1
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink HG. ZnO-Polyaniline Nanocomposite Functionalised with Laccase Enzymes for Electrochemical Detection of Cetyltrimethylammonuium Bromide (CTAB). J Xenobiot 2024; 14:1988-2002. [PMID: 39728414 DOI: 10.3390/jox14040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring. In our study, ZnO-PANI nanocomposites were electrodeposited on a glassy carbon electrode (GCE), followed by the immobilization of laccase enzymes and the electrodeposition of polypyrrole (PPy), to form a biosensor that was used for the detection of CTAB. A UV-Vis analysis showed bands corresponding to the π-π* transition of benzenoid and quinoid rings, π-polaron band transition and n-π*polaronic transitions associated with the extended coil chain conformation of PANI, and the presence and interaction of ZnO with PANI and type 3 copper in the laccase enzymes. The FTIR analysis exhibited peaks corresponding to N-H and C-N stretches and bends for amine, C=C stretches for conjugated alkenes, and a C-H bend for aromatic compounds. A high-resolution scanning electron microscopy (HRSEM) analysis proved that PANI and ZnO-PANI were deposited as fibres with hairy topography resulting from covalent bonding with the laccase enzymes. The modified electrode (PPy-6/GCE) was used as a platform for the detection of CTAB with three linear ranges of 0.5-100 µM, 200-500 µM, and 700-1900 µM. The sensor displayed a high sensitivity of 0.935 μA μM-1 cm-2, a detection limit of 0.0116 µM, and acceptable recoveries of 95.02% and 87.84% for tap water and wastewater, respectively.
Collapse
Affiliation(s)
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Nils Hendrik Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
- Unit for Energy and Technology Systems-Nuclear Engineering, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa
| | - Hendrik Gideon Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
2
|
Ciarrocchi D, Pecoraro PM, Zompanti A, Pennazza G, Santonico M, di Biase L. Biochemical Sensors for Personalized Therapy in Parkinson's Disease: Where We Stand. J Clin Med 2024; 13:7458. [PMID: 39685917 DOI: 10.3390/jcm13237458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson's disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring. Biochemical sensing of levodopa offers a promising approach for real-time therapeutic feedback, potentially sustaining an optimal motor state throughout the day. These sensors vary in invasiveness, encompassing techniques like microdialysis, electrochemical non-enzymatic sensing, and enzymatic approaches. Electrochemical sensing, including wearable solutions that utilize reverse iontophoresis and microneedles, is notable for its potential in non-invasive or minimally invasive monitoring. Point-of-care devices and standard electrochemical cells demonstrate superior performance compared to wearable solutions; however, this comes at the cost of wearability. As a result, they are better suited for clinical use. The integration of nanomaterials such as carbon nanotubes, metal-organic frameworks, and graphene has significantly enhanced sensor sensitivity, selectivity, and detection performance. This framework paves the way for accurate, continuous monitoring of levodopa and its metabolites in biofluids such as sweat and interstitial fluid, aiding real-time motor performance assessment in Parkinson's disease. This review highlights recent advancements in biochemical sensing for levodopa and catecholamine monitoring, exploring emerging technologies and their potential role in developing closed-loop therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Davide Ciarrocchi
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Zompanti
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lazzaro di Biase
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
3
|
Malinowski S, Wardak M, Wardak C. Effect of Modification of a Laccase-Based Electrochemical Biosensor with Carbon Nanotubes on Signal Separation of Dihydroxybenzene Isomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38330267 DOI: 10.1021/acs.langmuir.3c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
This work describes a new electrochemical biosensor for the simultaneous determination of catechol and hydroquinone. A laccase biorecognition layer was deposited using an innovative soft plasma polymerization technique onto a multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) to sufficiently separate catechol (CT) and hydroquinone (HQ) oxidation peaks. The electrochemical analysis carried out for MWCNTs with various morphologies was supported by density functional theory (DFT) calculations showing differences in the electronic structures of both dihydroxybenzene isomers and the MWCNTs forming the biosensor interlayer. The best biosensor peak separation and biosensor analytical parameters were observed for the device containing 75 μg of MWCNTs with a higher internal diameter. For this laccase-based biosensor, a linearity range from 0.1 to 57 μM for catechol and 0.5 to 57 μM for hydroquinone as well as a sensitivity of 0.56 and 0.54 μA/μM for catechol and hydroquinone was observed, respectively. The limit of detection (LOD) values were 0.028 and 0.15 μM for CT and HQ, respectively. This biosensor was also characterized by good selectivity, stability, and reproducibility. It was successfully applied for the quantification of contaminants in the analysis of natural water samples.
