1
|
Ballal NV, Narkedamalli R, Shenoy PA, Das S, Balasubramanian SK, Varghese J, Dsouza HS, Epps K, Ravenel T, Tay FR. Biological and chemical properties of new multi-functional root canal irrigants. J Dent 2025; 153:105551. [PMID: 39733816 DOI: 10.1016/j.jdent.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVES To evaluate the efficacy of multi-functional root canal irrigating solutions in the removal of canal wall smear layers, antibacterial activity, cytotoxicity, and tissue dissolution efficacy. METHODS Forty single-rooted teeth were mechanically instrumented and irrigated with Triton, EndoJuice™, EDTA, and 0.9 % saline. Each tooth was evaluated for smear layer removal using scanning electron microscopy. Antibacterial activity of the irrigants was assessed against Enterococcus faecalis biofilms using colony-forming unit analysis. Neutral red, clonogenic, and cytokinesis-block micronucleus assays were performed on Chinese hamster V79 cells to evaluate the short-term and long-term cytotoxicity and genotoxicity of the irrigants. Tissue dissolution efficacy was tested on shrimp meat placed in resorptive cavities prepared in root canals. RESULTS EndoJuice™ and EDTA showed better smear layer removal than Triton in the coronal-third and middle-third of the canal walls. There was no significant difference between EndoJuice™ and EDTA. In the apical-third, EndoJuice™ removed the smear layer more effectively than EDTA and Triton. Specimens treated with saline were heavily smeared. Triton and sodium hypochlorite were similar in reducing intracanal E. faecalis counts, while specimens treated with EndoJuice™ had higher colony-forming units compared to Triton or sodium hypochlorite. EndoJuice™ was less cytotoxic and genotoxic compared to Triton. Sodium hypochlorite dissolved the most soft tissue, followed by Triton and EndoJuice™. CONCLUSION EndoJuice™ was less toxic and more effective in smear layer removal. Triton demonstrated better antimicrobial activity and tissue dissolution efficacy. CLINICAL SIGNIFICANCE Evaluating the smear layer removal, antibacterial activity, toxicity, and tissue dissolution abilities of multi-functional root canal irrigants is essential to ensure their effectiveness and safety for clinical use in root canal treatment.
Collapse
Affiliation(s)
- Nidambur Vasudev Ballal
- Department of Conservative Dentistry & Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Rajkumar Narkedamalli
- Department of Conservative Dentistry & Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shubhankar Das
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, UAE; Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravana Karthikeyan Balasubramanian
- Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kevin Epps
- Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Franklin R Tay
- Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
2
|
Yang X, Xia L, Chen Y, Jiang L, Zheng T, Bai Y. Cytotoxicity and Bone Biocompatibility of the C-Root SP Experimental Root Canal Sealer. AUST ENDOD J 2024. [PMID: 39731338 DOI: 10.1111/aej.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/30/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024]
Abstract
This study evaluated the cytotoxicity and biocompatibility of a new strontium silicate-based root canal sealer (C-Root SP), in comparison with those of iRoot SP and AH plus. The sealer extract was diluted to the concentrations of 100%, 75%, 50%, and 25%. L929 cells were cultured for 24 h, and the absorbance value was determined. Two-way analysis of variance (two-way ANOVA) and sealers were implanted in the tibia of Sprague-Dawley (SD) rats, At 2, 6, and 12 weeks, rats were euthanised. The tissue reaction was evaluated by HE staining. The least significant difference (LSD) t-test and Kruskal-Wallis test were used. The cytotoxicity of C-Root SP and iRoot SP was found to be less than that of AH plus. At 12 weeks, new bone formation was induced around C-Root SP and iRoot SP sealer, but minimal evidence of bone formation was found in AH plus. C-Root SP has low cytotoxicity and superior biocompatibility.
