1
|
Gao L, Li Y, Liu G, Lin X, Tan Y, Liu J, Li R, Zhang C. Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39388283 DOI: 10.1080/09205063.2024.2411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 ± 131.6%, the porosity was 85.12 ± 1.6%, and the compressive elastic modulus was 36.54 ± 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.
Collapse
Affiliation(s)
- Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research, Just Medical Equipment (Tianjin) Co., Ltd, Tianjin, China
| | - Yali Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Gang Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Xianglong Lin
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Jie Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bone Implant Interface Functionalization and Personality Research, Just Medical Equipment (Tianjin) Co., Ltd, Tianjin, China
| |
Collapse
|
2
|
Krymchenko R, Coşar Kutluoğlu G, van Hout N, Manikowski D, Doberenz C, van Kuppevelt TH, Daamen WF. Elastogenesis in Focus: Navigating Elastic Fibers Synthesis for Advanced Dermal Biomaterial Formulation. Adv Healthc Mater 2024; 13:e2400484. [PMID: 38989717 DOI: 10.1002/adhm.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Elastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes. The review delves into the intricate process of elastogenesis by cells and investigates potential triggers for elastogenesis encompassing elastin-related compounds, ECM components, and other molecules for their potential role in inducing elastin formation. Understanding of the elastogenic processes is essential for developing biomaterials that trigger not only the synthesis of the elastin protein, but also the formation of a functional and branched elastic fiber network.
Collapse
Affiliation(s)
- Roman Krymchenko
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Gizem Coşar Kutluoğlu
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- MedSkin Solutions Dr. Suwelack AG, 48727, Billerbeck, Germany
| | - Noor van Hout
- Department of Dermatology, Radboud university medical center, Nijmegen, 6525 GA, The Netherlands
| | | | | | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
3
|
Li H, Shang Y, Zeng J, Matsusaki M. Technology for the formation of engineered microvascular network models and their biomedical applications. NANO CONVERGENCE 2024; 11:10. [PMID: 38430377 PMCID: PMC10908775 DOI: 10.1186/s40580-024-00416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Tissue engineering and regenerative medicine have made great progress in recent decades, as the fields of bioengineering, materials science, and stem cell biology have converged, allowing tissue engineers to replicate the structure and function of various levels of the vascular tree. Nonetheless, the lack of a fully functional vascular system to efficiently supply oxygen and nutrients has hindered the clinical application of bioengineered tissues for transplantation. To investigate vascular biology, drug transport, disease progression, and vascularization of engineered tissues for regenerative medicine, we have analyzed different approaches for designing microvascular networks to create models. This review discusses recent advances in the field of microvascular tissue engineering, explores potential future challenges, and offers methodological recommendations.
Collapse
Affiliation(s)
- He Li
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
4
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
5
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Dayal S, Broekelmann T, Mecham RP, Ramamurthi A. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair. Tissue Eng Part A 2023; 29:187-199. [PMID: 36641641 PMCID: PMC10122231 DOI: 10.1089/ten.tea.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) represent a multifactorial, proteolytic disorder involving disintegration of the matrix structure within the AAA wall. Intrinsic deficiency of adult vascular cells to regenerate and repair the wall elastic matrix, which contributes to vessel stretch and recoil, is a major clinical challenge to therapeutic reversal of AAA growth. In this study, we investigate the involvement of epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK) pathway in the activation of aneurysmal smooth muscle cells (SMCs) by neutrophil elastase, and how EGFR can be targeted for elastic matrix regeneration. We have demonstrated that neutrophil elastase activates EGFR and downregulates expression level of key elastin homeostasis genes (elastin, crosslinking enzyme-lysyl oxidase, and fibulin4) between a dose range of 1-10 μg/mL (p < 0.05). It also incites downstream proteolytic outcomes by upregulating p-extracellular signal-regulated kinase (ERK)1/2 (p < 0.0001) and matrix metalloprotease 2 (MMP2) at a protein level, which is significantly downregulated upon EGFR-specific inhibition by tyrosine kinase inhibitor AG1478 (p-ERK1/2 and MMP2 [p < 0.05]). Moreover, we have shown that EGFR inhibition suppresses collagen amounts in aneurysmal SMCs (p < 0.05) and promotes robust formation of elastic fibers by enhancing its deposition in the extracellular space. Hence, the EGFR-MAPK pathway in aneurysmal cells can be targeted to provide therapeutic effects toward stimulating vascular matrix regeneration. Impact statement Proteolytic disorders such as aortal expansions, called abdominal aortic aneurysms (AAAs), are characterized by naturally irreversible enzymatic breakdown and loss of elastic fibers, a problem that has not yet been surmounted by existing tissue engineering approaches. In this work, we show, for the first time, how epidermal growth factor receptor (EGFR) inhibition provides downstream benefits in elastic fiber assembly and deposition in aneurysmal smooth muscle cell cultures. This work can open future possibilities for development of EGFR-targeted drug-based therapies not only for vessel wall repair in AAAs but also other proteolytically compromised elastic tissues.
