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to prepare a kind of controlled-releasing insulin-like growth factor 1 (IGF-1)/spider silk protein nanofibrous membrane using a electrostatic spinning method and evaluated its effect on the cell viability of endothelial progenitor cells (EPCs). Recombinant spidroin named as GMCDRSSP-IgF-1 was electro-spun into nanofibrous membrane which can be degraded by protease and be capable of sustained-release of IGF-1. The membrane can be degraded after being treated with thrombin. The release assay results showed that IGF-1 concentration could be maintained at 20 ng/ml for a long time with treatment of Tobacco Etch Virus (TEV) protease. The viability of EPCs on GMCDRSSP-IgF-1 nanofibrous membrane was significantly increased with the presence of TEV protease. The controlled and sustained release of IGF-1 from the nanofibrous membrane could promote the adhesion and viability of EPCs. In summary, the nanofibrous membrane that exhibits controlled degradation and sustained release of IGF-1 was prepared with electrostatic spinning from genetically modified recombinant spider silk protein. The nanofibrous membrane exhibited good blood compatibility and cytocompatibility. With the presence of TEV protease, the sustained-release of IGF-1 significantly promoted the adhesion and viability of EPCs. The new nanofibrous membrane can be potentially used as a scaffold for EPCs culture in vitro and future in vivo studies.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Yulang Huang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Jian Xiao
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Debao Zhang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Duanwen Cao
- Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China.,Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Millesi F, Weiss T, Mann A, Haertinger M, Semmler L, Supper P, Pils D, Naghilou A, Radtke C. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts. FASEB J 2021; 35:e21196. [PMID: 33210360 PMCID: PMC7894153 DOI: 10.1096/fj.202001447r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
Collapse
Affiliation(s)
- Flavia Millesi
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Tamara Weiss
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Mann
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Maximilian Haertinger
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Paul Supper
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Dietmar Pils
- Division of General SurgeryDepartment of SurgeryComprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Aida Naghilou
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Christine Radtke
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|