Collapse
Affiliation(s)
- Szymon Malinowski
- Department of Construction Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, 20-618 Lublin, Poland
| | - Magdalena Wardak
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| |
Collapse
|
4
|
Beatto TG, Gomes WE, Etchegaray A, Gupta R, Mendes RK. Dopamine levels determined in synthetic urine using an electrochemical tyrosinase biosensor based on ZnO@Au core-shell. RSC Adv 2023; 13:33424-33429. [PMID: 38025875 PMCID: PMC10644153 DOI: 10.1039/d3ra06277e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
This work presents a biosensor based on core-shell nanostructure formed by zinc oxide (ZnO) nanoparticles coated with gold (Au). The core-shell nanostructure served as a support for the immobilisation of tyrosinase on screen-printed carbon electrodes to measure dopamine using differential pulse voltammetry. While ZnO is a semiconductor with good electrical conductivity, Au offers high stability and biocompatibility, which is beneficial for maintaining enzyme activity. Atomic force microscopy (ATM), ultraviolet (UV) and infrared (IR) spectroscopy measurements confirmed that the core-shell was successfully formed. The biosensor comprising of ZnO@Au core-shell nanostructures with immobilised tyrosinase allowed the detection of dopamine in real samples with remarkable selectivity and accuracy with a relative error of 3.8%. The limit of detection and dynamic range of the biosensor for dopamine in real samples were 86 nmol L-1 and 0.1 to 500 μmol L-1, respectively. Thus, the results indicate that the proposed miniaturized biosensor device is promising for the monitoring of dopamine in real samples and can be used for disease diagnosis and prognosis. Furthermore, the reported electrochemical biosensor is of low-cost when compared to conventional techniques.
Collapse
Affiliation(s)
- Thainá G Beatto
- Pontíficia Universidade Católica de Campinas Campinas SP Brazil +55 19 33437656
| | - Wyllerson E Gomes
- Pontíficia Universidade Católica de Campinas Campinas SP Brazil +55 19 33437656
| | - Augusto Etchegaray
- Pontíficia Universidade Católica de Campinas Campinas SP Brazil +55 19 33437656
| | - Ruchi Gupta
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Renata K Mendes
- Pontíficia Universidade Católica de Campinas Campinas SP Brazil +55 19 33437656
| |
Collapse
|
5
|
Madej M, Trzcińska A, Lipińska J, Kapica R, Fronczak M, Porada R, Kochana J, Baś B, Tyczkowski J. Electrochemical sensing platform based on screen-printed carbon electrode modified with plasma polymerized acrylonitrile nanofilms for determination of bupropion. Mikrochim Acta 2023; 190:391. [PMID: 37704761 PMCID: PMC10499721 DOI: 10.1007/s00604-023-05971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
A original electrochemical sensing platform, based on screen-printed electrodes modification with plasma polymerized acrylonitrile (pp-AN) nanofilms is proposed. For that purpose, plasma-enhanced chemical vapor deposition (PECVD) process was conducted in a parallel plate (13.56 MHz) plasma reactor for 2 min with discharge power of 10 W. The surface topography and electrochemical properties of prepared sensors were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersion spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrochemical characteristics of pp-AN/SPCE and pp-AN/SPAuE sensors was investigated for model redox pair [Fe(CN)6]4-/3-. Conducted research confirmed the excellent chemical stability, durability, wide potential window, high signal-to-noise (S/N) ratio, and, most importantly, the ability to standardize the sensors. The pp-AN/SPCE sensor was applied to the determination of bupropion, an antidepressant drug whose intake has increased dramatically during the COVID-19 pandemic. The voltammetric response of pp-AN/SPCE for BUP was linear in two concentration ranges of 0.63-10.0 and 10.0-50.0 μmol L-1, with a detection limit of 0.21 μmol L-1. Satisfactory recoveries (96.2-102%) and good precision (RSD below 4.1%) obtained for environmental and biological samples confirmed the usefulness of the sensor for the analysis of various kinds of samples.