Collapse
Affiliation(s)
- Xiliang Yang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Yongji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Lei Jiang
- Department of Oral, College of Stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, People's Republic of China
| | - Tianxia Zheng
- Department of Oral, College of Stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, People's Republic of China
| | - Yuhong Bai
- Department of Oral, College of Stomatology, North China University of Science and Technology, Tangshan City, Hebei Province, People's Republic of China
| |
Collapse
|
3
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
4
|
Yang X, Zheng T, Yang N, Yin Z, Wang W, Bai Y. A Review of the research methods and progress of biocompatibility evaluation of root canal sealers. AUST ENDOD J 2023; 49 Suppl 1:508-514. [PMID: 36480411 DOI: 10.1111/aej.12725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
The function of root canal sealer was to achieve an appropriate three-dimensional filling effect by filling the root canal and some irregular lumen, thereby inhibiting the residual bacteria. There were many types of sealers, but research to find the most suitable ones was still ongoing. In recent years, researchers had continuously improved the performance of sealers by developing new sealers or adding active ingredients to the sealers. However, most sealers exhibit varying degrees of cytotoxicity and tissue responses, which affect clinical therapy efficacy. This review describes different technical approaches, and recent research progress in the biocompatibility evaluation of root canal sealers and provides brief insights into this field by summarising the performance studies of different root canal sealers.
Collapse
Affiliation(s)
- Xiliang Yang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Tianxia Zheng
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Nuoya Yang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Zihan Yin
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Wuliang Wang
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| | - Yuhong Bai
- Department of Oral, College of stomatology, North China University of Science and Technology, Tangshan City, China
| |
Collapse
|
5
|
Butucel E, Balta I, Bundurus IA, Popescu CA, Iancu T, Venig A, Pet I, Stef D, McCleery D, Stef L, Corcionivoschi N. Natural Antimicrobials Promote the Anti-Oxidative Inhibition of COX-2 Mediated Inflammatory Response in Primary Oral Cells Infected with Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. Antioxidants (Basel) 2023; 12:antiox12051017. [PMID: 37237883 DOI: 10.3390/antiox12051017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis can colonize the tooth root canals, adhere to dentin walls, and frequently cause periodontitis in dogs. Bacterial periodontal diseases are common in domesticated pets, causing severe oral cavity inflammation and a strong immune response. This study investigates the antioxidant effect of a natural antimicrobial mixture (Auraguard-Ag) on the ability of S. aureus, S. pyogenes and E. faecalis to infect primary canine oral epithelial cells as well as its impact on their virulence factors. Our data show that a concentration of 0.25% Ag is sufficient to inhibit the growth of all three pathogens, whereas a concentration of 0.5% will become bactericidal. The sub-inhibitory concentration of 0.125% Ag reveals that the antimicrobial mixture can significantly reduce biofilm formation and exopolysaccharide production. The impact on these virulence factors was further translated into a significantly reduced ability to infect primary canine oral epithelial cells and restore epithelial tight junctions, with no impact on the epithelial cell viability. The post-infection inflammatory cytokines (IL-1β and IL-8) and the COX-2 mediator were also reduced both in mRNA and protein expression levels. The oxidative burst, detected upon infection, was also decreased in the presence of Ag, as our results show a significant decrease in H2O2 released by the infected cells. We show that inhibition of either NADPH or ERK activity will result in a downregulation of COX-2 expression and lower levels of H2O2 in infected cells. Conclusively, our study shows that natural antimicrobials reduce pro-inflammatory events, post infection, through an antioxidative mechanism that involves the downregulation of the COX-2 mediator via the inactivation of ERK in the absence of H2O2. As a result, they significantly reduce the risk of secondary bacterial infections and host oxidative stress caused by Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis accumulation in biofilms in an in vitro canine oral infection model.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Iulia Adelina Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Tourism, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Adelina Venig
- Faculty of Environmental Protection, University of Oradea, 410087 Oradea, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, 300645 Timisoara, Romania
| |
Collapse
|
6
|