Collapse
Affiliation(s)
- Simran Dayal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Thomas Broekelmann
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
7
|
Flégeau K, Puiggali-Jou A, Zenobi-Wong M. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication 2022; 14. [PMID: 35483326 DOI: 10.1088/1758-5090/ac6b58] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/11/2022]
Abstract
3D bioprinting offers an excellent opportunity to provide tissue-engineered cartilage to microtia patients. However, hydrogel-based bioinks are hindered by their dense and cell-restrictive environment, impairing tissue development and ultimately leading to mechanical failure of large scaffoldsin vivo. Granular hydrogels, made of annealed microgels, offer a superior alternative to conventional bioinks, with their improved porosity and modularity. We have evaluated the ability of enzymatically crosslinked hyaluronic acid (HA) microgel bioinks to form mature cartilagein vivo. Microgel bioinks were formed by mechanically sizing bulk HA-tyramine hydrogels through meshes with aperture diameters of 40, 100 or 500µm. Annealing of the microgels was achieved by crosslinking residual tyramines. Secondary crosslinked scaffolds were stable in solution and showed tunable porosity from 9% to 21%. Bioinks showed excellent rheological properties and were used to print different objects. Printing precision was found to be directly correlated to microgel size. As a proof of concept, freeform reversible embedding of suspended hydrogels printing with gelation triggered directly in the bath was performed to demonstrate the versatility of the method. The granular hydrogels support the homogeneous development of mature cartilage-like tissuesin vitrowith mechanical stiffening up to 200 kPa after 63 d. After 6 weeks ofin vivoimplantation, small-diameter microgels formed stable constructs with low immunogenicity and continuous tissue maturation. Conversely, increasing the microgel size resulted in increased inflammatory response, with limited stabilityin vivo. This study reports the development of new microgel bioinks for cartilage tissue biofabrication and offers insights into the foreign body reaction towards porous scaffolds implantation.
Collapse
Affiliation(s)
- Killian Flégeau
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Anna Puiggali-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Montavon B, Winter LE, Gan Q, Arasteh A, Montaño AM. Mucopolysaccharidosis Type IVA: Extracellular Matrix Biomarkers in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:829111. [PMID: 35620518 PMCID: PMC9127057 DOI: 10.3389/fcvm.2022.829111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) in Mucopolysaccharidosis Type IVA (Morquio A), signified by valvular disease and cardiac hypertrophy, is the second leading cause of death and remains untouched by current therapies. Enzyme replacement therapy (ERT) is the gold-standard treatment for MPS disorders including Morquio A. Early administration of ERT improves outcomes of patients from childhood to adulthood while posing new challenges including prognosis of CVD and ERT's negligible effect on cardiovascular health. Thus, having accurate biomarkers for CVD could be critical. Here we show that cathepsin S (CTSS) and elastin (ELN) can be used as biomarkers of extracellular matrix remodeling in Morquio A disease. We found in a cohort of 54 treatment naïve Morquio A patients and 74 normal controls that CTSS shows promising attributes as a biomarker in young Morquio A children. On the other hand, ELN shows promising attributes as a biomarker in adolescent and adult Morquio A. Plasma/urine keratan sulfate (KS), and urinary glycosaminoglycan (GAG) levels were significantly higher in Morquio A patients (p < 0.001) which decreased with age of patients. CTSS levels did not correlate with patients' phenotypic severity but differed significantly between patients (median range 5.45-8.52 ng/mL) and normal controls (median range 9.61-15.9 ng/mL; p < 0.001). We also studied α -2-macroglobulin (A2M), C-reactive protein (CRP), and circulating vascular cell adhesion molecule-1 (sVCAM-1) in a subset of samples to understand the relation between ECM biomarkers and the severity of CVD in Morquio A patients. Our experiments revealed that CRP and sVCAM-1 levels were lower in Morquio A patients compared to normal controls. We also observed a strong inverse correlation between urine/plasma KS and CRP (p = 0.013 and p = 0.022, respectively) in Morquio A patients as well as a moderate correlation between sVCAM-1 and CTSS in Morquio A patients at all ages (p = 0.03). As the first study to date investigating CTSS and ELN levels in Morquio A patients and in the normal population, our results establish a starting point for more elaborate studies in larger populations to understand how CTSS and ELN levels correlate with Morquio A severity.
Collapse
Affiliation(s)
- Brittany Montavon
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Linda E. Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | | | - Adriana M. Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
9
|
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. J Mol Cell Cardiol 2022; 163:167-174. [PMID: 34979103 PMCID: PMC8920537 DOI: 10.1016/j.yjmcc.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.
Collapse
Affiliation(s)
- Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Colleen A Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Luke D Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|