Collapse
Affiliation(s)
- Maria Madej
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Agata Trzcińska
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Justyna Lipińska
- Faculty of Materials and Ceramics, Department of Analytical Chemistry and Biochemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Ryszard Kapica
- Faculty of Process and Environmental Engineering, Department of Molecular Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Lodz, Poland
| | - Maciej Fronczak
- Faculty of Process and Environmental Engineering, Department of Molecular Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Lodz, Poland
| | - Radosław Porada
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Jolanta Kochana
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bogusław Baś
- Faculty of Materials and Ceramics, Department of Analytical Chemistry and Biochemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Jacek Tyczkowski
- Faculty of Process and Environmental Engineering, Department of Molecular Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Lodz, Poland
| |
Collapse
|
6
|
Grabarczyk M, Wardak C, Piech R, Wawruch A. An Electrochemical Sensor for the Determination of Trace Concentrations of Cadmium, Based on Spherical Glassy Carbon and Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3252. [PMID: 37110088 PMCID: PMC10146725 DOI: 10.3390/ma16083252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The practical application of a novel, eco-friendly electrochemical sensor based on low-dimensional structures, spherical glassy carbon microparticles, and multiwall carbon nanotubes is described. This sensor, modified with a bismuth film, was used for the determination of Cd(II) by the anodic stripping voltammetric method. The instrumental and chemical factors influencing the sensitivity of the procedure were thoroughly investigated and their most favorable values were selected (acetate buffer solution pH = 3 ± 0.1; 0.15 mmol L-1 Bi(III); activation potential/time: -2 V/3 s; accumulation potential/time: -0.9 V/50 s). Under the selected conditions, the method exhibited linearity in the range of 2 × 10-9 to 2 × 10-7 mol L-1 Cd(II) with a detection limit of 6.2 × 10-10 mol L-1 Cd(II). The results obtained also showed that the application of the sensor for Cd(II) detection did not experience any significant interference in the presence of a number of foreign ions. The applicability of this procedure was evaluated using TM-25.5 Environmental Matrix Reference Material and SPS-WW1 Waste Water Certified Reference Material as well as river water samples through addition and recovery tests.
Collapse
Affiliation(s)
- Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (C.W.)
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (C.W.)
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Agnieszka Wawruch
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (C.W.)