Liu H, Liu Y, Fan W, Fan B. Fusobacterium nucleatum triggers proinflammatory cell death via Z-DNA binding protein 1 in apical periodontitis. Cell Commun Signal 2022; 20:196. [PMID: 36539813 PMCID: PMC9764563 DOI: 10.1186/s12964-022-01005-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Z-DNA binding protein 1 (ZBP1) is a vital innate immune sensor that regulates inflammation during pathogen invasion. ZBP1 may contribute to pyroptosis, apoptosis and necroptosis in infectious diseases. In this study, Fusobacterium nucleatum (F. nucleatum) infection caused periapical inflammation through proinflammatory cell death and ZBP1 was involved in regulating the inflammatory activities caused by F. nucleatum infection in apical periodontitis (AP). METHODS Human periapical tissues were tested by fluorescent in situ hybridization, immunohistochemical staining, immunofluorescence staining, quantitative real-time PCR (qRT‒PCR) and western blotting. F. nucleatum-infected and F. nucleatum extracellular vesicles (F. nucleatum-EVs)-treated RAW264.7 cells were used to detect the expression of inflammatory cytokines and different cell death mechanisms by qRT‒PCR and western blotting. ZBP1 expression in F. nucleatum-infected tissues and RAW264.7 cells was detected by qRT‒PCR, western blotting, and immunohistochemical and immunofluorescence staining. Furthermore, the expression of ZBP1 was inhibited by siRNA and different cell death pathways, including pyroptosis, apoptosis, and necroptosis, and inflammatory cytokines were measured in F. nucleatum-infected RAW264.7 cells. RESULTS F. nucleatum was detected in AP tissues. F. nucleatum-infected RAW264.7 cells polarized to the M1 phenotype, and this was accompanied by inflammatory cytokine production. High levels of ZBP1 and GSDME (gasdermin E)-mediated pyroptosis, caspase-3-mediated apoptosis and MLKL-mediated necroptosis (PANoptosis) were identified in F. nucleatum-infected tissues and RAW264.7 cells. ZBP1 inhibition reduced inflammatory cytokine secretion and the occurrence of PANoptosis. CONCLUSION The present study identified a previously unknown role of ZBP1 in regulating F. nucleatum-induced proinflammatory cell death and inflammatory activation. Video abstract.
Collapse
Affiliation(s)
- Hui Liu
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China
| | - Yuxuan Liu
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China
| | - Wei Fan
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China ,grid.49470.3e0000 0001 2331 6153Department of Endodontics, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China
| | - Bing Fan
- grid.49470.3e0000 0001 2331 6153The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China ,grid.49470.3e0000 0001 2331 6153Department of Endodontics, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, China
| |
Collapse
|
7
|
Bapat RA, Parolia A, Chaubal T, Yang HJ, Kesharwani P, Phaik KS, Lin SL, Daood U. Recent Update on Applications of Quaternary Ammonium Silane as an Antibacterial Biomaterial: A Novel Drug Delivery Approach in Dentistry. Front Microbiol 2022; 13:927282. [PMID: 36212832 PMCID: PMC9539660 DOI: 10.3389/fmicb.2022.927282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium silane [(QAS), codename – k21] is a novel biomaterial developed by sol-gel process having broad spectrum antimicrobial activities with low cytotoxicity. It has been used in various concentrations with maximum antimicrobial efficacy and biocompatibility. The antimicrobial mechanism is displayed via contact killing, causing conformational changes within the bacterial cell membrane, inhibiting Sortase-A enzyme, and causing cell disturbances due to osmotic changes. The compound can attach to S1' pockets on matrix metalloproteinases (MMPs), leading to massive MMP enzyme inhibition, making it one of the most potent protease inhibitors. Quaternary ammonium silane has been synthesized and used in dentistry to eliminate the biofilm from dental tissues. QAS has been tested for its antibacterial activity as a cavity disinfectant, endodontic irrigant, restorative and root canal medication, and a nanocarrier for drug delivery approaches. The review is first of its kind that aims to discuss applications of QAS as a novel antibacterial biomaterial for dental applications along with discussions on its cytotoxic effects and future prospects in dentistry.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Tanay Chaubal
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ho Jan Yang
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Khoo Suan Phaik
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Umer Daood
| |
Collapse
|
8
|
KIM MA, NEELAKANTAN P, MIN KS. Effect of N-2-methyl-pyrrolidone on <i>Enterococcus faecalis</i> biofilms. Dent Mater J 2022; 41:774-779. [DOI: 10.4012/dmj.2022-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mi-Ah KIM
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University
| | - Prasanna NEELAKANTAN
- Discipline of Endodontology, Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong
| | - Kyung-San MIN
- Department of Conservative Dentistry, School of Dentistry, Jeonbuk National University
| |
Collapse
|
9
|
Wang Z, Yang G, Ren B, Gao Y, Peng X, Li M, H.K.Xu H, Han Q, Li J, Zhou X, Cheng L. Effect of Antibacterial Root Canal Sealer on Persistent Apical Periodontitis. Antibiotics (Basel) 2021; 10:antibiotics10060741. [PMID: 34207470 PMCID: PMC8233789 DOI: 10.3390/antibiotics10060741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