| |
Collapse
|
7
|
Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields. Biomedicines 2022; 10:biomedicines10123084. [PMID: 36551840 PMCID: PMC9775231 DOI: 10.3390/biomedicines10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
Collapse
|
8
|
Deng Z, Zhao L, Mu H, Jiang L, Xi W, Xu X, Zheng W. High selective property of gelatin/MWCNTs functionalized carbon fiber microelectrode: Toward real-time monitoring of ascorbate. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Madej M, Lipińska J, Kapica R, Kędzierska-Sar A, Frątczak E, Kochana J, Baś B, Tyczkowski J. Innovative modification of the surface of screen-printed carbon electrodes by nanofilms directly deposited in cold acrylonitrile plasma. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring phenolic compounds is critical in the environmental, food, and medical sectors. Among many recent advanced detection platforms, laccase-based biosensing platforms gave very rapid, effective, online, and in situ sensing of phenolic compounds. In laccase-based biosensors, laccase immobilization techniques have a vital role. However, a detailing of the advancements in laccase immobilization techniques employed in laccase-based biosensors is lacking in the literature. Thus, in this review, we assessed how the nano-immobilization techniques shaped the laccase biosensing platforms. We discussed novel developments in laccase immobilization techniques such as entrapment, adsorption, cross-linking, and covalent over new nanocomposites in laccase biosensors. We made a comprehensive assessment based on the current literature for future perspectives of nano-immobilized laccase biosensors. We found the important key areas toward which future laccase biosensor research seems to be heading. These include 1. A focus on the development of multi-layer laccase over electrode surface, 2. The need to utilize more covalent immobilization routes, as they change the laccase specificity toward phenolic compounds, 3. The advancement in polymeric matrices with electroconductive properties, and 4. novel entrapment techniques like biomineralization using laccase molecules. Thus, in this review, we provided a detailed account of immobilization in laccase biosensors and their feasibility in the future for the development of highly specific laccase biosensors in industrial, medicinal, food, and environmental applications.
Collapse
|
11
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
12
|
Development of Enzyme Conductometric Biosensor for Dopamine Determination in Aqueous Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202100257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HMN, Parra-Saldívar R. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Int J Biol Macromol 2021; 181:683-696. [PMID: 33798577 DOI: 10.1016/j.ijbiomac.2021.03.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology has transformed the science behind many biotechnological sectors, and applied bio-catalysis is not the exception. In 2017, the enzyme industry was valued at more than 7 billion USD and projected to 10.5 billion by 2024. The laccase enzyme is an oxidoreductase capable of oxidizing phenolic and non-phenolic compounds that have been considered an essential tool in the fields currently known as white biotechnology and green chemistry. Laccase is one of the most robust biocatalysts due to its wide applications in different environmental processes such as detecting and treating chemical pollutants and dyes and pharmaceutical removal. However, these biocatalytic processes are usually limited by the lack of stability of the enzyme, the half-life time, and the application feasibility at an industrial scale. Physical or chemical approaches have performed different laccase's immobilization methods to improve its catalytic properties and reuse. Emerging technologies have been proven to reduce the manufacturing process cost and increase application feasibility while looking for ecological and economical materials that can be used as support. Therefore, this review discusses the trends of enzyme immobilization recently studied, analyzing biomaterials and agro-industrial waste used for that intention, their advantages, and disadvantages. Finally, the work also highlights the performance obtained with these materials and current challenges and potential alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
14
|
Sangubotla R, Kim J. Fiber-optic biosensor based on the laccase immobilization on silica-functionalized fluorescent carbon dots for the detection of dopamine and multi-color imaging applications in neuroblastoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111916. [DOI: 10.1016/j.msec.2021.111916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
|
15
|
Abstract
Wearable self-powered sensors represent a theme of interest in the literature due to the progress in the Internet of Things and implantable devices. The integration of different materials to harvest energy from body movement or the environment to power up sensors or act as an active component of the detection of analytes is a frontier to be explored. This review describes the most relevant studies of the integration of nanogenerators in wearables based on the interaction of piezoelectric and triboelectric devices into more efficient and low-cost harvesting systems to power up batteries or to use the generated power to identify multiple analytes in self-powered sensors and biosensors.
Collapse
|
16
|
Türkmen D, Bakhshpour M, Göktürk I, Aşır S, Yılmaz F, Denizli A. Selective dopamine detection by SPR sensor signal amplification using gold nanoparticles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01938d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, selective and sensitive detection of neurotransmitter dopamine from both aqueous solution and biological samples was performed by surface plasmon resonance sensor based on molecular imprinting technique.
Collapse
Affiliation(s)
- Deniz Türkmen
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | | | - Ilgım Göktürk
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Süleyman Aşır
- Near East University, Department of Materials Science and Nanotechnology Engineering, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Fatma Yılmaz
- Bolu Abant Izzet Baysal University, Chemistry Technology Division, Gerede, Bolu, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| |
Collapse
|