The infection of Enterococcus faecalis and its interacting microorganisms in the root canal could cause persistent apical periodontitis (AP). Antibacterial root canal sealer has favorable prospects to inhibit biofilms. The purpose of this study was to investigated the antibacterial effect of root canal sealer containing dimethylaminododecyl methacrylate (DMADDM) on persistent AP in beagle dogs for the first time. Persistent AP was established by a two-step infection with Enterococcus faecalis and multi-bacteria (Enterococcus faecalis, Lactobacillus acidophilus, Actinomycesnaeslundii, Streptococcus gordonii). Root canal sealer containing DMADDM (0%, 1.25%, 2.5%) was used to complete root canal filling. The volume of lesions and inflammatory grade in the apical area were evaluated by cone beam computer tomography (CBCT) and hematoxylin-eosin staining. Both Enterococcus-faecalis- and multi-bacteria-induced persistent AP caused severe apical destruction, and there were no significant differences in pathogenicity between them. DMADDM-modified sealer significantly reduced the volume of periapical lesion and inflammatory grade compared with the control group, among them, the therapeutic effect of the 2.5% group was better than the 1.25% group. In addition, E.faecalis-induced reinfection was more sensitive to the 2.5% group than multi-bacteria reinfection. This study shows that root canal sealer containing DMADDM had a remarkable therapeutic effect on persistent AP, especially on E. faecalis-induced reinfection.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Ge Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Yuan Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Hockin H.K.Xu
- Department of Advanced Oral Sciences and Therapeutics, Biomaterials & Tissue Engineering Division, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Qi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
- Correspondence: (X.Z.); (L.C.); Tel.: +86-028-8550-1439 (X.Z.); +86-028-8550-1439 (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (Z.W.); (G.Y.); (B.R.); (Y.G.); (X.P.); (M.L.); (Q.H.); (J.L.)
- Correspondence: (X.Z.); (L.C.); Tel.: +86-028-8550-1439 (X.Z.); +86-028-8550-1439 (L.C.)
| |
Collapse
|
10
|
Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, Wong LA, Davamani F, Nagendrababu V, Fawzy A, Daood U. Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health 2021; 21:116. [PMID: 33711992 PMCID: PMC7953794 DOI: 10.1186/s12903-021-01470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin. METHODOLOGY Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21. RESULTS There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention. CONCLUSION 2%k21 can be considered as alternative intracanal medicament.
Collapse
Affiliation(s)
- Esther Sook Kuan Kok
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xian Jin Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Soo Xiong Chew
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shu Fen Ong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Lok Yin See
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siao Hua Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ling Ang Wong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Faculty of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, Australia
| | - Umer Daood
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Sun Q, Duan M, Fan W, Fan B. Ca-Si mesoporous nanoparticles with the optimal Ag-Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: an in vitro and in vivo study. J Mater Chem B 2021; 9:2200-2211. [PMID: 33447835 DOI: 10.1039/d0tb02704a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enterococcus faecalis is the main cause of refractory root canal infections in human teeth. The control of root canal infection is one of the conditions necessary for the successful treatment of refractory root canal infections. In the present study, nano-scale silver-zinc-calcium-silica particles loaded with different ratios of silver-zinc were successfully prepared (Ag0.5Zn3-MCSNs and Ag0.5Zn10-MCSNs). The release profiles, antibacterial activity against E. faecalis, infiltration depth into dentinal tubules, biocompatibility and effects on dentin microhardness in vitro were investigated. In addition, the antimicrobial effects of the particles against Enterococcus faecalis reinfection were evaluated in vivo in the teeth of beagle dogs. Ag, Zn, Ca and Si were released from Ag-Zn-MCSNs, and the atomic ratio of silver and zinc released can reach the optimal value of 1 : 12 (Ag0.5Zn10-MCSNs). The particles also showed good biocompatibility and antibacterial activity against Enterococcus faecalis and did not reduce the hardness of dentin. The nanoparticles could be driven into the dentinal tubules of dentin slices by ultrasonic activation. In the root canals of beagle dogs, both Ag0.5Zn3-MCSNs and Ag0.5Zn10-MCSNs demonstrated strong preventive effects against E. faecalis infection. The Ag-Zn-Ca-Si mesoporous nanoparticles may develop into a new effective root canal disinfectant or root canal sealer.
Collapse
Affiliation(s)
- Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Mengting Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|